Class / Patent application number | Description | Number of patent applications / Date published |
384118000 | Outer recess forming fluid pad | 7 |
20080226210 | Hydrodynamic Fluid Film Bearing and Bearing Housing with Cooling Capacity - A hydrodynamic fluid film bearing for supporting a rotation shaft of a turbo or rotary apparatus includes a sleeve having a circular inner opening for receiving a rotation shaft therein, at least one metallic foil member of arc shape having one end fixed to the inner surface of the sleeve and arranged along the inner opening of the sleeve, and at least one elastic member disposed at the sleeve between the sleeve and the foil member. A bearing housing for receiving a bearing of a rotary apparatus is further provided, in which the bearing housing includes a circular opening for receiving the bearing therein, and the circular inner opening of the bearing housing includes grooves for cooling air passage formed at regular interval in the axial direction on the inner surface of the bearing housing. The bearing received in the bearing housing is preferably a hydrodynamic fluid film bearing. | 09-18-2008 |
20090304314 | Gas Bearing Fabrication Method - A method of fabricating a bearing surface ( | 12-10-2009 |
20100183253 | HYDROSTATIC BEARING PAD - A hydrostatic bearing pad in which separation between a housing and a pad member and entry of an adhesive into an air supply groove are prevented to obtain stable bearing performance is provided. The hydrostatic bearing pad includes the pad member having a bearing surface forming a hydrostatic bearing and having air supply holes formed therein, and the housing bonded to the pad member with the adhesive. The air supply groove for supplying compressed gas to the pad member is formed in a surface of the housing bonded to the pad member, in a manner corresponding to arrangement of the air supply holes. An adhesive inflow groove is formed between a bonded portion, where the housing and the pad member are bonded to each other with the adhesive interposed therebetween and the air supply groove. The adhesive inflow groove is formed along the air supply groove in the surface of the housing bonded to the pad member. | 07-22-2010 |
20100239196 | FLUID DYNAMIC BEARING DEVICE - A lid member ( | 09-23-2010 |
20120141055 | SELF-COMPENSATING HYDROSTATIC JOURNAL BEARING - A self-compensating hydrostatic journal bearing is disclosed, which is substantially a base provided for a spindle to mounted thereat passing through a hole thereof, while allowing a gap to be formed between the circumference surface of the hole and the spindle for a hydraulic fluid to flow therethrough. There are at least two oil holes formed on the base, and correspondingly, there are at least two first chambers formed on the circumference surface for allowing each first chamber to be in fluid communication with one of the at least two oil holes, and for each first chamber, there is one second chamber being arranged in the vicinity thereof. When the spindle is forced to bias, the gap axially opposite to the bias is changed for causing the hydraulic fluid to flow inside the channels between the first chambers and the second chambers correspondingly and thus accomplishing a fluid self-compensating process. | 06-07-2012 |
20120257846 | GAS BEARING FABRICATION METHOD - A method of fabricating a bearing surface for a gas or air bearing is described. The method comprises taking a bulk bearing portion having at least one bearing surface region and providing a coating on the bearing surface region to define at least one gas pocket. The at least one gas pocket has a depth substantially equal to the thickness of the coating. In one example, laser ablation is used to remove part of the coating to form the gas pockets. The coating may be an anodised coating and the bulk bearing portion may be formed from aluminium. An air bearing component formed using the method is also described. | 10-11-2012 |
20160032969 | GEAR PUMP BEARINGS WITH HYBRID PADS - A journal bearing assembly includes a first journal bearing disposed about a longitudinal end of a gear shaft and spaced a first distance from a first axial gear face. A first fluid film location and a first hybrid pad location are annularly between an inner surface of the first journal bearing and an outer surface of the gear shaft. The first hybrid pad location circumferentially adjacent to the first fluid film location has a minimum leading edge angular location of at least about 31.0° measured relative to a first bearing flat. A first porting path provides high pressure fluid communication from a location outside the first journal bearing to the first fluid film location at or adjacent to the first hybrid pad location. | 02-04-2016 |