Class / Patent application number | Description | Number of patent applications / Date published |
384115000 | Shaft recess | 13 |
20080212908 | Fluid Dynamic Bearing Device - It is an object of the present invention to provide a bearing member having a highly accurate dynamic pressure generating portion stably at low cost. Dynamic pressure grooves ( | 09-04-2008 |
20090274402 | Fluid dynamic bearing - The invention relates to a fluid dynamic bearing having at least one first bearing part as well as a second bearing part that are rotatably supported with respect to one another about a rotational axis and separated from one another by a bearing gap filled with bearing fluid. Associated bearing surfaces of the bearing parts form a first and a second radial bearing that are marked by grooved bearing patterns disposed on at least one bearing surface. Between the radial bearings, there is a separator gap having an enlarged gap distance compared to the bearing gap. According to the invention, the ends of the grooved bearing patterns of the radial bearings adjoining the separator gap penetrate into the separator gap. This measure goes to prevent the creation of negative pressure at the ends of the grooved bearing patterns, as a result of which the formation of air bubbles is also reduced. The larger gap distance of the separator gap and the direct connection to the grooved bearing patterns result in an improved flow rate of the bearing fluid through the grooved bearing patterns. | 11-05-2009 |
20100166348 | MOTOR WITH AERODYNAMIC PRESSURE BEARING MECHANISM - In a gas dynamic pressure bearing mechanism ( | 07-01-2010 |
20120033905 | Fluid dynamic bearing assembly - There is provided a fluid dynamic bearing assembly including: a sleeve having a shaft insertedly mounted therein; and upper and lower radial bearing parts formed on at least one of an outer circumferential surface of the shaft and an inner circumferential surface of the sleeve, wherein a clearance between the lower radial bearing part and a surface disposed to face the lower radial bearing part is wider than a clearance between the upper radial bearing part and a surface disposed to face the upper radial bearing part. | 02-09-2012 |
20130022298 | Spindle motor - There is provided a spindle motor including: a lower thrust member fixedly attached to a base member; a shaft fixedly attached to at least one of the lower thrust member and the base member; a sleeve disposed on an upper portion of the lower thrust member and rotatably installed on the shaft; a rotor hub coupled to the sleeve to thereby rotate together therewith; and an upper thrust member fixedly attached to an upper end portion of the shaft and forming a liquid-vapor interface together therewith, wherein the sleeve has an inclination part formed at an upper end portion thereof so as to form the liquid-vapor interface together with the upper thrust member, the inclination part having an outer diameter larger in an upper portion thereof than in a lower portion thereof. | 01-24-2013 |
20130058601 | HYDRODYNAMIC BEARING ASSEMBLY AND SPINDLE MOTOR INCLUDING THE SAME - There are provided a hydrodynamic bearing assembly and a spindle motor including the same. The hydrodynamic bearing assembly includes: a shaft; a sleeve including a shaft hole so that the shaft is rotatably inserted thereinto; and first and second dynamic pressure generation grooves formed in upper and lower portions of at least one of an outer diameter of the shaft and an inner diameter of the sleeve in an axial direction thereof so as to generate dynamic pressure in a lubricating fluid filling a bearing clearance formed between the shaft and the sleeve at the time of rotation of the shaft, wherein the bearing clearance between the shaft and the sleeve is narrowed downwardly in the axial direction. | 03-07-2013 |
20130058602 | HYDRODYNAMIC BEARING ASSEMBLY - There is provided a hydrodynamic bearing assembly structure capable of significantly reducing an increase in current while increasing bearing strength. The hydrodynamic bearing assembly includes: a rotating member including a shaft; a sleeve including a shaft hole so that the shaft is rotatably inserted thereinto; and a plurality of dynamic pressure generation grooves formed in at least one of an outer circumferential surface of the shaft and an inner circumferential surface of the sleeve and formed in upper and lower portions of the shaft or the sleeve in an axial direction so as to generate dynamic pressure in lubricating fluid filled in a bearing clearance formed between the shaft and the sleeve at the time of rotation of the shaft, wherein any one or more of the plurality of dynamic pressure generation grooves has a depth deeper than that of the other dynamic pressure generation groove. | 03-07-2013 |
20130121627 | HYDRODYNAMIC BEARING ASSEMBLY AND SPINDLE MOTOR INCLUDING THE SAME - The hydrodynamic bearing assembly includes: a sintered sleeve having a shaft hole formed therein such that a shaft is rotatably inserted thereinto and including at least one dynamic pressure bearing part to generate dynamic pressure in a lubricating fluid filled in a bearing clearance at the time of rotation of the shaft; and a housing provided to enclose an outer peripheral surface of the sintered sleeve, wherein a bottom surface of a dynamic pressure groove of the at least one dynamic pressure bearing part has a porosity higher than that of a protrusion surface thereof. | 05-16-2013 |
20130163902 | HYDRODYNAMIC BEARING APPARATUS AND SPINDLE MOTOR HAVING THE SAME - There is provided a hydrodynamic bearing apparatus, including: a shaft; and a sleeve rotatably supporting the shaft, wherein at least one of an outer surface of the shaft and an inner surface of the sleeve includes upper and lower hydrodynamic grooves generating hydrodynamic fluid pressure while the shaft rotates, and at least one of the upper and lower hydrodynamic grooves has a depth of a lower part thereof greater than that of an upper part thereof. | 06-27-2013 |
20140254963 | Countershaft - A countershaft as disclosed herein may include one or more bearing zones along its axial length. Each bearing zone may include one or more radial holes in fluid communication with one or more grooves, respectively, and one or more axial channels formed along the longitudinal length of the countershaft. Each groove may be positioned adjacent an interface between a rotating member and a non-rotating member and include one or more features therein, such as a profile and/or taper. | 09-11-2014 |
20150049968 | Circumferential Back-to-Back Seal Assembly with Bifurcated Flow - A circumferential seal assembly capable of separating a gas into two separate flow paths before communication onto a pair of seal rings is presented. The seal assembly includes an annular seal housing, a pair of annular seal rings, a rotatable runner, and a plurality of groove structures. The seal housing is interposed between a pair of low pressure compartments. The seal rings are separately disposed within the seal housing and separately disposed around the rotatable runner. The groove structures are disposed along an outer circumferential surface of the rotatable runner. The gas is communicable onto the groove structures. Each groove structure bifurcates the gas before communication onto the seal rings. Flow within each groove structure may be further separable before the gas is communicated onto the seal rings. The gas forms a thin-film layer between the rotatable runner and each seal ring. | 02-19-2015 |
20160053808 | Circumferential Back-to-Back Seal Assembly with Bifurcated Flow - A circumferential seal assembly capable of separating a gas into two separate flow paths before communication between a rotatable runner and a pair of seal rings is presented. The seal assembly includes an annular seal housing, a pair of annular seal rings, a rotatable runner, and a plurality of groove structures. The seal housing is interposed between a pair of compartments. The seal rings are separately disposed within the seal housing and separately disposed around the rotatable runner. The groove structures are disposed along an outer annular surface of the rotatable runner. A gas is communicable onto the groove structures. Each groove structure includes at least two hydrodynamic grooves that separate and communicate the gas onto the seal rings. Each groove includes steps whereby the depth of at least one adjoining step decreases in the direction opposite to rotation with or without the depth of another adjoining steps increasing in the direction opposite to rotation. | 02-25-2016 |
20160084307 | DYNAMIC BEARING - A dynamic bearing for an aircraft landing gear. The bearing includes a lug; a shaft having a first material; and a bearing surface having a second material that is softer than the first material. The bearing surface defines a bore and is arranged to support the shaft when the shaft is movably housed within the bore in use. The bearing surface is defined by the lug or a coating applied to the lug. | 03-24-2016 |