Class / Patent application number | Description | Number of patent applications / Date published |
385059000 | Plural fiber-to-fiber connections | 89 |
20080205823 | Articulated force application for multi-fiber ferrules - The present invention provides a multi-fiber fiber optic connector assembly providing articulated force application, including: a ferrule holder including an x-pivot component and a y-pivot component, wherein the x-pivot component of the ferrule holder is operable for providing relative rotational movement about the x-axis of the multi-fiber fiber optic connector assembly and the y-pivot component of the ferrule holder is operable for providing relative rotational movement about the x-axis of the multi-fiber fiber optic connector assembly; a multi-fiber ferrule comprising a plurality of optical connection points coupled to the ferrule holder; and a biasing member coupled to the ferrule holder and the multi-fiber ferrule, wherein the biasing member is operable for transferring a force through the ferrule holder and to the multi-fiber ferrule, and wherein the y-pivot component of the ferrule holder is coupled to the biasing member, the x-pivot component of the ferrule holder is coupled to the y-pivot component of the ferrule holder, and the multi-fiber ferrule is coupled to the x-pivot component of the ferrule holder. | 08-28-2008 |
20080205824 | Angle-specific multi-fiber ferrules and associated methods of manufacture - The present invention provides a method of manufacture that minimizes the lateral offset of a plurality of optical fiber holes associated with a multi-fiber ferrule, including: determining an initial offset distance of each of the plurality of optical fiber holes from each of a plurality of corresponding target locations on an initial endface; removing a predetermined amount of material from the multi-fiber ferrule to form a subsequent endface; determining a subsequent offset distance of each of the plurality of optical fiber holes from each of the plurality of corresponding target locations on the subsequent endface; and, using the initial offset distance and the subsequent offset distance, determining an angle of each of the plurality of optical fiber holes relative to the initial endface. The method of manufacture also includes, using the angle, determining an optimal amount of material that is removed from the multi-fiber ferrule in order to minimize the offset distance of the plurality of optical fiber holes from the plurality of corresponding target locations. The method of manufacture further includes, using the optimal amount of material, removing this amount of material from another similarly-situated multi-fiber ferrule. | 08-28-2008 |
20080279506 | Blown Optical Fibre Multi-Tube Terminal Connectors - A multi-tube terminal connector for connecting tubes into which optical fibres are to be installed by the blown fibre technique, comprising a first part ( | 11-13-2008 |
20080317413 | OPTICAL FIBER PLUG CONNECTOR - The invention relates to an optical fibre plug connector, comprising at least one pair of plug connectors and a coupling, whereby each plug connector comprises a ferrule, each two ferrules of a pair of plug connectors are detachably guided and aligned together within a guide sleeve and the coupling has a housing, for each of the plug connectors. According to the invention, a compact space-saving optical fibre plug connector made from few components may be achieved, whereby the coupling is made from only one component. | 12-25-2008 |
20090034911 | POSITIONAL DIFFERENTIATING CONNECTOR ASSEMBLY - The present disclosure provides systems and methods for securing an information network through positional distinguishing of connectors and adapters. A communications connector system associated with the present disclosure includes at least a first patch cord connector assembly including a patch cord terminated at least at one end by a duplex connector. The duplex connector includes: (i) a connector housing clip adapted to enclose and securely position at least a portion of the terminated end of the patch cord and at least a portion of each of a pair of ferrule housings; and (ii) a pair of connector subassemblies. Each subassembly defines an inner cavity to allow a ferrule mounted with respect to one of the pair of ferrule housings to pass through the connector subassembly. Each of the subassemblies extend outwardly with respect to the connector housing clip and the ferrule housings and are adapted to securely mate with a corresponding pair of receptacles. An adapter associated with the present disclosure includes a housing defining a width that is dimensioned to host the pair of receptacles that are spaced apart with respect to each other. The width is selected so as to accommodate receptacle spacing of up to a pitch value of 3p. The pair of connector subassemblies are spaced apart a particular pitch value (p) and the pair of corresponding receptacles are spaced apart an equal pitch value (p) In an exemplary embodiment, a system according to the present disclosure includes a plurality of adapters and corresponding connector assemblies. Each adapter and corresponding connector assembly is pitched a different pitch value (p). | 02-05-2009 |
20090034912 | M28876/NGCON/D38999 to MTP Adaptor and a Kit Containing the Same - An M28876/NGCON/D38999 to MTP adaptor is disclosed as a low cost substitute for high density fiber systems. The MTP adaptor has a mechanical footprint that is substantially similar to a standard M28876/NGCON/D38999 connector. A kit is also provided that comprises an MTP cable, a pair of ST to MTP fan out cables, and a plurality of M28876/NGCON/D38999 to MTP adaptors. | 02-05-2009 |
20090052843 | Optical Multi-Fiber Plug Connection - The invention relates to a plug connection for a mobile optical multi-thread plug part ( | 02-26-2009 |
20090180737 | OPTICAL FIBER INTERCONNECTION DEVICES AND SYSTEMS USING SAME - Optical fiber interconnection devices, which can take the form of a module, are disclosed that include an array of optical fibers and multi-fiber optical-fiber connectors, for example, two twelve-port connectors or multiples thereof, and three eight-port connectors or multiples thereof. The array of optical fibers is color-coded and is configured to optically interconnect the ports of the two twelve-port connectors to the three eight-port connectors in a manner that preserves transmit and receive polarization. In one embodiment, the interconnection devices provide optical interconnections between twelve-fiber optical connector configurations to eight-fiber optical connector configurations, such as from twelve-fiber line cards to eight-fiber line cards, without having to make structural changes to cabling infrastructure. In one aspect, the optical fiber interconnection devices provide a migration path from duplex optics to parallel optics. | 07-16-2009 |
20090232455 | Multi-port adapter block - An adapter block constructed to mount to more than one mounting configuration of a telecommunications panel. The adapter block including a housing constructed to slide mount to a panel, and pivot mount to a panel from either a front or a rear of the panel. The housing including flexible levers that provide a snap-fit connection to secure the adapter block relative to the panel in each of the mounting configurations. The adapter block providing access to cable terminations of the block in each of the mounting configurations. | 09-17-2009 |
20090238518 | HYBRID FIBER/COPPER CONNECTOR SYSTEM AND METHOD - A hybrid fiber/copper connector assembly which permits repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire connector assembly or the cable is disclosed. The hybrid fiber/copper connector assembly disclosed also allows individual hybrid fiber/copper connectors of the assembly to be converted from one gender to a different gender. The hybrid fiber/copper connector assembly disclosed also allows the individual hybrid fiber/copper connectors of the assembly to be converted from being hybrid fiber/copper connectors to being only fiber connectors or only copper connectors. | 09-24-2009 |
20090238519 | HYBRID FIBER/COPPER CONNECTOR SYSTEM AND METHOD - A hybrid fiber/copper connector assembly which permits repair of damaged fibers or copper conductors carried by a hybrid fiber/copper cable without requiring replacement of the entire connector assembly or the cable is disclosed. The hybrid fiber/copper connector assembly disclosed also allows individual hybrid fiber/copper connectors of the assembly to be converted from one gender to a different gender. The hybrid fiber/copper connector assembly disclosed also allows the individual hybrid fiber/copper connectors of the assembly to be converted from being hybrid fiber/copper connectors to being only fiber connectors or only copper connectors. | 09-24-2009 |
20090238520 | QUICK RELEASE CONNECTION - Systems and methods are disclosed that include a fiber optic connection with an alignment chamber. In the alignment chamber is a first fiber optic terminal and a second fiber optic terminal coupled to the first fiber optic terminal. In addition, a securing mechanism is placed within the alignment chamber and forces the first fiber optic terminal and second fiber optic terminal together. Also in this embodiment an ejection mechanism is disclosed that ejects the first fiber optic terminal upon the removal of the securing mechanism. | 09-24-2009 |
20090245732 | Positional Differentiating Connector Assembly - The present disclosure provides systems and methods for securing an information network through positional distinguishing of connectors and adapters. A communications connector system associated with the present disclosure includes at least a first patch cord connector assembly including a patch cord terminated at least at one end by a duplex connector. The duplex connector includes: (i) a connector housing clip adapted to enclose and securely position at least a portion of the terminated end of the patch cord and at least a portion of each of a pair of ferrule housings; and (ii) a pair of connector subassemblies. Each subassembly defines an inner cavity to allow a ferrule mounted with respect to one of the pair of ferrule housings to pass through the connector subassembly. Each of the subassemblies extend outwardly with respect to the connector housing clip and the ferrule housings and are adapted to securely mate with a corresponding pair of receptacles. An adapter associated with the present disclosure includes a housing defining a width that is dimensioned to host the pair of receptacles that are spaced apart with respect to each other. The width is selected so as to accommodate receptacle spacing of up to a pitch value of 3p. The pair of connector subassemblies are spaced apart a particular pitch value (p) and the pair of corresponding receptacles are spaced apart an equal pitch value (p) In an exemplary embodiment, a system according to the present disclosure includes a plurality of adapters and corresponding connector assemblies. Each adapter and corresponding connector assembly is pitched a different pitch value (p). | 10-01-2009 |
20100054665 | Fiber optic adapters with integrated shutter - The present disclosure is generally directed to a fiber optic adapter assembly for mating fiber optic connectors. The fiber optic adapter includes a body, an alignment cap, and a shutter door. The alignment cap and the body together define a space with the shutter door pivotally disposed in the space for inhibiting debris from entering through the opening and into the body. The shutter door is configured to pivot inwardly when contacted by a fiber optic connector being inserted through the at least one opening and into the body. Additionally, the shutter door includes at least one standoff and at least one latch, wherein the latch is configured to engage and assist in retaining a fiber optic connector that is inserted into the fiber optic adapter assembly. | 03-04-2010 |
20100086257 | FIBER OPTIC SPLICE HOUSING AND INTEGRAL DRY MATE CONNECTOR SYSTEM - A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly. | 04-08-2010 |
20100092134 | FIBEROPTIC CONNECTOR - The proposed optic-fiber connector is used for interconnecting optic-fiber cables. It comprises a receptacle with spring-loaded centralisers and two plugs with ferrules. The centraliser at each side includes an embracing portion, fixed end, movable end furnished with projections. The receptacle includes two sliders, each having a lock with a releasing knob. Each plug is provided with —a movable grid for compressing a spring-loaded insertion, —an arm for moving the grid, and —a fixing device. The embracing portions tightly encompass the ferrules. The slider essentially fixes the plug in the receptacle, and releases the grid for displacement. The insertion produces a force required for compressing the counterpart ferrules. The connector's design facilitates connection and disconnection, provides a small size, while connecting a multitude of optic-fibers, increases the adjustment accuracy producing a required force to depress the ferrules of connected waveguides, easies field connection works, and allows avoiding switches in fiberoptic networks. | 04-15-2010 |
20100129031 | Optical Ferrule Assemblies and Methods of Making the Same - Disclosed are multifiber ferrule assemblies and methods for manufacturing the same. In one embodiment, a finished multifiber ferrule can be provided with a front end having a first front surface that extends beyond a second front surface, thereby inhibiting interaction with a laser beam during processing. A plurality of optical fibers can be fixed within respective optical fiber bores and extend from respective optical fiber bore openings to a position beyond the first front surface. The plurality of optical fibers can be processed by cutting and polishing with a laser beam for providing each optical fiber with a final polished end surface located beyond the first front surface. In further embodiments, an offset structure is positioned with respect to a finished multifiber ferrule after cutting and polishing the optical fibers. | 05-27-2010 |
20100178009 | Polymer Layer at Fiber Ends in Fiber Optic Connectors and Related Methods - A connector ( | 07-15-2010 |
20100202736 | HIGH DENSITY FRONT PANEL OPTICAL INTERCONNECT - A connector assembly has a cable assembly, plug assembly and a socket assembly. The socket assembly is a female member which is received within an opening at the front face of a panel. The plug assembly is a male member which then engages the socket at the front face of the panel. The cable assembly connects the cables carrying optical fibers to the plug assembly. As the socket assembly receives the plug assembly, doors on the respective housings open and ferrule carriers carried by the socket and plug assemblies mate. The plug assembly has a movable front end which permits the fibers to move in both horizontal and vertical directions. | 08-12-2010 |
20100322562 | Optical Interconnection Assemblies and Systems for High-Speed Data-Rate Optical Transport Systems - Fiber optic assemblies and systems for high-speed data-rate optical transport systems are disclosed that allow for optically interconnecting active assemblies to a trunk cable in a polarization-preserving manner. The fiber optic assembly includes at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and second groups of at least two ports each. The first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule. The fiber optic assembly also has a plurality of optical fibers that connect the first and second ports according to a pairings method that maintains polarity between transmit and receive ports of respective active assemblies. At least one of the first and second groups are optically connected without flipping the fibers, and at least one of the first and second groups are optically connected by flipping the fibers. | 12-23-2010 |
20100322563 | FIBER OPTIC DROP CABLES AND PRECONNECTORIZED ASSEMBLIES HAVING TONING PORTIONS - A preconnectorized outdoor cable streamlines the deployment of optical waveguides into the last mile of an optical network. The preconnectorized outdoor cable includes a cable and at least one plug connector. The plug connector is attached to a first end of the cable, thereby connectorizing at least one optical waveguide. The cable has at least one optical waveguide, at least one tensile element, and a cable jacket. Various cable designs such as figure-eight or flat cables may be used with the plug connector. In preferred embodiments, the plug connector includes a crimp assembly having a crimp housing and a crimp band. The crimp housing has two half-shells being held together by the crimp band for securing the at least one tensile element. When fully assembled, the crimp housing fits into a shroud of the preconnectorized cable. The shroud aides in mating the preconnectorized cable with a complimentary receptacle. | 12-23-2010 |
20110058772 | FLEXIBLE OPTICAL COUPLING - An optical fiber coupling device, comprises a coupling assembly that includes a first ferrule and a second ferrule and an optical fiber having a first end mounted in the first ferrule and a second end mounted in the second ferrule. The first ferrule is disposed in an axial bore of a first barrel and the second ferrule is disposed in an axial bore of a second barrel. The coupling assembly is disposable in a coupling housing configured to receive at least two optical fiber connectors. | 03-10-2011 |
20110085763 | Multi-Fiber Interface To Photonic Subassembly - A multiple piecepart alignment and attachment configuration for mating a fiber array (or even a single fiber) with a silicon photonic subassembly utilizes ever-tightening alignment tolerances to align the fiber array with a similar array of waveguides (or other devices) formed within the photonic subassembly. A box-shaped fiber holder is formed to include a plurality of grooves within its bottom interior surface to initially support the fiber array. A separate piecepart in the form of a lid is mated to, and aligned with, the silicon photonic subassembly. The lid is formed to include registration features on its underside that fit into alignment detents formed in the top surface of the silicon photonic subassembly upon attachment. The lid also includes a number of grooves formed on its underside that will capture the top surface of the fibers as the fiber holder is slide into place over the lid. The grooves within the lid function to tighten the pitch of the fiber array and ultimately control the lateral and vertical alignment between the fiber array and the subassembly. The subassembly is also formed to include etched channels along the endface (the channels aligned with optical waveguides/devices in the substrate) to mate with the fiber holder, where the optical fibers are ultimately positioned within the channels so as to be in alignment with the optical waveguides/devices. | 04-14-2011 |
20110129186 | Fiber Optic Module Assembly and Associated Methods - A fiber optic module assembly that may be pulled from a first location to a second location by a pulling means, the module assembly defining a pulling feature. The assembly may further be installed directly into a mounting structure for use as a patch panel. The fiber optic module assembly may be attached in a vertical orientation, facilitated by an articulated strain relief boot that pivots and rotates for cable management, which reduces the vertical footprint of the fiber optic module assembly. Embodiments of the fiber optic module assembly may be connected to the rear or side of a mounting structure for optical connection to pigtailed modules. The fiber optic module assembly may have a modular connector interface for mating dissimilar fiber optic connector assemblies. | 06-02-2011 |
20110150395 | Method and an Apparatus For Batch Cleaving of Fiber Optics Connectors Before Polishing - Disclosed is a method of severing a fiber length projecting out of the end face of a plurality of ferrules. The ferrules are mounted in a polishing fixture. Image processing establishes the fiber cleaving plane. Relative movement between the laser beam and the ferrule severs the fiber protruding out of the ferrule end-face. Excess epoxy that may be present on the ferrule end-face is removed concurrently with the fiber severing process. The method includes cleaning and inspection of ferrules. | 06-23-2011 |
20110176776 | MULTI-CORE OPTICAL FIBER, OPTICAL CONNECTOR AND METHOD OF MANUFACTURING MULTI-CORE OPTICAL FIBER - A multi-core optical fiber which has a plurality of core portions arranged separately from one another in a cross-section perpendicular to a longitudinal direction, and a cladding portion located around the core portions, the multi-core optical fiber comprises a cylindrical portion of which diameter is even, and a reverse-tapered portion gradually expanding toward at least one edge in the longitudinal direction, wherein a gap between each adjacent ones of the core portions in the reverse-tapered portion is greater than that in the cylindrical portion. | 07-21-2011 |
20110249942 | MPO TRUNK CONCATENATION ADAPTER - An MPO connector adapter to connect a first female MPO connector to a second female MPO connector includes a housing. An adapter ferrule is retained within the housing. First and second alignment pin sections extend from a first face of the adapter ferrule to mate with guide holes of the first female MPO connector. Third and fourth alignment pin sections extend from an opposite face of the adapter ferrule to mate with guide holes of the second female MPO connector. Optical fibers within the adapter ferrule couple optical signals from the first female MPO connector to the second female MPO connector. | 10-13-2011 |
20110249943 | GENDER-NEUTRAL MPO CONNECTORS - A genderless fiber optic connection system includes an MPO cable or cord having at least one genderless MPO connector disposed at one end. The genderless MPO connector includes a housing and a first genderless MPO ferrule attached therein. A mating, front face of the MPO ferrule includes an alignment pin extending therefrom and an alignment hole formed into the front face. Fiber ends are located in one or more rows between the alignment pin and the alignment hole. The connection system may also include a genderless MPO port having a complementary alignment pin, alignment hole, and fiber ends for mating with the genderless MPO connector. | 10-13-2011 |
20120033916 | SUBMARINE OPTICAL CONNECTOR - A submarine optical connector ( | 02-09-2012 |
20120093465 | OPTICAL FERRULE ASSEMBLIES AND METHODS OF MAKING THE SAME - Disclosed are multifiber ferrule assemblies and methods for manufacturing the same. In one embodiment, a finished multifiber ferrule can be provided with a front end having a first front surface that extends beyond a second front surface, thereby inhibiting interaction with a laser beam during processing. A plurality of optical fibers can be fixed within respective optical fiber bores and extend from respective optical fiber bore openings to a position beyond the first front surface. The plurality of optical fibers can be processed by cutting and polishing with a laser beam for providing each optical fiber with a final polished end surface located beyond the first front surface. In further embodiments, an offset structure is positioned with respect to a finished multifiber ferrule after cutting and polishing the optical fibers. | 04-19-2012 |
20120099820 | TWO DIMENSIONAL OPTICAL CONNECTOR - There is described a method for fabricating an optical connector comprising: embedding each one of a plurality of first optical waveguides in a corresponding one of a plurality of first grooves of a first substrate; embedding each one of a plurality of second optical waveguides in a corresponding one of a plurality of second grooves of a second substrate; abutting the plurality of first optical waveguides and the plurality of second optical waveguides against walls of the plurality of first grooves and the plurality of second grooves, respectively, by securing a spacer plate between the first substrate and the second substrate so that the first optical waveguides and the second optical waveguides extend along a same axis, thereby obtaining an optical assembly having a front end substantially perpendicular to the axis; and beveling the front end of the optical assembly, thereby obtaining a beveled end for the first optical waveguides and a beveled end for the second optical waveguides offset along the axis for separately providing optical access by side coupling to the plurality of first optical waveguides and the plurality of second optical waveguides. | 04-26-2012 |
20120170892 | OPTICAL FIBER CONNECTOR AND OPTICAL FIBER COUPLING ASSEMBLY HAVING SAME - An optical fiber connector includes a connector body, a number of optical lenses, and two receiving holes. The connector body includes a first end face. The optical lenses are arranged at the first end face. The receiving holes are defined in the first end face. The optical lenses are located between the receiving holes. The connector body includes a partially conical inner side surface, a first flat inner side surface, and a second flat inner side surface in each receiving hole. The partially conical inner side surface, the first flat inner side surface, and the second flat inner side surface adjoins each other. | 07-05-2012 |
20120170893 | FIBER OPTIC SPLICE HOUSING AND INTEGRAL DRY MATE CONNECTOR SYSTEM - A fiber optic splice housing and integral dry mate connector system. In a described embodiment, a fiber optic connection system includes optical fiber sections in respective conduit sections. Each of the conduit sections is received in the housing assembly. An optical connection between the optical fiber sections is positioned within the housing assembly. | 07-05-2012 |
20120230636 | CONNECTOR DEVICE AND METHOD FOR PRODUCING A FURCATED FIBRE OPTIC CABLE - A connector device ( | 09-13-2012 |
20120251051 | Grouping Device for High Density Connector Arrangements - A tool-less grouping apparatus has a main body with a top portion and a bottom portion. Dividing members extending between the top and bottom portions make openings for fiber optic connectors. Forward facing surfaces may be on both the top and bottom portions to engage the fiber optic connectors. The portions also have cut-outs that can engage the fiber optic connectors to assist in removing the fiber optic connectors from adapters. | 10-04-2012 |
20120288233 | OPTICAL INTERCONNECTION ASSEMBLIES AND SYSTEMS FOR HIGH-SPEED DATA-RATE OPTICAL TRANSPORT SYSTEMS - Fiber optic assemblies and systems for high-speed data-rate optical transport systems are disclosed that allow for optically interconnecting active assemblies to a trunk cable in a polarization-preserving manner. The fiber optic assembly includes at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and second groups of at least two ports each. The first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule. The fiber optic assembly also has a plurality of optical fibers that connect the first and second ports according to a pairings method that maintains polarity between transmit and receive ports of respective active assemblies. At least one of the first and second groups are optically connected without flipping the fibers. | 11-15-2012 |
20120321252 | Optical Connector - In an optical connector, end faces of a pair of ferrules that hold multiple optical fibers are positioned with two guide pins and butted against each other to connect the optical fibers in the pair of ferrules. The optical connector is provided with an urging member for pushing the end faces against each other. The end faces are ground at an angle. The gap between the guide pins and guide holes, which open at the end faces and into which the guide pins are fitted, is larger than 0.004 mm and smaller than or equal to 0.008 mm. Powder caused by the friction generated when the guide pins are inserted and fitted into the guide holes is greatly reduced. Connection loss does not increase even when frequent connection and disconnection are performed, and cleaning the connector becomes unnecessary. | 12-20-2012 |
20120328244 | OPTICAL CONNECTOR, OPTICAL CONNECTING STRUCTURE AND METHOD OF MANUFACTURING OPTICAL CONNECTOR - An optical connecting member realizes an optical connecting between a multi-core fiber and a plurality of single-core fibers by a waveguide part which connects a first end face and a second end face. With the optical connecting member, a connected end which is connected to the first end face is a straight-line portion that is orthogonal to the first end face in each of the plurality of waveguide parts. In addition, a diverged end which is diverged to the second end face is a straight-line portion that is orthogonal to the second end face. Consequently, light that has passed through the waveguide parts is emitted from the first end face and the second end face substantially perpendicularly to the faces, thereby enabling optical connecting loss to be favorably inhibited. | 12-27-2012 |
20130044979 | METHOD TO REORDER (SHUFFLE) OPTICAL CABLE WAVEGUIDE LAYERS - An optical cable including connectors includes a plurality of waveguide layers each including a plurality of optical channels each having a first end and a second end. First and second connectors each include a plurality of electrically conductive pins, and each of the plurality of optical channels of each of the waveguides, at their first and second ends, are connected to a specified pin on each of the first and second connectors, respectively. A first optical channel connection pattern on the first connector, and a second optical channel connection pattern on the second connector. The first optical channel connection pattern on the first connector is a different pattern than the second optical channel connection pattern on the second connector in relation to a connection hole pattern which is the same for both the first and second connectors. | 02-21-2013 |
20130142485 | OPTICAL FIBER COUPLING ASSEMBLY - An optical fiber coupling assembly includes a first optical fiber connector and a second optical fiber connector. The first optical fiber connector includes a first body having a first light incident surface, first optical lenses, first plugs, and second plugs. The first optical lenses, the first plugs, and the second plugs are formed on the first light incident surface. The first optical lenses are positioned between the first plugs, and the first plugs are positioned between the second plugs. The second plugs are longer than the first plugs. The second optical fiber connector includes a second body having a second light incident surface and second optical lenses formed on the second light incident surface. First engaging holes and second engaging holes are defined in the second light incident surface. The first plugs are inserted into the first engaging holes, and the second plugs are inserted into the second engaging holes. | 06-06-2013 |
20130142486 | OPTICAL FIBER COUPLING ASSEMBLY WITH CABLE - An optical fiber coupling assembly includes a first optical fiber connector, a second optical fiber connector, and a cable. The first optical fiber connector defines a number of first blind holes receiving first focus lenses, and first through holes respectively communicating with the first blind holes. The second optical fiber connector defines a number of second blind holes receiving second focus lenses, and second through holes respectively communicating with the second blind holes. The cable includes a number of optical fibers. Each optical fiber includes a first end and a second end, and the first end is received in a corresponding one of the first through holes and aligned with the a corresponding one of the first focus lenses, and the second end is received in a corresponding one of the second through holes and aligned with a corresponding one of the second focus lenses. | 06-06-2013 |
20130156377 | METHODS OF REDUCING AND/OR AVOIDING FIBER ORDERING IN A CONNECTORIZED MULTI-FIBER, FIBER OPTIC CABLE SYSTEM, AND RELATED FIBER OPTIC CABLES AND ASSEMBLIES - Methods of reducing and/or avoiding fiber ordering during preparations of a multi-fiber, fiber optic cable to provide a connectorized multi-fiber, fiber optic cable system, and related fiber optic cables and assemblies are also disclosed. The embodiments disclosed herein allow for a section of a multi-fiber, fiber optic cable to be prepared to form two or more connectorized fiber optic cables as part of a multi-fiber cable system without requiring specific fiber ordering in the fiber optic connectors. The natural ordering of the optical fibers in the fiber optic cable is fixed in place in at least one section of the fiber optic cable before the optical fibers are cut to form adjacent fiber optic connectors in the cable system. Thus, the fiber ordering between adjacent fiber optic connectors in the cable system will be the same even though the fiber ordering of the optical fibers was random during cable preparations. | 06-20-2013 |
20130170796 | OPTICAL FIBER COUPLER HAVING MALE PORT AND FEMALE PORT - An optical fiber coupler includes a male port and a female port. The male port includes a main body, the male transmission lens and the male receiving lens positioned on the main body, and a male optical wave guide assembly. The male base board includes at least one male optical wave guide. Each male optical wave guide includes a male first alignment portion and a male second alignment portion. The male first alignment portion is optically coupled with one male receiving lens; and a male second alignment portion has a greater width than that of the male first alignment portion. The structure of the female port is similar to the male port. | 07-04-2013 |
20130209037 | CABLE LEG AND CONNECTOR MANAGEMENT SYSTEM - An interconnect assembly includes an optical fiber cable, legs, connectors, and covers. The optical fiber cable includes a jacket and sub-units. The jacket has an interior defining a passage and the sub-units extend through the passage and include optical fibers extending lengthwise through the sub-units. The legs of the interconnect assembly extend from the passage on an end of the jacket, where the legs are continuations of or extensions from the sub-units such that the optical fibers further extend through the legs. The connectors are attached to the optical fibers on distal ends of the legs and the covers are attached to the connectors. The covers each include an end having a track for wrapping one or more of the legs over in order to package the legs and connectors, such as for placement of the legs and connectors within a pulling grip for installation of the interconnect assembly through a duct. | 08-15-2013 |
20130223797 | "SECURED" FIBER OPTIC CONNECTING SYSTEM AND METHOD USING DIFFERENT FIBER POSITIONS OF A MULTI-FIBER CONNECTOR - Provided is a multi-fiber connector and a method of providing a secure fiber network, where the multi-fiber connector includes a housing; a multi-position ferrule disposed within the housing, the multi-position ferrule including a plurality of fiber holes arranged in a predetermined pattern; and at least one fiber. Each of the plurality of fiber holes is configured to receive one of the at least one fiber and each fiber is selectively inserted within one of the plurality of fiber holes at a selected position among the plurality of fiber holes. Additionally, only a portion of the plurality of fiber holes are populated with the at least one fiber and a remaining portion of the plurality of fiber holes are not populated with fibers. | 08-29-2013 |
20130279856 | SYSTEMS AND APPARATUSES FOR PROVIDING CONVERSION FROM A FIRST OPTICAL CONNECTOR TO MULTIPLE SECOND OPTICAL CONNECTORS - An optical connector system having a first optical connector, a plurality of second optical connectors, and a mounting system hosting the first optical connector and the second optical connectors. The mounting system can be formed integrally with at least one pluggable optical device. The system also has a mechanism arranged to connect the first optical connector to the second optical connectors. The system also includes at least one further pluggable optical device having at least one optical interface optically coupled to the first optical connector of the at least one pluggable optical device. In one example, the pluggable optical device is a CFP device, and the further pluggable optical device is a QSFP+. With this configuration, the QSFP+ can accommodate at least one of a 40 G and 10 G interface capability. Also provided is a connector system and an apparatus (e.g., pluggable optical device) that enable such a capability. | 10-24-2013 |
20130308907 | MALE OPTICAL CONNECTOR AND FEMALE OPTICAL CONNECTOR AND RELATED OPTICAL FIBER COUPLING ASSEMBLY - A male optical connector includes a connector body, a hollow pusher, a number of lenses, and two elastic shielding plates. The connector body defines a receiving hole with an opening and includes a connection surface in the receiving hole. The connection surface faces the opening. The pusher extends from the connector body and surrounds the receiving hole. The lenses are received in the receiving hole. The two elastic shielding plates have two fixed ends fixed to opposite sides of the pusher, and opposite free ends overlappable to cover the opening. | 11-21-2013 |
20130322825 | MULTI-FIBER FIBER-OPTIC CONNECTOR WITH SWITCHABLE POLARITY KEY - A multi-fiber fiber optic connector is configured to include a switchable polarity key that can be used to define first and second polarity configurations for the connector. The connector has a multi-fiber ferrule surrounded by an inner housing. The inner housing has top and bottom recesses sized to accommodate the polarity key. The polarity key is removably secured in either a top or bottom recess using a latching feature. The polarity of the connector can be switched by moving the polarity key from one position in the connector to the other rather than having to disassemble the connector. | 12-05-2013 |
20140016899 | METHOD TO REORDER (SHUFFLE) OPTICAL CABLE WAVEGUIDE LAYERS - A method of manufacturing an optical cable including plural waveguides each including plural optical channels and each of the waveguides and the optical channels having a first end and a second end. A central portion of each of the waveguides is displaced along a central longitudinal axis of the waveguides which traverses a central bifurcation line of the first and second connectors. A first optical channel connection pattern is formed on the first connector by the first ends of the optical channels of the waveguides connected thereto; and a second optical channel connection pattern formed on the second connector by the second ends of the optical channels of the waveguides connect to the second connector. The first optical channel connection pattern is a different pattern than the second optical channel connection pattern in relation to a connection hole pattern which is the same for both the first and second connectors. | 01-16-2014 |
20140056560 | METHODS AND SYSTEMS FOR BLIND MATING MULTI-OPTICAL FIBER CONNECTOR MODULES - Systems and methods are provided that enable a first bank, or array, of multi-optical fiber connector modules disposed in a plug that is mounted on a first structure to be simultaneously blind mated with a second bank of multi-optical fiber connector modules disposed on a receptacle that is mounted on a second structure. As the first and second structures are brought into engagement with one another, passive coarse alignment features on the plug and on the receptacle coarsely align the respective connector modules with one another. Then, as the respective connector modules begin to come into contact with one another, passive fine alignment features on the respective connector modules engage one another to finely align the respective connector modules such that their optical pathways are brought into precise optical alignment with one another. | 02-27-2014 |
20140105540 | OPTICAL MULTI-PORT CONNECTORS - A connector comprising a base formed using a base material with an obverse face, a reverse face, and at least one wall member that defines the perimeter of the base; a multiplicity of inserts each having a first end and a second end, which extend through the base; wherein the inserts are of a different material than the base material, and the inserts are generally parallel to one another, wherein a single hole extends longitudinally through each of at least a subset of the inserts, and wherein each hole is configured to receive a single optical fiber; and a method of making the connector. | 04-17-2014 |
20140126859 | TERMINUS ASSEMBLY FOR TERMINATING AN OPTICAL CABLE - A terminus assembly is provided for terminating an optical cable that includes a plastic optical fiber (POF) having a tip segment that includes a tip surface. The terminus assembly includes a shell that includes a cable passage. The cable passage is configured to receive at least a portion of a length of the optical cable therein such that the tip segment of the POF extends within the cable passage. A POF stub is held by the shell. The POF stub extends a length from a mating end to a fiber end. The mating end of the POF stub is configured to optically couple with a mating POF of a mating connector. The fiber end of the POF stub includes a coupling surface. The POF stub is held by the shell such that the fiber end extends within the cable passage of the shell. The coupling surface of the fiber end is configured to be aligned with the tip surface of the POF within the cable passage of the shell such that the POF stub is optically coupled to the POF. The POF stub serves as a forward stop for the POF of the optical cable. | 05-08-2014 |
20140140660 | POLARITY SCHEME FOR PARALLEL-OPTICS DATA TRANSMISSION - A fiber optic assembly includes first and second sets of ferrules. The first set of ferrules includes a first ferrule supporting a first plurality of optical fibers including first and second groups of optical fibers, a second ferrule supporting a second plurality of optical fibers including third and fourth groups of optical fibers, and a third ferrule supporting a third plurality of optical fibers including fifth and sixth groups of optical fibers. The second set of ferrules includes a fourth ferrule and a fifth ferrule. The fourth ferrule supports optical fibers of the first, second, third, and fourth groups of optical fibers, and the fifth ferrule supports optical fibers of the third, fourth, fifth, and sixth groups of optical fibers. | 05-22-2014 |
20140153874 | OPTICAL CONNECTOR, OPTICAL CONNECTOR SYSTEM AND OPTICAL BACKPLANEAPPARATUS - An optical connector for optically connecting a first optical waveguide and second optical waveguide, includes a first connector module including a first fixing portion attached to a first board in such a manner that a fixed position is adjustable, a first connecting portion, a first ferrule to which the first optical waveguide is connected, and a guide pin attached to the first ferrule and provided with a tapered portion at a front end; and a second connector module including a second fixing portion fixed to a second board, a second connecting portion connectable to the first connecting portion of the first connector module, a second ferrule to which the second optical waveguide is connected and provided with a fitting hole that fits the guide pin, and a holding unit that movably holds the second ferrule. | 06-05-2014 |
20140161392 | CONNECTOR SYSTEM WITH PHYSICAL SECURITY FEATURE - A receptacle for optically coupling with a plug from a set of plugs, each of the plugs in the set of plugs having a plug housing with a unique front face geometry and a ferrule disposed within the plug housing, the receptacle comprising: a tub having a plurality of walls that define an interior for receiving a plug, said tub interior having a tub interior geometry corresponding to one and only one unique front face geometry and defining by a ferrule guiding portion in the tub, wherein said ferrule guiding portion projects from one or more of the plurality of walls into the tub interior and includes a keying element in a predefined position within said receptacle interior, the keying element preventing mating engagement between the receptacle and the plugs of the set of plugs except for the plug having said corresponding unique front face geometry. | 06-12-2014 |
20140219611 | OPTICAL CONNECTOR, OPTICAL CONNECTING STRUCTURE AND METHOD OF MANUFACTURING OPTICAL CONNECTOR - An optical connecting member realizes an optical connecting between a multi-core fiber and a plurality of single-core fibers by a waveguide part which connects a first end face and a second end face. With the optical connecting member, a connected end which is connected to the first end face is a straight-line portion that is orthogonal to the first end face in each of the plurality of waveguide parts. In addition, a diverged end which is diverged to the second end face is a straight-line portion that is orthogonal to the second end face. Consequently, light that has passed through the waveguide parts is emitted from the first end face and the second end face substantially perpendicularly to the faces, thereby enabling optical connecting loss to be favorably inhibited. | 08-07-2014 |
20140233892 | CONNECTOR SYSTEM WITH PHYSICAL SECURITY FEATURE - A receptacle for optically coupling with a plug from a set of plugs, each of the plugs in the set of plugs having a plug housing with a unique front face geometry and a ferrule disposed within the plug housing, the receptacle comprising: a tub having a plurality of walls that define an interior for receiving a plug, said tub interior having a tub interior geometry corresponding to one and only one unique front face geometry and defining by a ferrule guiding portion in the tub, wherein said ferrule guiding portion projects from one or more of the plurality of walls into the tub interior and includes a keying element in a predefined position within said receptacle interior, the keying element preventing mating engagement between the receptacle and the plugs of the set of plugs except for the plug having said corresponding unique front face geometry. | 08-21-2014 |
20140241667 | HIGH-DENSITY MULTI-FIBER ADAPTER HOUSINGS - An adapter housing for receiving a plurality of multi-fiber connectors includes a rectangular, box-like housing structure having opposing side walls and a back wall that to adapted to mount in a 2-U space in an equipment rack, wherein the housing structure has a width of no greater than about 17.75 inches and a height of no greater than about 3.50 inches. A bank of adapters is provided for receiving multi-fiber connectors. The bank of adapters includes individual connector-adapter-connector locations that together receive at least 200 multi-fiber connector pairs within the housing structure. | 08-28-2014 |
20140286609 | CONNECTOR WITH INTERFACE PROTECTION - An optical fiber assembly includes a housing with a mating face, a ferrule having a plurality of optical fibers, and a beam expanding element generally aligned with each optical fiber. A cover is slidably mounted on the housing adjacent the mating face. One of the housing and the cover includes a retention member. Another of the housing and the cover includes a guide and retention member. The guide and retention member interacts with the retention member to retain the cover to the housing and permit sliding movement of the housing relative to the cover. An assembly of connectors, a method of mating and a tool for mating are also provided. | 09-25-2014 |
20140334778 | SEPARABLE LOCKING FIBER OPTIC CONNECTOR - A fiber optic connector includes a housing and a locking member. The housing has a longitudinal passage extending between a first opening at a first end of the housing and a second opening at a second end of the housing, the housing sized to fit within a fiber optic receptacle. The locking member is a separate part from the housing and is sized to fit within a retaining notch in the fiber optic receptacle. The locking member, when secured to the housing and located in the retaining notch, interfaces with the retaining notch to prevent separation of the housing from the receptacle. | 11-13-2014 |
20140363128 | COMPACT, TUNABLE, SUBMERSIBLE DRY MATE N-PIN OPTICAL CONNECTOR - A multi-pin connector with a small envelop and low insertion loss capable of operating while submerged is described within. This configuration avoids the tolerance stack up troubles that has plagued other similar designs thereby allowing it to achieve a low insertion loss without the typical cost drivers of tighter tolerances. In addition this invention incorporates as relatively simple method of tuning each pair of connectors thereby further reducing the insertion loss for each matched pair. | 12-11-2014 |
20150030287 | OPTICAL FIBER CONNECTOR - An optical connector includes a first optical-electric coupling element and a second optical-electric coupling element. The first optical-electric coupling element includes a first side surface and a second side surface facing away from the first side surface. The first optical-electric coupling element includes two extension portions substantially perpendicularly extending from the first side surface. Each extension portion includes an inside surface substantially perpendicular to the first side surface. Each extension portion includes a rotation post substantially perpendicularly extending from the inside surface. The second optical-electric coupling element includes a third side surface. The second optical-electric coupling element includes a protrusion portion substantially perpendicularly extending from the third side surface. The protrusion portion includes two outside surfaces substantially perpendicular to the third side surface. Each outside surface defines a rotation hole spatially corresponding to a respective one of rotation posts, the rotation posts are inserted into the rotation holes. | 01-29-2015 |
20150030288 | CONNECTOR - This disclosure provides systems, methods, and devices for connecting optical fibers. In one aspect, a connector includes a transfer tube for equalizing the pressure between two chambers within the two connectors when the connectors are mated. The chambers may house biasing elements coupled to optical fiber holders to provide a pressure independent force against optical fiber terminals. The optical fiber holders may include side openings for receiving optical fibers. | 01-29-2015 |
20150063755 | MULTICORE FIBER WAVEGUIDE COUPLER - An optical connector includes a fiber element incorporating one or more optical fibers, the optical fiber including a plurality of cores, and an optical element including an array of optical waveguides arranged in one or more layers so as to match the geometry of the plurality of cores of the optical fiber. | 03-05-2015 |
20150078709 | METHODS OF REDUCING AND/OR AVOIDING FIBER ORDERING IN A CONNECTORIZED MULTI-FIBER, FIBER OPTIC CABLE SYSTEM, AND RELATED FIBER OPTIC CABLES AND ASSEMBLIES - Methods of reducing and/or avoiding fiber ordering during preparations of a multi-fiber, fiber optic cable to provide a connectorized multi-fiber, fiber optic cable system, and related fiber optic cables and assemblies are also disclosed. The embodiments disclosed herein allow for a section of a multi-fiber, fiber optic cable to be prepared to form two or more connectorized fiber optic cables as part of a multi-fiber cable system without requiring specific fiber ordering in the fiber optic connectors. The natural ordering of the optical fibers in the fiber optic cable is fixed in place in at least one section of the fiber optic cable before the optical fibers are cut to form adjacent fiber optic connectors in the cable system. Thus, the fiber ordering between adjacent fiber optic connectors in the cable system will be the same even though the fiber ordering of the optical fibers was random during cable preparations. | 03-19-2015 |
20150093076 | OPTICAL CONNECTOR - An optical connector includes a first engaging member holding at least one first optical fiber to guide light from a light source, a second engaging member holding a second optical fiber to be optically connected to the first optical fiber, and configured to be engaged with the first engaging member, and a light shield member provided near an emission end of the first optical fiber, at such a position as to shield light from the first optical fiber at disengagement of the engaging members. The light shield member is pushed by the second engaging member at engagement of the engaging members, so as to be folded and evacuated in a gap. The light shield member includes a light absorption member to absorb light and to generate heat, a thermal diffusion member to diffuse and radiate the heat, and a base supporting the light absorption member and thermal diffusion member. | 04-02-2015 |
20150110443 | OPTICAL SIGNAL COUPLING ASSEMBLY - An optical signal coupling assembly includes a first connector and a second connector. The first connector includes a first main body and a number of first optical coupling lenses. The second connector includes a second main body and a plurality of second optical coupling lenses to be optically coupled with the first optical coupling lenses. The first main body further includes two first connecting members, and the second main body further includes two second connecting members. The second connecting member matches with the first connecting member, the first connecting member and the second connecting member are configured for both fixing and aligning the first connector with the second connector. | 04-23-2015 |
20150293313 | FIBER OPTIC CONNECTOR, FIBER OPTIC CONNECTOR AND CABLE ASSEMBLY, AND METHODS FOR MANUFACTURING - A fiber optic cable and connector assembly including a fiber optic connector mounted at the end of a fiber optic cable. The fiber optic connector includes a ferrule assembly including a stub fiber supported within a ferrule. The stub fiber is fusion spliced to an optical fiber of the fiber optic cable at a location within the fiber optic connector. | 10-15-2015 |
20150338583 | OPTICAL CONNECTION ASSEMBLY WITH IMPROVED GUIDING OF THE FERRULES OF OPTICAL CONTACTS, FERULE WITH REDUCED DIMENSIONS AND CONNECTION METHOD ASSOCIATED - An optical connection assembly includes a first optical contact including at least one body which is designed to envelop a first ferrule at least partly, laterally, and constitutes the receptacle for the first ferrule, at least a first guide arm extending beyond the front face of the first ferrule, and at least a second guide arm beyond which the body of the ferrule extends; a second optical contact including at least one body which is designed to envelop a second ferrule at least partly, laterally, and constitutes the receptacle for the second ferrule, and at least one guide means extending beyond the front face of the ferrule and being designed to cooperate with the first guide arm of the first optical contact, in order to carry out the guiding, then the connection, between the first and second optical contacts. | 11-26-2015 |
20150346438 | OPTICAL CONNECTOR - An optical connector includes a first housing, a first ferrule which is embedded in the first housing, a second housing which is detachably fitted to the first housing; and a second ferrule which is embedded in the second housing and is butt-jointed to the first ferrule when the second housing is fitted to the first housing, and the first housing includes a tubular outer housing, and a tubular inner housing which is accommodated in the outer housing to be movable in a center axis direction of the outer housing and which accommodates the first ferrule. | 12-03-2015 |
20160004016 | OPTICAL FIBER CONNECTOR FOR MULTI-FIBER CABLE - Optical connector arrangements terminate at least seventy-two optical fibers. The optical connector arrangements include multiple optical ferrules that each terminates multiple optical fibers. Some example optical connectors can terminate about 144 optical fibers. Each optical connector includes a fiber take-up arrangement and a flange extending outwardly from a connector housing arrangement. The fiber take-up arrangement manages excess length of the optical fibers. A threadable coupling nut can be disposed on the connector housing arrangement to engage the outwardly extending flange. Certain types of optical connector arrangements include furcation cables spacing the connector housing arrangement form the fiber take-up arrangement. | 01-07-2016 |
20160018602 | ELECTRO-OPTICAL CONNECTOR WITH HOT ELECTRICAL CONTACT PROTECTION - A cable connector, including a housing having a base and a lip, which surrounds the base and defines an aperture configured to receive a mating plug. The cable connector also includes a plurality of electrical contacts enclosed by the housing and configured to convey electrical signals, the electrical contacts having respective first proximal and first distal ends, the first proximal ends being implanted in the base so that the first distal ends are recessed within the aperture at a first distance from the base. The cable connector additionally includes one or more optical fiber terminals containing end portions of respective optical fibers configured to convey optical signals and having respective second proximal and second distal ends, the second proximal ends being implanted in the base so that the second distal ends are recessed within the aperture at a second distance from the base, which is greater than the first distance. | 01-21-2016 |
20160033725 | OPTICAL FIBER ARRAY CONNECTOR WITH RIBBON FIBER HOLDER - An optical fiber array connector includes a ribbon fiber and a ribbon fiber holder. The ribbon fiber includes optical fibers having fixed pitch. The ribbon fiber holder includes a connection plate and a support member connected to the connection plate. The connection plate defines a ribbon shaped through hole. The support member includes a top surface and two rails. The two rails are supported by the top surface and parallel to each other. The two rails and the top surface cooperatively define a ribbon shaped receiving channel. The ribbon shaped receiving channel communicates with the ribbon shaped through hole. The ribbon fiber is received in the ribbon shaped receiving channel. The optical fibers are received in the ribbon shaped through hole. | 02-04-2016 |
20160062048 | OPTICAL CONNECTOR APPARATUS - An optical connector apparatus includes a connector which is connected to an electro-optical composite cable including an optical fiber and a metal conductor, and a connection object to be connected. The connector is provided with a ferrule which has a conductive portion on at least a part of the surface thereof. The connection object to be connected is provided with an electrically conductive connection member to be connected to the ferrule. The ferrule and the cable are connected by a crimping structure. When the ferrule is inserted in the connection member, the connector and the connection object to be connected are electrically and optically connected to each other. Provided is also an optical connector apparatus which comprises a connector having a plurality of ferrules having distances between the end of the ferrules and the conductive portions so that the timing of the connection of the connector to the object to be connected is delayed, and thus the optical connector apparatus is capable of hot swapping. The connection object to be connected can be a combination of an adapter and a mating connector, or an optical element and an adapter which holds the same, etc. | 03-03-2016 |
20160062049 | OPTICAL CONNECTOR APPARATUS - An optical connector apparatus includes a connector which is connected to an electro-optical composite cable including an optical fiber and a metal conductor, and a connection object to be connected. The connector is provided with a ferrule which has a conductive portion on at least a part of the surface thereof. The connection object to be connected is provided with an electrically conductive connection member to be connected to the ferrule. The ferrule and the cable are connected by a crimping structure. When the ferrule is inserted in the connection member, the connector and the connection object to be connected are electrically and optically connected to each other. Provided is also an optical connector apparatus which comprises a connector having a plurality of ferrules having distances between the end of the ferrules and the conductive portions so that the timing of the connection of the connector to the object to be connected is delayed, and thus the optical connector apparatus is capable of hot swapping. The connection object to be connected can be a combination of an adapter and a mating connector, or an optical element and an adapter which holds the same, etc. | 03-03-2016 |
20160070072 | VERSATILE SYSTEM FOR CONFIGURABLE HYBRID FIBER-OPTIC/ELECTRICAL CONNECTORS - A system for providing a configurable hybrid electrical/optical connector assembly is disclosed. The system provides a connector housing, having a channel through which some connection between transmission elements is made. An insert cap is produced, securable to the housing within the channel. The insert cap has a plurality of universal channel apertures formed through it. An electrical channel insert is provided, and disposed within one of the plurality of channel apertures. The electrical channel insert is adapted to secure an electrical transmission element. An optical channel insert is also provided, and disposed within another of the plurality of channel apertures. The optical channel insert is adapted to secure an optical transmission element. | 03-10-2016 |
20160077284 | OPTICAL CONNECTOR AND MANUFACTURING METHOD FOR OPTICAL CONNECTOR - An optical connector | 03-17-2016 |
20160091673 | FIBER OPTIC CONNECTOR WITH POWER - A fiber optic connector is provided for a multi fiber cable includes a housing, a strain relief, a ferrule, two guide arrangements configured to accept guide pins from an opposing connector, and a conductor coupled to each of the guide pin arrangement, configured to conduct electricity to the guide pin arrangements. | 03-31-2016 |
20160131854 | FIBER OPTIC CONNECTOR HAVING A MAIN CONNECTOR BODY AND A PLURALITY OF REMOVABLE SUB-CONNECTORS - A fiber optic connector comprising a main connector body having a plurality of removable sub-connectors retained therein is disclosed. Each sub-connector has a ferrule for retaining a pair of optical fibers, such as a transmit/receive pair for example. When the main connector body of the fiber optic connector is inserted into a receptacle, each of the optical fibers retained in each ferrule of the plurality of sub-connectors is optically connected to the fiber optic receptacle. In this manner, the fiber optic connector can connect and disconnect a plurality of optical fibers in the sub-connectors at the same time. Additionally, individual sub-connectors can be removed, rearranged and replaced, without disturbing the optical connections of the other sub-connectors. This arrangement thus eliminates the need for breakout cables or other bulky solutions to convert between different multi-fiber and duplex applications. | 05-12-2016 |
20160131855 | OPTICAL INTERCONNECTION ASSEMBLIES AND SYSTEMS FOR HIGH-SPEED DATA-RATE OPTICAL TRANSPORT SYSTEMS - Fiber optic assemblies and systems for high-speed data-rate optical transport systems are disclosed that allow for optically interconnecting active assemblies to a trunk cable in a polarization-preserving manner. The fiber optic assembly includes at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and second groups of at least two ports each. The first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule. The fiber optic assembly also has a plurality of optical fibers that connect the first and second ports according to a pairings method that maintains polarity between transmit and receive ports of respective active assemblies. At least one of the first and second groups are optically connected without flipping the fibers. | 05-12-2016 |
20160139339 | GRIN LENS ARRAY, LENS-MOUNTED CONNECTOR, AND LENS-MOUNTED CONNECTOR SYSTEM - A GRIN lens array of an embodiment has a structure for enabling a coupling face in which lens end faces of GRIN lenses are arranged, to be accurately polished so as to have a desired angle relative to optical axes of the GRIN lenses. The GRIN lens array has the GRIN lenses and a main body portion. The main body portion comprises a holding portion having a coupling face, and an edge portion having a reference face to be used as a reference in polishing of the coupling face. The respective thicknesses of the holding portion and the edge portion along the longitudinal direction of the GRIN lenses are set so as to form a step between the coupling face and the reference face. | 05-19-2016 |
20160161680 | Alignment Adapter and Alignment Design for a Connector Therefor - An adapter with novel alignment features engages alignment features on a plug, providing general alignment of the ferrule holders and ferrules in the plug. After the plug engages the adapter, the ferrule holders engage a second set of alignment features in the adapter to provide fine alignment for the ferrules. | 06-09-2016 |
20160170152 | FIBER OPTIC CONNECTOR WITH FIBER END PROTECTION | 06-16-2016 |
20160187595 | RECEPTACLE CONNECTOR - A receptacle connector includes a receptacle ferrule, a receptacle housing and a spacer. The receptacle ferrule has a first front end portion having a receptacle interface part In the receptacle housing, the receptacle ferrule and a plug connector having a second front end portion having a plug interface part configured to be optically coupled with the receptacle interface part are to be accommodated. The spacer has a first surface configured to contact the first front end portion, and a second surface configured to contact the second front end portion. The spacer is arranged in the receptacle housing. At a state where the first front end portion is contacted to the first surface of the spacer and the second front end portion is contacted to the second surface of the spacer, the receptacle interface part and the plug interface part face each other at a predetermined interval. | 06-30-2016 |
20160195682 | Reduced-Profile Data Transmission Element Connectors, Adapters, and Connection Assemblies Thereof | 07-07-2016 |
20180024301 | FIBER OPTIC CONNECTOR WITH FIBER END PROTECTION | 01-25-2018 |
20180024302 | HYBRID FIBER POWER CONNECTION SYSTEM | 01-25-2018 |
20190146161 | MULTI-FIBER OPTIC CONNECTOR WITH PIVOTALLY-ALIGNED FERRULE | 05-16-2019 |
20190146168 | OPTICAL INTERCONNECT DEVICE | 05-16-2019 |