Class / Patent application number | Description | Number of patent applications / Date published |
385062000 | Compressively fixed (e.g., chuck, collet, crimp, set screws, etc.) | 15 |
20080226235 | Fiber optic adapter and connector assemblies - A fiber optic assembly comprising an adapter assembly defining an internal cavity, a first end for a receiving a first fiber optic connector, and a second end for receiving a second fiber optic connector, wherein the first and the second fiber optic connectors are dissimilar. A fiber optic connection comprising a first fiber optic connector comprising a connector housing, a first multi-fiber ferrule, and a clearance about an end face of the first multi-fiber ferrule for clearing a ferrule surround during connector mating, and a second connector that is a FOCIS 5 compliant MTP connector. | 09-18-2008 |
20080273837 | SUPER MINIATURE, SINGLE FIBER OPTICAL INTERCONNECT SYSTEM WITH PARALLEL SLIDER PUSH-PUSH TYPE INSERTION/WITHDRAWAL MECHANISM AND METHOD FOR USING SAME - An optical fiber interconnect system wherein the adapter employs a push-push interconnect mechanism wherein the adapter employs a spring loaded slider that moves in a single plane in response to a first pushing force to engage the connector with the adapter and a second pushing force to disengage the connector from the adapter so that the connector can be withdrawn from the adapter. | 11-06-2008 |
20080285921 | Optical fiber connector assembly - An optical fiber connector assembly has a sheath, a casing, an alignment pin and a spring. The sheath has a channel defined in the sheath. The casing is mounted in the channel and has a pin hole defined through the casing and communicating with the channel. The alignment pin is mounted slidably through the pin hole and the channel and has an annular flange extending radially from the alignment pin and selectively abutting the casing. The spring is mounted in the channel and presses against the annular flange to ensure the alignment pin abuts a contacting surface tightly. With the spring, the alignment pin of the optical fiber connector may press tightly and stably against an LED of a socket and improve signal transmission quality. | 11-20-2008 |
20090010599 | Re-Terminable LC Connector Assembly and Cam Termination Tool - An improved, reversibly terminable fiber stub connector assembly is provided that can be readily and positively terminated in the field using simple termination tools. This allows repositioning or replacement of fiber optic cable field fibers if termination is not acceptable in performance. The tool may be a hand-held tool, or used in conjunction with a connector support structure to provide simplified and expeditious field termination of fiber optic cables. The cam tool can include a throughbore that enables connection of a patchcord to the stub fiber of the connector during or shortly after termination without removal of the termination tool. Accordingly, field testing of the connection can be made at the site of termination. | 01-08-2009 |
20090060420 | FIBER OPTIC CONNECTOR HAVING HERMAPHRODITIC COUPLING MECHANISM - A hermaphroditic connector for mounting to a cable having a plurality of optical fibers and connecting the fibers to mating optical fibers wherein the optical fibers and mating optical fibers have termini mounted to the respective ends thereof, and wherein the termini of at least one of the optical fibers is slidably mounted and biased to provide a predetermined amount of longitudinal travel during connection includes a plug insert for mounting the termini, a generally cylindrical plug body for receiving the plug insert through an open end thereof, the plug body including a mating end with a plurality of mating features configured to cooperate with corresponding mating features of a second connector to align the termini of the first and second connectors in opposed relationship, a plurality of ears extending radially from the mating end of the plug body, a coupling nut slidably mounted on the plug including a groove formed between a plurality of ribs extending around an inside nut so that rotation of the coupling nut in a forward position captures the ears of the connector and the ears of the second connector in the groove in opposed relationship between the ribs. | 03-05-2009 |
20090148103 | Hardened Fiber Optic Connector and Cable Assembly with Multiple Configurations - A fiber optic connector and cable assembly includes a cable with one or more strength members secured to a connector that is connectable to both a hardened and a non-hardened fiber optic adapter. The cable can include multiple cable types with various shapes and strength member configurations. The connector includes a connector housing having a one-piece main body and a cover piece mounted thereon. The one-piece main body defines a plug portion compatible with the adapters. A ferrule assembly is mounted in the plug portion and biased outwardly by a spring. An insert within the connector housing includes a spring stop for holding the spring and a cable retention portion for securing the strength members of the cable. The spring stop and the cable retention portion can be included on a one-piece insert or they can separately be included on separate inserts. The cable retention portion of the insert and the cover piece can take various forms suited for a particular cable of a given fiber optic connector and cable assembly. | 06-11-2009 |
20090220197 | APPARATUS AND FIBER OPTIC CABLE RETENTION SYSTEM INCLUDING SAME - An apparatus includes a body member that defines a passageway which is configured to receive a rugged fiber optic cable at a first end of the passageway and a fiber optic connector at a second end of the passageway, a first arm member connected to the body member, and a second arm member connected to the body member and coplanar with the first arm member. The first and second arm members are configured to receive the fiber optic connector therebetween. | 09-03-2009 |
20110002586 | FIBER OPTIC CONNECTOR AND METHOD FOR ASSEMBLING - A connector and method for assembling a connector. The connector includes a ferrule that is retainably engaged within a hub. The connector further includes a rear housing and a front housing. The front housing is sized to receive and rotationally retain the hub. The front housing has a bore that receives and engages the exterior surface of a rear housing. The front and rear housing include engagement members that allow the rear housing to be retained within the front housing. A grip housing slideably mounts to the front housing. A boot mounts to the rear housing and terminates before the grip. An inner passage of the rear housing includes a flared passage adjacent to the hub. | 01-06-2011 |
20110033154 | Connector for Multiple Optical Fibers and Installation Apparatus - The present invention comprises a connector comprising shape memory material such as a shape memory alloy, an optical fiber conduit and an axial stress opening traversing the connector from the connector surface to the fiber conduit and along at least a portion of a longitudinal length of the connector. The fiber conduit is dimensioned for optical fibers and to secure two optical fibers in abutment alignment for light signal transmission from one fiber to the other, with minimal attenuation and for securing the fibers without crushing or other damage to the fibers. In another embodiment, the present invention relates to a method of bringing optical fibers in abutment connection for signal conduction using a connector as above, wherein a wedging force is applied to the stress opening, whereby the wedging force will induce separation of the side walls of the slot and expansion of the fiber conduit for insertion of optical fibers and their abutment connection and securing of the fibers in abutment connection, when the wedging force is removed. Alternatively, a force may be applied to either side of the stress opening to again expand the opening and fiber conduit for the purpose of placement of optical fibers within the fiber conduit. Removal of the force will allow retention of the fibers in abutment connection of the fibers. In a still further embodiment, the present invention relates to an apparatus which applies a wedging force to a stress opening for expansion of a fiber conduit and insertion of optical fibers and their retention, light transmission abutment and connection in a connector as above. | 02-10-2011 |
20110081113 | Fiber Optic Connector Assembly and Methods Therefor - A fiber optic connector assembly includes two connectors on fiber optic cables joined together by a clip having a trigger arm and a clip body. The trigger arm extends from the clip body at a shallow angle. The shallow angle of the trigger arm effectively reduces an amount of normal force required to activate latch mechanisms on the connectors. The clip is sandwiched between a connector housing and a boot, inhibiting the clip from axially translating relative to the connector assembly. The clip further includes an anti-rotation system to inhibit rotation of the connector assembly relative to the clip. | 04-07-2011 |
20110188810 | HYBRID CONNECTOR - A connector for simultaneously connecting optical fibers and copper conductors having a receptable connector part and a plug connector part is disclosed. The plug connector part fits into the receptable connector part during mating of the plug connector part and the receptable connector part. The receptable connector part includes a receptable housing accommodating first electrical contacts, a first fiber optic ferrule, a first ferrule holding member for the first ferrule, a first spring element acting against said first ferrule holding member and is held by a first spring push element. The plug connector part includes a plug housing accommodating second electrical contacts, a second fiber optic ferrule, a second ferrule holding member for the second ferrule and a second spring element acting against the second ferrule holding member and being held by a second spring push element. The receptable housing and plug housing each being designed as a one piece housing. | 08-04-2011 |
20110311183 | Fiber-Optic Connector - A fiber-optic connector for connecting an optical fiber to other optical assemblies is disclosed. The fiber-optic connector includes a top plate having a window of similar refractive index and transmission index as the material of an optic fiber to be contained within the fiber-optic connector. The fiber-optic connector also includes a ferrule connected to the top plate via multiple spring-loaded screws. The ferrule includes an interface and an insert. The insert is capable of firmly gripping an optical fiber. In order to reduce Fresnel reflection losses of the fiber-optic connector, the window is pre-coated with an anti-reflective surface on the side opposite an optic fiber to be contained within the fiber-optic connector. | 12-22-2011 |
20120063722 | COLD JOINT TERMINAL FOR OPTICAL FIBERS - A cold joint terminal for optical fibers comprises a box-shaped casing ( | 03-15-2012 |
20120213478 | OPTICAL FIBER CONNECTOR - An optical fiber connector includes a housing with at least one elongated cylindrical cavity, a fiber holder within the cavity including a ferrule which secures an optical fiber therein and a biasing member engaging the fiber holder to bias the ferrule towards an unmated position. A resilient metal latch is mounted on the housing for releasably securing the optical fiber connector to another component. A latch travel limiting structure prevents the latch from deflecting outside a desired predetermined path. Improved structures for mounting the latch on the housing and for creating a duplex connector assembly are also provided. | 08-23-2012 |
20140334779 | OPTICAL BLIND-MATE CONNECTOR - An optical blind-mate connector can include a housing that holds a ferrule block, a carrier coupled to the housing, a reversibly retractable sleeve including a sleeve tab extending therefrom, to receive a force to transition the reversibly retractable sleeve from an extended position to a retracted position, and a door coupled to the reversibly retractable sleeve, the door having a closed position and an open position, wherein in the extended position the door is in the closed position to cover a portion of the ferrule block and in the retracted position the door is in the open position to uncover the portion of the ferrule block. | 11-13-2014 |