Class / Patent application number | Description | Number of patent applications / Date published |
381360000 | Cavity | 14 |
20080247585 | Electrical Module Comprising a Mems Microphone - An electrical module includes a base plate having an acoustic channel that opens into a first cavity at a first end and that is closed off by a microphone chip at a second end. The microphone chip borders a second cavity that opens to an exterior of the electrical module. The second cavity is separated from the acoustic channel by the microphone chip. | 10-09-2008 |
20080298621 | MODULE INCLUDING A MICRO-ELECTRO-MECHANICAL MICROPHONE - A module including a micro-electro-mechanical microphone is disclosed. One embodiment provides a substrate having a trough-shaped depression and a micro-electro-mechanical microphone. The micro-electro-mechanical microphone is mounted into the trough-shaped depression of the substrate. | 12-04-2008 |
20090087010 | CARRIER CHIP WITH CAVITY - A microphone apparatus includes a carrier chip and a microphone chip. The carrier chip includes a substrate with parallel top and bottom surfaces, a metallization layer overlying the top surface, and a cylindrical cavity that is bored through the top surface and the metallization layer and partially through the carrier substrate. The microphone chip includes a substrate with parallel top and bottom surfaces, a cylindrical cavity extending from the microphone substrate top surface to the microphone substrate bottom surface, and a diaphragm attached to the microphone substrate bottom surface and extending across the microphone cavity. The microphone chip is fixed to the carrier chip, with the microphone cavity overlying the carrier cavity, and the diaphragm covering the carrier cavity and electrically connected to the metallization layer. | 04-02-2009 |
20090238392 | Dynamic microphone - Even in the case where the volume of a back air chamber is small, sounds with a low frequency (low range) can be captured by equivalently decreasing the acoustic impedance of the back air chamber. A dynamic microphone includes a microphone unit | 09-24-2009 |
20100260369 | Narrow Directional Microphone - A narrow directional microphone includes a microphone unit; an acoustic tube having an opening on a peripheral wall along an axial direction and incorporating the microphone unit; and, an acoustic resistor that covers the opening of the acoustic tube. The acoustic tube is overlapped with an air-shutoff sheet having a plurality of openings which have various lengths in the axial direction of the acoustic tube. The openings of the air-shutoff sheet overlap the opening of the acoustic tube so that a size of the opening of the acoustic tube is limited. | 10-14-2010 |
20110026753 | MICROPHONE APPARATUS WITH INCREASED DIRECTIVITY - A microphone assembly includes a housing including at least one first tube in communication with at least one first cavity, at least one second tube in communication with at least one second cavity, one third tube in communication with at least one third cavity, and at least one microphone element separating the first, second and third cavities, wherein sound waves are received in the first, second, and third tubes and directed into the cavities and received by the microphone element. A method for converting sound waves into an electrical signal includes receiving the sound waves through at least three tube openings and directing the received sound waves along tube pathways into at least a first, second, and third cavity to a microphone separating the first, second, and third cavity. The method further includes converting the received sound waves into an electrical signal with the microphone. | 02-03-2011 |
20110150260 | MINIATURE NON-DIRECTIONAL MICROPHONE - A miniature microphone comprising a diaphragm compliantly suspended over an enclosed air volume having a vent port is provided, wherein an effective stiffness of the diaphragm with respect to displacement by acoustic vibrations is controlled principally by the enclosed air volume and the port. The microphone may be formed using silicon microfabrication techniques and has sensitivity to sound pressure substantially unrelated to the size of the diaphragm over a broad range of realistic sizes. The diaphragm is rotatively suspend for movement through an arc in response to acoustic vibrations, for example by beams or tabs, and has a surrounding perimeter slit separating the diaphragm from its support structure. The air volume behind the diaphragm provides a restoring spring force for the diaphragm. The microphone's sensitivity is related to the air volume, perimeter slit, and stiffness of the diaphragm and its mechanical supports, and not the area of the diaphragm. | 06-23-2011 |
20110235842 | Microphone - A microphone includes: a housing that serves as a microphone grip; a microphone unit supported at one end of the housing; an air chamber provided behind the microphone unit in the housing. The air chamber is filled with a plurality of elastic particles. The individual particles are mechanically bonded to one another and part of the particles are mechanically bonded to the housing such that gaps are formed therebetween. | 09-29-2011 |
20120027240 | MICROPHONE MODULE WITH HELMHOLTZ RESONANCE CHAMBER - An exemplary microphone module includes a shell, a circuit board located in the shell, and a microphone located in the shell and electrically connecting the circuit board. The shell includes a bottom cover and a faceplate on the bottom cover. The faceplate defines a sound hole therein. A washer is provided between the microphone and the faceplate. The washer defines a sound chamber therein. The sound chamber has a diameter exceeding that of the sound hole of the faceplate. The sound chamber communicates with the sound hole, and the sound chamber and the sound hole cooperatively form a Helmholtz resonance chamber outside of the microphone. | 02-02-2012 |
20140064543 | NOISE MITIGATING MICROPHONE ATTACHMENT - Methods, systems and apparatus are described for mitigating noise during sound recording. A noise mitigating microphone attachment comprises a foam structure. A first cavity extending from a first opening at a surface of the foam structure and into the foam structure. A microphone is inserted into the first cavity with sound receiving elements of the microphone fully installed in the structure. A second cavity extending from a second opening at the surface of the foam structure and into the foam structure is configured to receive sound from a sound source. The first cavity is fluidly connected to the second cavity within the foam structure so that a junction is formed between the first cavity and the second cavity. The junction, the sound cavity, and the sealing of the microphone work to shield the sound receiving elements of the microphone from sound other than received through the second opening. | 03-06-2014 |
20140064544 | NOISE MITIGATING MICROPHONE ATTACHMENT - Methods, systems and apparatus are described for mitigating noise during sound recording. A noise mitigating microphone attachment comprises a foam structure. A first cavity extending from a first opening at a surface of the foam structure and into the foam structure. A microphone is inserted into the first cavity with sound receiving elements of the microphone fully installed in the structure. A second cavity extending from a second opening at the surface of the foam structure and into the foam structure is configured to receive sound from a sound source. The first cavity is fluidly connected to the second cavity within the foam structure so that a junction is formed between the first cavity and the second cavity. The junction, the sound cavity, and the sealing of the microphone work to shield the sound receiving elements of the microphone from sound other than received through the second opening. | 03-06-2014 |
20140112515 | DUAL DIAPHRAGM DYNAMIC MICROPHONE TRANSDUCER - A dual diaphragm dynamic type microphone transducer that, among other things, provides control of source/receiver proximity effects without sacrificing professional level dynamic microphone performance. | 04-24-2014 |
20140233782 | Packaged Microphone with Frame Having Die Mounting Concavity - A packaged microphone has a lid structure with an inner surface having a concavity, and a microphone die secured within the concavity. The packaged microphone also has a substrate coupled with the lid structure to form a package having an interior volume containing the microphone die. The substrate is electrically connected with the microphone die. In addition, the packaged microphone also has aperture formed through the package, and a seal proximate to the microphone die. The seal acoustically seals the microphone and the aperture to form a front volume and a back volume within the interior volume. The aperture is in acoustic communication with the front volume. | 08-21-2014 |
20140294221 | MICROPHONE MODULE WITH SOUND PIPE - A microphone module has a substrate with an aperture to allow sound waves to pass through the substrate, a lid mounted to the substrate to define a first interior volume, a microphone mounted to the substrate within the first interior volume, and a housing coupled to the substrate and covering the aperture. The housing forms a second interior volume and includes an acoustic port configured to allow sound to enter the second interior volume. The module further includes a pipe extending from the acoustic port in the housing, and at least one exterior interface pad outside of the second interior volume. The pipe has an open end to receive sound waves and direct them toward the acoustic port in the housing. Moreover, the at least one exterior interface pad electrically couples to the microphone. | 10-02-2014 |