Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Lens-shaped ferrule

Subclass of:

385 - Optical waveguides

385053000 - WITH DISENGAGABLE MECHANICAL CONNECTOR

385076000 - Optical fiber/optical fiber cable termination structure

385077000 - At or immediately surrounding an optical fiber end face

385078000 - Fiber end held in ferrule

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
385079000 Lens-shaped ferrule 58
20090154884Multifiber MT-Type Connector and Ferrule Comprising V-Groove Lens Array and Method of Manufacture - A fiber optic ferrule, preferably an MT-type ferrule, and connector design is provided that includes a unitary v-groove lens array (v-lens). The v-lens comprises a plurality of lenses and corresponding plurality of open v-grooves to align optical fibers with the plurality of lenses. Because the v-groove lens array is a unitary structure, high precision manufacturing is required for only the v-groove lens array, and not for other components forming the ferrule. A housing holds the v-groove lens array and preferably comprises a cantilever configured to retain the optical fibers substantially within their corresponding v-grooves. An opening in the housing allows an adhesive to be placed in contact with the housing, optical fibers and v-groove lens array thereby retaining the various components in a fixed relationship. A fiber optic connector may include the fiber optic ferrule in accordance with the present invention disposed within a suitable connector housing.06-18-2009
20090214165Optical Fiber Connector With Lens - An optical connector having a compression ring that is fitted onto a front end portion of a ferrule so as to compressively deform the ferrule and thus reduce the diameter of a through hole formed in the ferrule to thereby press and fixedly hold an optical fiber within the through hole from the outside. The compression ring can fix an optical fiber with high accuracy in terms of the position of the center axis of the optical fiber and can easily be manufactured through a simple manufacturing process.08-27-2009
20090252459Expanded beam connector concepts - A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and lens.10-08-2009
20100027944Optical receptacle and manufacturing method thereof - An optical receptacle and a manufacturing method thereof are provided in which good wiggle characteristics can be actualized at a low cost and mass-productivity can be improved.02-04-2010
20100135618Unitary Fiber Optic Ferrule and Adapter Therefor - A unitary fiber optic ferrule reflects light off an interior lens and through the fiber optic ferrule. Optical fibers can be easily secured in the unitary fiber optic ferrule. An adapter to secure the unitary fiber optic ferrule to a optical component assembly is also presented. The adapter provides a sealing function for the lenses and to provide routing for optical fibers from other assemblies of unitary fiber optic ferrules and adapters.06-03-2010
20100266245Fiber termination for fiber optic connection system - A fiber termination (10-21-2010
20100303422OPTICAL CONNECTOR WITH FERRULE INTERFERENCE FIT - An optical connector having a front and back orientation and suitable for operating with a temperature range, the connector comprising: (a) a ferrule comprising a first material having a first coefficient of thermal expansion (COE), and having no greater than a first diameter below a transition temperature with the temperature range, and no less than a second diameter above the transition temperature, the ferrule also comprising an endface, and containing at least one fiber having a fiber end presented at the endface; (b) a spring disposed behind the ferrule and in contact with the ferrule to apply a forward urging force to the ferrule; and (c) a housing comprising a second material having a second COE, the housing defining a bore hole having a diameter greater than the second diameter, and an interface portion having a restricted bore hole having no greater than a third diameter below the transition temperature, and no less than a fourth diameter above the transition temperature; wherein the connector is configured in one of two ways, in a first configuration, the second COE is greater than the first COE, and in the second configuration, the second COE is less than the first COE; wherein, in the first configuration, the first diameter is greater than the third diameter and the second diameter is less than the fourth diameter; and wherein, in the second configuration, the first diameter is less than the third diameter, and the second diameter is greater than the fourth diameter.12-02-2010
20110033159Optical fiber connecting part and optical module using the same - An optical fiber connecting part has a ferrule, and a guide bore penetrating through the ferrule and configured to guide an optical fiber to be inserted. The guide bore has a first bore provided at one end of the ferrule, through which the optical fiber is inserted into the ferrule, a second bore provided at another end of the ferrule, the second bore having an inner diameter smaller than an inner diameter of the first bore, and an intermediate bore provided between the first bore and the second bore to directly connect between the first bore and the second bore. A center axis of the second bore is shifted from a center axis of the first bore.02-10-2011
20110188814OPTICAL FIBER CONNECTOR - An optical fiber connector includes a housing, and two lenses. The housing defines two first blind holes each configured for receiving an optical fiber. The two lenses are formed on the housing and each of the lenses is aligned with a corresponding first blind hole. The two second blind holes are defined on the housing and each of the second blind holes run through the housing to the bottom of a corresponding first blind hole allowing air in the first blind hole vent out when the optical fiber is inserted into the first blind hole.08-04-2011
20110249945OPTICAL FIBER CONNECTOR - An optical couple connector includes a first main body and a second main body. A through hole is defined in the first main body. A blind hole and a lens are defined in the second main body. The diameter of the blind hole is less than that of the through hole. The through hole is coaxial with the blind hole and is used to hold an optical fiber. The lens couples to the optical fiber.10-13-2011
20110317963CONNECTOR FOR A FIBER PROBE AND A FIBER PROBE ADAPTED TO SAID CONNECTOR - A connector to connect a fiber bundle probe to a light injection module including a tightening cam having an opening of a specified shape adapted to receive the fiber bundle probe, a cam driving coupled to the tightening cam, wherein the tightening cam is configured to translate in response to rotation of the cam driving until the tightening cam is blocked, at least one spring extending between the tightening cam and the cam driving, wherein the at least one spring is configured to resist when the cam driving is actuated by rotation and the tightening cam is blocked, and a locking mechanism to lock the cam driving into a selected position.12-29-2011
20120020626Optical Fiber Connector - The invention improves work efficiency of assembly from that of the past, and suppresses decrease in coupling efficiency between an optical fiber and a photoelectric conversion element.01-26-2012
20120114289RECEPTACLE FERRULES WITH MONOLITHIC LENS SYSTEM AND FIBER OPTIC CONNECTORS USING SAME - Receptacle ferrules with at least one monolithic lens system and fiber optic connectors using same are disclosed. Ferrule assemblies formed by mating plug and receptacle ferrules are also disclosed, as are connector assemblies formed by mating plug and receptacle connectors. The fiber optic connectors and connector assemblies are suitable for use with commercial electronic devices and provide either an optical connection, or both electrical and optical connections. The monolithic optical system defines a receptacle optical pathway having a focus at the receptacle ferrule front end. When a plug ferrule having a plug optical pathway is mated with the receptacle ferrule, the plug and receptacle optical pathways are optically coupled at a solid-solid optical pathway interface where light passing therethrough is either divergent or convergent, and where unwanted liquid is substantially expelled.05-10-2012
20120148199OPTICAL FIBER CONNECTOR - An optical fiber connector includes a number of optical fibers, a body, a number of supports and a cover. The body includes a number of lens portions at a first end thereof, a number of through holes at an opposite second end, and a recess located between the lens portions and the through holes. The through holes are in communication with the recess. The optical fibers extend through the respective through holes and terminate at the respective lens portions. The supports are formed in the recess. Each support supports and retains a portion of the corresponding optical fiber exposed in the recess. The cover is inserted in the recess. The cover and the supports cooperatively securely sandwich the exposed portions of the optical fibers in the body.06-14-2012
20120189252RECEPTACLE FERRULE ASSEMBLIES WITH GRADIENT INDEX LENSES AND FIBER OPTIC CONNECTORS USING SAME - A receptacle ferrule assembly for a fiber optic receptacle connector. The receptacle ferrule assembly comprises a first lens with first second optical surfaces and a receptacle ferrule body having first and second ends. At least one monolithic optical system is formed in a monolithic receptacle ferrule body and includes a lens formed at the second end of monolithic receptacle ferrule body and an optical surface formed at the first end of monolithic receptacle ferrule body. The optical surface is situated adjacent to, and mated to the second optical surface of the first lens The monolithic optical system is configured, in conjunction with the first lens, to define a receptacle optical pathway from the second end of the monolithic optical system to the first surface of the first lens. According to some embodiments the first lens is a gradient index lens.07-26-2012
20120294573OPTICAL CONNECTOR WITH FERRULE INTERFERENCE FIT - An optical connector having a front and back orientation, the connector comprising: (a) a ferrule comprising a first material having a first coefficient of thermal expansion (COE), and having a first diameter at a first temperature, and a second diameter at a second temperature, the ferrule also comprising an endface; (b) a housing comprising a second material having a second COE, the housing having a restricted borehole having a third diameter at the first temperature, and a fourth diameter at the second temperature; (c) a resilient member disposed in the housing and in contact with the ferrule to apply a forward urging force to the ferrule; (d) wherein the connector has a first and second configuration, in the first configuration, the second COE is greater than the first COE, the first diameter is greater than the third diameter such that the connector is in an interference state at the first temperature, and the second diameter is less than the fourth diameter such that the connector is in a clearance state at the second temperature, in the second configuration, the second COE is less than the first COE, the first diameter is less than the third diameter such that the connector is in the clearance state at the first temperature, and the second diameter is greater than the fourth diameter such that the connector is in the interference state at the second temperature; and (e) wherein clearance between the ferrule and the housing is less than 0.5 μm at room temperature.11-22-2012
20130004128Expanded beam fiber optic connector system - The device which enables a physical contact fiber optic connector into an expanded beam connector includes a fiber stub, an aspherical lens, and a housing. The fiber stub includes a stub body and a discrete length of optical fiber retained by the stub body. The housing retains the fiber stub and the aspherical lens so that the discrete length of optical fiber of the fiber stub is in optical communication with the aspherical lens.01-03-2013
20130089293Unitary Fiber Optic Ferrule and Adapter Therefor - A unitary fiber optic ferrule reflects light off an interior lens and through the fiber optic ferrule. Optical fibers can be easily secured in the unitary fiber optic ferrule. An adapter to secure the unitary fiber optic ferrule to a optical component assembly is also presented. The adapter provides a sealing function for the lenses and to provide routing for optical fibers from other assemblies of unitary fiber optic ferrules and adapters.04-11-2013
20130121648ACTIVE OPTICAL CONNECTOR USING AUDIO PORT - An active optical connector using an audio port includes a plug insertable into a jack having an optical transceiver module. A conductor is mounted on the plug. Optical fibers extend through a central bore of the plug and have front ends held in a fiber ferrule. The jack has a terminal for contacting the conductor on the plug. The optical transceiver module has a receptacle for receiving the fiber ferrule. A light source emits light to an optical fiber, and a photo-detector receives light from another optical fiber. A controller chip has a converting circuit configured to convert electrical signals into optical signal and optical signals into electrical signals.05-16-2013
20130136400OPTICAL COUPLINGS HAVING A CODED MAGNETIC ARRAY, AND CONNECTOR ASSEMBLIES AND ELECTRONIC DEVICES HAVING THE SAME - Optical couplings for optically coupling one or more devices are disclosed. According to one embodiment, an optical coupling includes an optical coupling body, an optical interface, and a coded magnetic array located at the optical coupling body. The coded magnetic array has a plurality of magnetic regions configured for mating the optical interface. The optical coupling further includes a reflective surface within the optical coupling body and positioned along an optical path of the optical coupling body. The reflective surface is operable to redirect an optical signal propagating within the optical coupling body such that it propagates through the optical interface. The optical coupling may be configured as a plug, such as a plug of a connector assembly, or as a receptacle, such as a receptacle on an electronic device. Connector assemblies of optical cables, optical coupling receptacles, and translating shutter assemblies are also disclosed,05-30-2013
20130142489FERRULES WITH COMPLIMENTARY MATING GEOMETRY AND RELATED FIBER OPTIC CONNECTORS - Optical fiber ferrules with complementary mating geometry that are suitable for making optical connections are disclosed along with fiber optic connectors and cable assemblies using the same. In one embodiment, the fiber optic ferrule includes a body having a plurality of optical pathways and a mating geometry that includes at least one slot monolithically formed in the body of the fiber optic ferrule. The slot of the ferrule permits a relatively high number of mating/unmating cycles without generating excessive wear and debris, thereby making it suitable for consumer electronic devices or the like. The disclosure is also directed to fiber optic connectors and cable assemblies using the ferrule.06-06-2013
20130177280Expanded Beam Connector Concepts - A terminus for a fiber optic cable includes a ferrule. In one embodiment, an optical fiber of the cable passes through a central bore of the ferrule and is attached to a lens seated in a conical or cylindrical seat formed in an end surface of the ferrule by an epoxy. In a second embodiment, an optical fiber of the cable passes through the central bore of the ferrule. Next, a cap sleeve with a lens therein is slid over and attached to the ferrule such that the lens abuts or is attached to the optical fiber. In either embodiment, an inspection slot may optionally be formed in the ferrule and/or the cap sleeve to allow a technician to inspect the state of the attachment and/or abutment and/or spacing of the optical fiber and the lens.07-11-2013
20130202255Single Mode Fiber Array Connector For Opto-Electronic Transceivers - An apparatus for providing single mode optical signal coupling between an opto-electronic transceiver and a single mode optical fiber array takes the form of a lens array and a ferrule component. The lens array includes a plurality of separate lens element disposed to intercept a like plurality of single mode optical output signal from the opto-electronic transceiver and provide as an output a focused version thereof. The ferrule component includes a plurality of single mode fiber stubs that are passively aligned with the lens array and support the transmission of the focused, single mode optical output signals towards the associated single mode optical fiber array.08-08-2013
20130216190OPTICAL ASSEMBLY WITH FERRULE AND FRAME - An optical cable assembly is provided for being connected to an opto-electric device assembly having a substrate, an opto-electric device (OED) mounted on the substrate, and a frame mounted on the substrate. The optical cable assembly includes an optical cable including an optical conductor having an end. A ferrule terminates the optical cable. The ferrule includes a body having a chamber. The optical conductor is held by the ferrule such that at least a portion of the end of the optical conductor extends within the chamber of the body of the ferrule. The body of the ferrule is configured to be engaged with and removably connected to the frame of the electro-optical device assembly to optically connect the optical conductor to the OED.08-22-2013
20130272660OPTICAL CONNECTOR WITH FERRULE INTERFERENCE FIT - An optical connector for operation within a temperature range, comprising: (a) a ferrule comprising a first material having a coefficient of thermal expansion COE-1, and a diameter no greater than a diameter d1 below a transition temperature Ts within the temperature range and no less than a diameter d2 above Ts; (b) a spring disposed behind and in contact with the ferrule to apply a forward force to the ferrule; and (c) a housing comprising a second material having a coefficient of thermal expansion COE-2 and defining a bore hole having a diameter greater than d2, and an interface having a restricted bore hole having a diameter no greater than a diameter d3 below Ts, and no less than a diameter d4 above Ts, wherein connector configuration is COE-2>COE-1 with d>d3 and d2d4.10-17-2013
20130301995CARTRIDGE RECEPTACLE AND METHOD FOR PRODUCING THE CARTRIDGE RECEPTACLE - A cartridge receptacle for receiving at least one cartridge, the cartridge having at least one ferrule and a lens. The receptacle includes at least one bore for receiving the cartridge and an end face on the lens side, the end face lying perpendicularly to an optical axis of the cartridge.11-14-2013
20140003773HEAD FOR FIBER OPTIC OPTOELECTRONIC SWITCH01-02-2014
20140029899FIBER OPTIC CONNECTORS EMPLOYING MOVEABLE OPTICAL INTERFACES WITH FIBER PROTECTION FEATURES AND RELATED COMPONENTS AND METHODS - Embodiments disclosed herein include fiber optic connectors employing a movable optical interface connected by optical fibers to a fiber optic cable, components and methods. In one embodiment, the movable optical interface moves between an extended position for cleaning by the user of the movable optical interface and a retracted position to optically connect the fiber optic connector to an optical device in a mechanically-secure manner. Because the fiber optic cable employs the movable optical interfaces, embodiments described herein involve one or more fiber protection features to prevent optical fiber attenuation and/or damage to the end portions of the optical fibers.01-30-2014
20140037251DENSE SHUTTERED FIBER OPTIC CONNECTORS AND ASSEMBLIES SUITABLE FOR ESTABLISHING OPTICAL CONNECTIONS FOR OPTICAL BACKPLANES IN EQUIPMENT RACKS - Dense shuttered fiber optic connectors and assemblies suitable for establishing optical connections for optical backplanes in equipment racks are disclosed. In one embodiment, a fiber optic connector assembly is provided. The fiber optic connector assembly comprises a fiber optic connector. The fiber optic connector assembly also comprises a slideable shutter disposed in the fiber optic connector. The slideable shutter has an opening(s) configured to be aligned with a plurality of lenses disposed in the fiber optic connector in an open position, and configured to block access to the plurality of lenses disposed in the fiber optic connector in a closed position. The fiber optic connector assembly also comprises an actuation member coupled to the slideable shutter configured to move the slideable shutter from the closed position to the open position.02-06-2014
20140064670OPTICAL FIBER CONNECTOR - An optical fiber connector includes an optical cable and a connector body connected to the optical cable. The connector body includes a shell, a PCB, photoelectric elements, and a coupler. The shell includes a receiving portion and a plug portion connected to the receiving portion. The receiving portion defines a receiving space therein, and the plug portion defines an opening communicating with the receiving space. The receiving portion includes a bottom plate and an opposite top plate. The receiving portion defines a connecting hole in the top plate and communicating with the receiving space, and an end of the optical cable is received and fixed in the connecting hole. The PCB includes a mounting end positioned in the receiving portion and an insertion end extending to the plug portion through the opening. The photoelectric elements are positioned on the mounting end and faces toward the top plate.03-06-2014
20140079355OPTICAL CONNECTOR HAVING SLOT FOR LOCATING OPTICAL FIBER AND METHOD FOR ASSEMBLING OPTICAL CONNECTOR - An optical connector includes a base including a main body and a number of optical elements, and a number of optical fibers. The main body includes a first surface, a third surface perpendicularly connecting the first surface, and a fourth surface facing away the third surface, and defines a number of slots, which is perpendicular to the third surface, in the in the first surface. The slots run through the third surface. Each of the slots includes a regular wide first section and a second section connecting the first section and running through the third surface. Each of the second section tapers from the third surface to the first section. The optical elements are formed on the fourth surface and aligned with the slots. The optical fibers are slid and fitted in the first sections, guided by the second sections.03-20-2014
20140099061RECONFIGURABLE FIBER OPTIC CABLE ASSEMBLIES AND OPTICAL CONNECTORS - Reconfigurable fiber optic cable assemblies and optical connectors are disclosed. According to one embodiment, a fiber optic cable assembly includes an optical cable having a connector end and a plurality of optical fibers, a connector housing wherein the plurality of optical fibers are disposed within the connector housing, and an optical interface to which the plurality of optical fibers is optically coupled. The optical interface is rotatable with respect to the connector end of the optical cable04-10-2014
20140112622OPTICAL CONNECTOR WITH SLOPED SURFACE - An optical connector includes a printed circuit board (PCB), an optical-electric coupling element, a jumper, and optical fibers. The optical-electric coupling element is attached on the PCB. The jumper is detachably positioned on the optical-electric coupling element. The optical-electric coupling element includes first coupling lenses. The jumper includes a first external sidewall, a second external sidewall, a third external surface, and a fourth external surface. The first external sidewall defines receiving holes. Each optical fiber is received in a respective receiving hole. The third external surface defines a sloped surface extending from the third external surface to the first external sidewall. The third external surface and the sloped surface form an angle therebetween. The fourth external surface defines a cavity. The jumper includes second coupling lenses positioned on a bottom surface of the cavity. Each second coupling lens is aligned with a respective first coupling lens.04-24-2014
20140112623OPTICAL CONNECTION HAVING MAGNETIC COUPLING WITH A PISTON - Disclosed are optical connections having a coupling portion that includes a piston and a magnet along with complimentary optical connections. In one embodiment, the optical connection includes an optical interface portion having at least one optical channel and a coupling portion. The coupling portion includes a piston that is movable between a first position and a second position, a resilient member for biasing the piston to the first position and a magnet for retaining the piston at the second position. In one embodiment, the piston may be disposed in a body of the optical connection. The piston may be formed from a ferrous material and since it is not magnetic it does not attract metal trash; however, it still allows coupling (e.g., mating) of optical connections using magnetic retention. Additionally, the piston may optionally include a cover portion if desired.04-24-2014
20140178010GRADIENT INDEX LENS ASSEMBLIES, FIBER OPTIC CONNECTORS, AND FIBER OPTIC CABLE ASSEMBLIES EMPLOYING LENS ALIGNMENT CHANNELS - Gradient index (GRIN) lens assemblies employing lens alignment channels, as well as fiber optic connectors and fiber optic cable assemblies employing such GRIN lens assemblies, are disclosed. In one embodiment, a GRIN lens assembly includes a lens holder body having a mating face, a surface extending from the mating face, and a lens alignment channel. The lens alignment channel is defined by a narrow portion extending from the surface to a first depth and at least partially along a length of the surface, and a wide portion extending from the narrow portion to a second depth. A lens opening defined by the wide portion of the lens alignment channel at the mating face is disposed in the mating face. The wide portion of the lens alignment channel is configured to support a GRIN lens disposed in the lens alignment channel.06-26-2014
20140178011OPTICAL CONNECTOR - An optical connector (06-26-2014
20140178012OPTICAL CONNECTOR - An optical connector (06-26-2014
20140185990LENSED FERRULE ASSEMBLY WITH THERMAL EXPANSION COMPENSATION - An optical fiber assembly includes a ferrule body with a plurality of optical fibers. An end face of each optical fiber extends past the front face of the ferrule body. A beam expanding element is generally adjacent the front face of the ferrule body and has a lens array aligned with the optical fibers. An index matched resilient medium engages the rearwardly facing surface of the beam expanding element and the end faces of the optical fibers.07-03-2014
20140185991TRANSLATING LENS HOLDER ASSEMBLIES EMPLOYING BORE RELIEF ZONES, AND OPTICAL CONNECTORS INCORPORATING THE SAME - Translating lens holder assemblies employing bore relief zones, as well as optical connectors employing such lens holder assemblies, are disclosed. In one embodiment, a lens holder assembly includes a lens holder body having a mating face, a first forward slide portion and a first rear slide portion disposed on a first side of the lens holder body, and a second forward slide portion and a second rear slide portion disposed on a second side of the lens holder body. The first forward slide portion is separated from the first rear slide portion by a first bore relief zone, and the second forward slide portion is separated from the second rear slide portion by a second bore relief zone. In one embodiment, the lens holder assembly further includes at least one groove alignment feature disposed in the lens holder body that is configured to support at least one GRIN lens.07-03-2014
20140193120FERRULE ASSEMBLY WITH INTEGRAL LATCH - An optical fiber assembly includes a ferrule body with a plurality of optical fibers positioned therein. The assembly may include a beam expanding element adjacent the front face of the ferrule body with a lens array aligned with the optical fibers. A resilient latch is integrally formed with the beam expanding element or the ferrule body.07-10-2014
20140241672LIQUID DISPLACING OPTICAL COUPLING ASSEMBLIES - According to various embodiments, an optical assembly may include a ferrule element having a fiber guiding portion separated from an in-wall locating feature by an access region, and a lens element positioned opposite access region and aligned with the in-wall locating feature. The optical assembly also includes an optical component coupled to and extending through the fiber guiding portion and the access region such that a proximal end of the optical component is positioned within the in-wall locating feature. The optical component includes a coated portion that is coated with an insulator in positions proximate to the fiber guiding portion and an uncoated portion substantially free of the insulator in positions proximal to the in-wall locating feature. The optical assembly also includes a lens cover coupled to the ferrule element and positioned proximate to the lens element.08-28-2014
20140270651MULTI-FIBER FERRULE CONNECTOR - A single-piece multi-fiber ferrule interconnect assembly including a ferrule body having a main surface, a front frame, and a rear opening, wherein the front frame includes a front face and a back face; a plurality of lenses arranged to form a lens array, wherein the lenses are fabricated within the front frame and recessed from the front face; a plurality of grooves on the main surface for receiving a plurality of optical fibers, the grooves extending from the back face toward the rear opening, wherein each groove comprises a terminus located at the focal point of a corresponding lens on the front frame; a well located on the main surface along the back face of the front frame, wherein inside edges of the well are curved and wherein the well is capable of accommodating an epoxy; and a plurality of guide pin passageways on the ferrule body each having a pin aperture for receiving alignment pins from a complementary ferrule body, wherein the pin aperture and the alignment pin from the complementary ferrule body align the ferrule front faces such that ends of the optical fibers align.09-18-2014
20140321814MULTI-FIBER FERRULE WITH A LENS PLATE - An optical fiber assembly includes a ferrule body with a plurality of optical fibers and an end of each optical fiber positioned adjacent the front face of the ferrule body. A beam-expanding element is positioned adjacent the front face of the ferrule body including a lens array aligned with the optical fibers. The lens array is spaced from the optical fibers by a predetermined distance to form a gap with an index-matched medium within the gap. A method of manufacturing the optical fiber assembly is also provided.10-30-2014
20140369650OPTICAL MODULE HAVING ADDITIONAL PHOTODIODE LENS FOR DIFFERENT CONNECTION - An optical module (12-18-2014
20150023635OPTICAL CONNECTOR - An optical connector comprising a connector body, an enclosure that is a slit-shaped hole formed from one surface of the connector body into the connector body and accommodates a sheet-like optical waveguide with a tip of the optical waveguide abutting against a bottom of the hole, and a pressing section that is provided on a first surface of the enclosure facing a sheet surface of the enclosed optical waveguide and presses the enclosed optical waveguide toward a second surface of the enclosure facing the first surface so as to bring the enclosed optical waveguide into contact with the second surface.01-22-2015
20150030292SMALLL-FORM-FACTOR FIBER OPTIC INTERFACE DEVICES WITH AN INTERNAL LENS - Small-form-factor fiber optic interface devices with an internal lens are disclosed. The fiber optic interface devices have a ferrule with a bore that supports an optical waveguide. The lens is on or adjacent the ferrule front end and is aligned with the bore. A first planar surface is provided on or adjacent the lens. The first planar surface interfaces with a second planar surface of a second fiber optic interface device to form a fiber optic interface assembly having a liquid-displacing interface when the first and second fiber optic interface devices are engaged.01-29-2015
20150063760SMALL FORM FACTOR TRANSCEIVER COMPATIBLE WITH SOLDER PROCESSING - A fiber optic transceiver that is compatible with packaging into standard semiconductor packages and for SMT packaging, using materials and fabrication procedures that withstand solder assembly processes. The SMT package can have electrical contacts on the exterior of the package for creating electrical conduits to a substrate, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver can be of a non-SMT package configuration, being formed with electrical connection technology that allows direct connection to a substrate with electrical wiring, such as a PCB, interposer, or circuit card within a larger assembly. The fiber optic transceiver may have solderballs, metal posts or other electrical conduit technology that allows direct electrical connection to the substrate.03-05-2015
20150093079OPTICAL FIBER CONNECTOR - An optical fiber connector includes a main body, lens portions, and optical fibers. The main body includes a first side surface and a second side surface opposite to the first side surface. The main body defines a cavity between the first and second side surfaces, and a number of accommodating holes extending through the first side surface and communicating with the cavity. The cavity includes an inner surface. The lens portions are positioned on the second side surface, and each lens portion is coaxial with a corresponding accommodating hole. A focal plane of each lens portion overlaps the inner surface. The optical fibers are fixed in the accommodating holes. An end of each optical fiber is fixed at the focal plane of a corresponding lens portion. The main body includes a bottom surface and defines a through hole in the cavity. The through hole passes through the bottom surface.04-02-2015
20150104135EXPANDED BEAM ARRAY FOR FIBER OPTICS - An expanded beam fiber optic array connector includes a ferrule holding ends of optical fibers in a first ordered array. A plurality of lenses packaged into a unitary structure, formed of an optical grade material, different than a material used to form the ferrule, is attached to the ferrule. The lenses are arranged into a second ordered array matching the first ordered array of the ends of the optical fibers. The lenses of the expanded beam connector associated with transmit channels can be constructed with a prescription geared specifically for transmitting light, whereas the lenses of the expanded beam connector associated with receive channels can be constructed with a prescription geared specifically for receiving light.04-16-2015
20150110448FIBER OPTIC CONNECTOR - The present invention provides a fiber optic jack for routing optical signals. In another aspect, the present invention provides a fiber optic connector with accurate alignment that may be used with, among other things, the fiber optic jack04-23-2015
20150139590OPTICAL COMMUNICATION DEVICE, TRANSMISSION APPARATUS, RECEPTION APPARATUS, AND TRANSMISSION AND RECEPTION SYSTEM - There is provided an optical communication device including a lens substrate configured to have a first face on which a plurality of lenses corresponding to a plurality of channels of optical communication are two-dimensionally formed, and a ferrule configured to be disposed facing a second face that is the opposite face of the first face of the lens substrate and to be provided with through holes into which optical fibers are inserted in positions corresponding to each of the plurality of lenses.05-21-2015
20150147036FIBER OPTIC PLUG HAVING AN ARTICULATED FORCE STRUCTURE TO INHIBIT ANGULAR FERRULE BIASING DURING INSERTION INTO AN OPTICAL RECEPTACLE, AND RELATED ASSEMBLIES AND METHODS - Fiber optic plug connectors having an articulated force structure to inhibit angular ferrule biasing are disclosed. An articulated force structure is provided in the fiber optic plugs to apply a forward force to a ferrule of the fiber optic plug, to dispose the fiber optic plug ferrule in close proximity to an optical interface of the optical receptacle to provide an optical connection therebetween. By the articulating force structure providing an articulating forward force to the fiber optic plug ferrule, the ferrule is able to angularly rotate to inhibit angular biasing applied to the fiber optic plug ferrule as a result of inserting the fiber optic plug into an optical receptacle. The articulating force structure providing an articulating forward force to the fiber optic plug ferrule facilitates alignment of the ferrule with the optical receptacle to preserve optical performance.05-28-2015
20150346434FABRICATION METHOD FOR OPTICAL CONNECTOR AND OPTICAL CONNECTOR - A fabrication method for an optical connector, includes: inserting an optical waveguide sheet, in a direction of an optical path of the optical waveguide sheet, into an insertion hole of an optical connector including lenses disposed in a juxtaposed relationship on a first end face of the optical connector, the insertion hole extending from a second end face of the optical connector at an opposite side to the first end face toward the lenses; and performing first adjustment of adjusting a position of a tip end of the optical path with respect to the lenses by pressing a side end portion of the optical waveguide sheet inserted in the insertion hole from at least one of sides of a first direction along a disposition direction of the lenses, through a first hole portion that is provided in the optical connector and extends to the insertion hole.12-03-2015
20160085034FIBER OPTIC CONNECTORS AND INTERFACES FOR FIBER OPTIC CONNECTIVITY THROUGH DEVICE DISPLAY SURFACE, AND RELATED COMPONENTS, SYSTEMS AND METHODS - A fiber optic connection system is disclosed for optically connecting a fiber optic connector to an internal optical interface of a device through a display surface of the device. Connecting the connector to the device causes a display alignment feature of the connector to be retained against the display surface of the device. This causes a connector optical interface in the connector to optically connect to a device optical interface through the display surface of the device when the connector is connected with the device. One benefit of this arrangement is that a device, such as a smartphone or other small form-factor device for example, may include optical communication hardware that leverages the excellent clarity and flatness of the display surface, such as a display glass for example, to form and maintain a strong fiber optic connection between the connector and the device.03-24-2016
20160091672PRECISION ALIGNMENT OF OPTICAL FIBER ENDS ALONG RESPECTIVE OPTICAL PATHWAYS IN A MULTI-OPTICAL FIBER CONNECTOR MODULE, AND METHODS - An MF connector module is provided that positions the fiber end portions relative to respective V-grooves of the module in such a way that the fiber end portions can be bent, and thereby loaded, by a predetermined amount when the fiber end portions are being installed in the respective V-grooves. The bending of the fiber end portions ensures that the optical axes of at least the tips of the fiber end portions are parallel to the optical axes of the respective V-grooves. The loading of the fiber end portions caused by the bending ensures that significant lengths of the fiber end portions are tangent to and in contact with the inner walls of the respective V-grooves. This tangential contact between the fiber end portions and the inner walls of the V-grooves causes the fiber end faces to be precisely aligned with the respective optical axes of the MF connector module.03-31-2016
20160154189FIBER OPTIC CONNECTOR WITH ADHESIVE MANAGEMENT06-02-2016
20160161678EXPANDED BEAM FIBER OPTIC CONENCTOR, AND CABLE ASSEMBLY, AND METHODS FOR MANUFACTURING - A fiber optic cable and connector assembly is disclosed. In one aspect, the assembly includes a cable optical fiber, an optical fiber stub and a beam expanding fiber segment optically coupled between the cable optical fiber and the optical fiber stub. The optical fiber stub has a constant mode field diameter along its length and has a larger mode field diameter than the cable optical fiber. In another aspect, a fiber optic cable and connector assembly includes a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including an expanded beam fiber segment supported within the ferrule. The expanded beam fiber segment can be constructed such that the expanded beam fiber segment is polished first and then cleaved to an exact pitch length. The expanded beam fiber segment can be fusion spliced to a single mode optical fiber at a splice location behind the ferrule.06-09-2016
20160187593FIBER OPTIC CONNECTORS EMPLOYING MOVEABLE OPTICAL INTERFACES WITH FIBER PROTECTION FEATURES AND RELATED COMPONENTS AND METHODS - Embodiments disclosed herein include fiber optic connectors employing a movable optical interface connected by optical fibers to a fiber optic cable, components and methods. In one embodiment, the movable optical interface moves between an extended position for cleaning by the user of the movable optical interface and a retracted position to optically connect the fiber optic connector to an optical device in a mechanically-secure manner. Because the fiber optic cable employs the movable optical interfaces, embodiments described herein involve one or more fiber protection features to prevent optical fiber attenuation and/or damage to the end portions of the optical fibers.06-30-2016

Patent applications in class Lens-shaped ferrule

Website © 2023 Advameg, Inc.