Class / Patent application number | Description | Number of patent applications / Date published |
381164000 | Thermal response to, or generation of, sound vibration | 45 |
20100046773 | ACOUSTIC DEVICE AND METHOD OF MANUFACTURING THE SAME - An acoustic device ( | 02-25-2010 |
20100046774 | Thermoacoustic device - A thermoacoustic device includes a signal device and a sound wave generator. The sound wave generator includes a base structure and a conductive material located on the base structure. The base structure includes nano-scale elements. The signal device is capable of transmitting an electrical signal to the sound wave generator. The sound wave generator is capable of converting the electrical signal into heat. The heat is capable of being transferred to a medium to cause a thermoacoustic effect. | 02-25-2010 |
20100054502 | THERMAL SOUND GENERATING DEVICE - A thermoacoustic generating apparatus ( | 03-04-2010 |
20100054503 | Ultrasonic thermoacoustic device - An ultrasonic acoustic device includes a carbon nanotube structure. The carbon nanotube structure is capable of causing a thermoacoustic effect and generating ultrasonic sound wave in liquid medium. | 03-04-2010 |
20100054504 | Thermoacoustic device - A thermoacoustic device. The thermoacoustic includes a carbon nanotube structure. The carbon nanotube structure is at least partly in contact with a liquid medium. The thermoacoustic device is capable of causing a thermoacoustic effect in the liquid medium. | 03-04-2010 |
20100086150 | Flexible thermoacoustic device - A flexible thermoacoustic device includes a soft supporter and a sound wave generator. The sound wave generator is located on a surface of the softer supporter. The sound wave generator includes a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes combined by van der Waals attractive force. | 04-08-2010 |
20100098272 | Thermoacoustic device - An apparatus includes an electromagnetic signal device, a medium, and a sound wave generator. The sound wave generator includes a carbon nanotube structure. The carbon nanotube structure includes one or more drawn carbon nanotube films. The electromagnetic signal device transmits an electromagnetic signal to the carbon nanotube structure. The carbon nanotube structure converts the electromagnetic signal into heat. The heat transfers to the medium and causes a thermoacoustic effect. | 04-22-2010 |
20100098273 | Thermoacoustic device - An apparatus, the apparatus includes an electromagnetic signal device; a medium; and a sound wave generator. The sound wave generator includes a carbon nanotube structure. The carbon nanotube structure includes one or more carbon nanotube films. Each carbon nanotube film includes a plurality of carbon nanotubes substantially parallel to each other and joined side by side via van der Waals attractive force. The electromagnetic signal device transmits an electromagnetic signal to the carbon nanotube structure. The carbon nanotube structure converts the electromagnetic signal into heat. The heat transfers to the medium causing a thermoacoustic effect. | 04-22-2010 |
20100166232 | Thermoacoustic module, thermoacoustic device, and method for making the same - A thermoacoustic module includes a substrate, a sound wave generator, at least one first electrode and at least one second electrode. The substrate has a top surface, and the top surface defines at least one recess. The sound wave generator is located on the top surface of the substrate and includes at least one first region suspended above the at least one recess and at least one second region being in contact with the top surface of the substrate. The at least one first electrode and at least one second electrode are coupled to the sound wave generator. | 07-01-2010 |
20100166233 | Thermoacoustic module, thermoacoustic device, and method for making the same - A thermoacoustic module includes a substrate, at least one first electrode and at least one second electrode located on the substrate, a sound wave generator, and at least one spacer. The sound wave generator is electrically connected to the at least one first electrode and the at least one second electrode. The at least one spacer is located between the substrate and the sound wave generator. The at least one spacer supports the sound wave generator. An interval is defined between the sound wave generator and the substrate. The sound wave generator is embedded in the at least one first electrode and the at least one second electrode. | 07-01-2010 |
20100166234 | Thermoacoustic module, thermoacoustic device, and method for making the same - A thermoacoustic module includes a substrate, at least one first electrode and at least one second electrode located on the substrate, a cover board spaced from the substrate, and a sound wave generator. The sound wave generator is located between the cover board and the substrate. The sound wave generator is electrically connected to the at least one first electrode and the at least one second electrode. The sound wave generator is capable of generating sound by causing a thermoacoustic effect. | 07-01-2010 |
20100220876 | THERMO-ACOUSTIC TRANSDUCERS - A thermo-acoustic transducer device ( | 09-02-2010 |
20100260357 | THERMOACOUSTIC MODULE, THERMOACOUSTIC DEVICE, AND METHOD FOR MAKING THE SAME - A thermoacoustic module includes a substrate, at least one first electrode and at least one second electrode located on the substrate, a cover board spaced from the substrate, and a sound wave generator. The cover board defines a plurality of openings. The sound wave generator is located between the cover board and the substrate. The sound wave generator is electrically connected to the at least one first electrode and the at least one second electrode. The sound wave generator is capable of causing a thermoacoustic effect. | 10-14-2010 |
20100260358 | THERMOACOUSTIC MODULE, THERMOACOUSTIC DEVICE, AND METHOD FOR MAKING THE SAME - A thermoacoustic module includes a substrate, at least one first electrode, at least one second electrode, at least one first conductive bonding layer, at least one second conductive bonding layer, and a sound wave generator. The sound wave generator is electrically connected to and span across the at least one first electrode and the at least one second electrode. The at least one first electrode and the at least one second electrode are located on the substrate. The at least one first conductive bonding layer is located on the at least one first electrode. The at least one second conductive bonding layer is located on the at least one second electrode. The sound wave generator is spaced from the substrate and embedded in the at least one first and the at least one second conductive bonding layers. | 10-14-2010 |
20100260359 | THERMOACOUSTIC MODULE, THERMOACOUSTIC DEVICE, AND METHOD FOR MAKING THE SAME - A thermoacoustic module includes a substrate, at least one first electrode, at least one second electrode, a sound wave generator, and at least one spacer. The sound wave generator electrically connect to, span between the at least one first electrode and the at least one second electrode. The at least one first electrode and the at least one second electrode are located on the substrate and provide support to the sound wave generator. The at least one spacer is located on the substrate, between the substrate and the sound wave generator. The at least one spacer supports the sound wave generator. An interval is defined between the sound wave generator and the substrate. | 10-14-2010 |
20110033069 | THERMOACOUSTIC DEVICE - The present invention relates to a thermoacoustic device that includes an acoustic element. The acoustic element includes a substrate, a plurality of microspaces, and a metal film. The metal film is located above the substrate. A plurality of microspaces is defined between the substrate and the metal film. The metal film is partially suspended above the substrate. | 02-10-2011 |
20110051961 | THERMOACOUSTIC DEVICE WITH HEAT DISSIPATING STRUCTURE - A thermoacoustic device includes at least one first electrode, at least one second electrode, a thermoacoustic element, a base and a plurality of fins. The at least one second electrode is spaced from the at least one first electrode. The thermoacoustic element is electrically connected with the at least one first electrode and the at least one second electrode. The base supports the thermoacoustic element and the at least one first electrode and the at least one second electrode. The fins are in thermal engagement with the base. | 03-03-2011 |
20110103621 | THERMO-ACOUSTIC LOUDSPEAKER - A thermo-acoustic loudspeaker has a heating sheet and a plurality of support bars supporting the heating sheet away from a substrate. The heating sheet has at least one opening adjacent to each cavity. During manufacture, the opening or openings are used to etch away the material of the layer under the heating sheet. The layer under the heating sheet may be a sacrificial layer for example of photoresist or silicon dioxide. | 05-05-2011 |
20110216921 | FLAT SPEAKER APPARATUS WITH HEAT DISSIPATING STRUCTURE AND METHOD FOR HEAT DISSIPATION OF FLAT SPEAKER - A flat speaker apparatus including a driving circuit module, a flat speaker and a thermally conductive connector, and with a heat dissipating structure is introduced. The flat speaker includes a porous electrode and a vibrating film. The porous electrode causes the vibrating film to vibrate according to an audio signal output from the driving circuit module for generating sound. The thermally conductive connector connects the driving circuit module and the flat speaker to conduct heat from the driving module to the flat speaker for dissipation. A method for heat dissipation of the flat speaker is also introduced herein. | 09-08-2011 |
20110274297 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a sound wave generator, a signal element and a support element. The sound wave generator includes a carbon nanotube structure. The signal element is configured to transmit a signal. The carbon nanotube structure is configured to receive the signal and generate a sound wave. The support element includes a metal substrate and an insulating layer located on the metal substrate. The insulating layer is sandwiched between the metal substrate and the sound wave generator. The thermoacoustic device further includes two electrodes electrically connected to the carbon nanotube structure. | 11-10-2011 |
20110293118 | THERMAL ACOUSTIC SPEAKER - A thermal acoustic speaker comprises a body and a thermoelectric converter. The body comprises a shell with at least one hole and a side with a sound hole. The shell defines a sound cavity in the body. The thermoelectric converter, disposed around at least a part of the shell, comprises a circuit and a conductive membrane and covers at least a part of the at least one hole. The circuit receives at least one electrical audio signal. The conductive membrane contacts a part of the circuit so that the thermoelectric converter heats air in the sound cavity to emit sound. | 12-01-2011 |
20120250901 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a substrate, at least two sound wave generators and at least two signal input devices. The substrate has at least two surfaces. Each of the at least two sound wave generators is located on each of the at least two surfaces. At least one of the at least two sound wave generator includes a carbon film. The carbon film includes at least one carbon nanotube layer and at least one graphene layer stacked with each other. The at least two signal input devices are configured to input signals to the at least two sound wave generator separately. | 10-04-2012 |
20120250902 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a substrate, a sound wave generator and a signal device. The substrate has a net structure and includes a number of first wires and a number of second wires. The first wires and the second wires are crossed with each other. Each of the first wires includes a composite wire. The composite wire includes a carbon nanotube wire structure and a coating layer wrapping the carbon nanotube wire structure. The sound wave generator is located on a surface of the substrate and includes a carbon film. The signal input device is configured to input signals to the sound wave generator. | 10-04-2012 |
20120250903 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a carbon nanotube composite structure, a sound wave generator and a signal input device. The carbon nanotube composite structure includes a carbon nanotube structure and a matrix. The matrix is located on a surface of the carbon nanotube structure. The sound wave generator is located on a surface of the carbon nanotube composite structure and insulated from the carbon nanotube structure via the coating layer. The sound wave generator includes a carbon film. The signal input device is configured to input signals to the sound wave generator. | 10-04-2012 |
20120250904 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a substrate, at least two sound wave generators and at least two signal input devices. The substrate has at least two surfaces. Each of the at least two sound wave generators is located on each of the at least two surfaces. At least one of the at least two sound wave generator includes a carbon film. The carbon film includes at least one carbon nanotube layer and at least one graphene layer stacked with each other. The at least two signal input devices are configured to input signals to the at least two sound wave generator in a one by one manner. | 10-04-2012 |
20120250905 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a substrate, a sound wave generator and a signal device. The substrate has a net structure and includes a number of first wires and a number of second wires. The first wires and the second wires are crossed with each other. Each of the first wires includes a composite wire. The composite wire includes a carbon nanotube wire structure and a coating layer wrapping the carbon nanotube wire structure. The sound wave generator is located on a surface of the substrate and includes a graphene layer including at least one graphene. The signal input device is configured to input signals to the sound wave generator. | 10-04-2012 |
20120250906 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a carbon nanotube composite structure, a sound wave generator and a signal input device. The carbon nanotube composite structure includes a carbon nanotube structure and a matrix. The matrix is located a surface of the carbon nanotube structure. The sound wave generator is located on a surface of the carbon nanotube composite structure and insulated from the carbon nanotube structure via the matrix. The sound wave generator includes a graphene layer including at least one graphene. The signal input device is configured to input signals to the sound wave generator. | 10-04-2012 |
20120250907 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a sound wave generator and a signal input device. The sound wave generator includes a graphene layer. The graphene layer includes at least one graphene. The signal input device inputs signals to the sound wave generator. | 10-04-2012 |
20120250908 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a sound wave generator and a signal input device. The sound wave generator includes a composite structure. The composite structure includes a carbon nanotube film structure and a graphene film. The carbon nanotube film structure includes a number of carbon nanotubes and micropores. The graphene film is located on a surface of the carbon nanotube film structure, and covers the micropores. | 10-04-2012 |
20130266159 | LOUDSPEAKER - A loudspeaker includes a magnetic system defining a magnetic gap, a vibrating system, and a supporting system. The vibrating system includes a diaphragm, a voice coil bobbin disposed in the magnetic gap, a coil lead wire having a first end and a second end, and a voice coil wound around the voice coil bobbin and electrically connected to the first end. The supporting system includes a frame fixed to the magnetic system and receiving the vibrating system. The frame has a terminal electrically connected to the second end of the coil lead wire. The diaphragm is received in the frame. The voice lead wire includes at least one carbon nanotube wire structure. The carbon nanotube wire structure includes a plurality of carbon nanotubes. | 10-10-2013 |
20140140544 | EARPHONE - An earphone includes a loudspeaker, a signal process, an audio signal input port, and a driving port. The loudspeaker includes a thermoacoustic device disposed in a housing. The signal processor is electrically connected to the loudspeaker to provide signal to the loudspeaker. The audio input port is electrically connected to the signal processor to provide audio signal. The power supply device is electrically connected to the signal processor to provide driving current. The thermoacoustic device includes a substrate, and the substrate defines a plurality of grooves, a sound wave generator is suspended on the plurality of grooves. | 05-22-2014 |
20140140545 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a substrate, a sound wave generator, an insulating layer, a first electrode and a second electrode. The first electrode and the second electrode are spaced from each other and electrically connected to the sound wave generator. The substrate includes a first surface and a second surface opposite to the first surface. The first surface defines a plurality of grooves, and a bulge is formed between the adjacent two grooves. The insulating layer is located on the first surface, and continuously attached on the grooves and the bulge. The sound wave generator is located on the insulating layer. The sound wave generator defines a first portion and a second portion. The first portion is suspended on the grooves. The second portion is attached on the bulge. | 05-22-2014 |
20140140546 | EARPHONE - An earphone includes a housing and a thermoacoustic device. The housing has a hollow structure. The thermoacoustic device is disposed in the housing. The thermoacoustic device includes a substrate, a sound wave generator, a first electrode and a second electrode. The first electrode and the second electrode are spaced from each other and electrically connected to the sound wave generator. The substrate includes a first surface and a second surface opposite to the first surface. The first surface defines a number of recesses parallel with and spaced from each other. A depth of each of the recesses ranges from about 100 micrometers to about 200 micrometers. The sound wave generator is located on the first surface of the substrate. The sound wave generator includes a carbon nanotube structure that is suspended over the recesses. | 05-22-2014 |
20140140547 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a PCB substrate, a speaker installed on the PCB substrate and including a sound wave generator, and an IC chip installed on the PCB substrate. The speaker and the IC chip are electrically connected by the PCB substrate. The IC chip input an audio signal to the speaker. The speaker heats surrounding medium intermittently according to the input signal so that the surrounding medium to produce a sound by expansion and contraction. | 05-22-2014 |
20140140548 | THERMOACOUSTIC CHIP - A thermoacoustic chip includes a shell having a hole and a speaker located in the shell. The speaker includes a substrate having a surface, a sound wave generator located on the surface of the substrate and opposite to the hole of the shell, and, a first electrode and a second electrode. The first electrode and the second electrode are spaced from each other and electrically connected to the sound wave generator. | 05-22-2014 |
20140140549 | THERMOACOUSTIC CHIP - A thermoacoustic chip includes a substrate, a sound wave generator, a first electrode, and a second electrode, and an integrated circuit chip. The substrate has a first surface. The sound wave generator is located on the first surface of the substrate. The first electrode and a second electrode are spaced from each other and electrically connected to the sound wave generator. The integrated circuit chip is located on the substrate and electrically connected to the first electrode and the second electrode. | 05-22-2014 |
20140140550 | THERMOACOUSTIC DEVICE ARRAY - A thermoacoustic device array includes a substrate and a plurality of thermoacoustic device units located on a surface of the substrate. The substrate defines a number of recesses on the surface, and the recesses are spaced from and parallel with each other. Each thermoacoustic device unit includes a sound wave generator, a first electrode and a second electrode. The first electrode and the second electrode are spaced from each other and electrically connected to the sound wave generator. The sound wave generator is located on the surface and suspended over the recesses. At least one of the recesses is located between the first electrode and the second electrode, and one portion of the sound wave generator that is between the first electrode and the second electrode is suspended over the at least one of the recesses. | 05-22-2014 |
20140185840 | THERMOACOUSTIC DEVICE - A thermoacoustic device comprise a substrate, a number of thermoacoustic units on the substrate, a number of switches, a driving integrated circuit, a scanning integrated circuit, and a common electrode. The switches are electrically connected to the thermoacoustic units. Each of the switches is electrically connected in series between the first electrode and the driving integrated circuit through a driving electrode. Each of the switches is electrically connected to the scanning integrated circuit through a scanning electrode. The common electrode is electrically connected to the second electrode of the number of thermoacoustic units. | 07-03-2014 |
20140185841 | THERMOACOUSTIC DEVICE - A thermoacoustic device includes a first substrate, a sound wave generator, a first electrode, a second electrode and a second substrate. A number of recesses are defined on a surface of the first substrate. The sound-producing parts of the wave generator are located on the surface and suspended over the recesses to enable very rapid expansion by heat, and contraction. The first electrode and the second electrode are spaced from each other and electrically connected to the sound wave generator. The sound wave generator is held in place by the first substrate and the second substrate. A number of through holes are defined by the second substrate. Some of the through holes correspond with the recesses to allow the output of sound. | 07-03-2014 |
20140219479 | SPEAKER MAGNET ASSEMBLY WITH INCLUDED SPIDER - A magnet assembly for a audio speaker provides a gap through which a voice coil assembly passes. A magnetic member, a yoke, and a pole piece form a magnetic circuit that focuses magnetic energy in the gap. A spider movably supports the voice coil assembly. The spider is coupled to one of the magnetic member or the yoke by forming the one of the magnetic member or the yoke in two parts and joining the two parts with a portion of the spider between the two parts. The spider may be formed from a thin film thermoplastic, such as polyetheretherketone (PEEK), and may be less than 10 microns thick. The portion of the spider that is between the two parts may be shaped such that a portion of the two parts are in direct contact with one another. | 08-07-2014 |
20150010175 | HANDLING POWER DISSIPATION IN A MULTI MICROSPEAKER MODULE - Embodiments of the invention include a micro speaker assembly that has two drivers, each having a separate yoke, set of magnets, voice coil, and acoustic diaphragms. One driver may produce high frequency (HF) sound while the other produces low frequency (LF) sound. The two drivers may be packaged, side-by-side, within the same micro speaker acoustic enclosure. The drivers may have their respective magnet systems physically connected to each other, in order to enhance heat transfer from one to the other. In particular, a thermally conductive portion or bridge may be used to directly join or thermally connect adjacent edges of the yoke portions of the two magnet systems, in order to enhance heat transfer between the first and second micro speaker drivers. Thus, the assembly can handle more power without overheating. Other embodiments are also described and claimed. | 01-08-2015 |
20150319539 | EARPHONE - The disclosure relates to an earphone. The earphone includes a housing, a first speaker located in the housing and configured to play a first sound in a high frequency range, and a second speaker located in the housing and configured to play a second sound in a low frequency range or a middle frequency range. The first speaker includes a thermoacoustic device unit including a sound wave generator including carbon nanotube structure. The second speaker is an electric loudspeaker, electromagnetic speaker, or capacitive speaker. | 11-05-2015 |
20160021467 | THERMOACOUSTIC DEVICE AND METHOD FOR MAKING THE SAME - A thermoacoustic device includes a base, a first electrode and a second electrode, at least two supporting members, and a first carbon nanotube film. The base includes a surface. The first electrode and the second electrode are located on the surface of the base and spaced from each other. The at least two supporting members are spaced from each other and respectively located on surfaces of the first electrode and the second electrode. The at least two supporting members include a plurality of carbon nanotubes parallel with each other and substantially perpendicular to the surface of the base. The first carbon nanotube film is supported by the at least two supporting members and has a portion between the at least two supporting members suspended above the base. The supporting members electrically connect the first carbon nanotube film with the first electrode and the second electrode. | 01-21-2016 |
20160037267 | ENCAPSULATED THERMOACOUSTIC PROJECTOR BASED ON FREESTANDING CARBON NANOTUBE FILM - A suspended nanotube film (or films) producing sound by means of the thermoacoustic (TA) effect is encapsulated between two plates, at least one of which vibrates, to enhance sound generation efficiency and protect the film. To avoid the oxidation of carbon nanotubes at elevated temperatures and reduce the thermal inertia of surrounding medium the enclosure is filled with inert gas (preferably with high heat capacity ratio, γ=C | 02-04-2016 |
20220141597 | PRESSURE WAVE-GENERATING DEVICE AND METHOD FOR PRODUCING THE SAME - A pressure wave-generating device having a support and a heating element film that is disposed over the support and that is configured to generate heat by energization, and the heating element film has a porous metal structure. | 05-05-2022 |