Class / Patent application number | Description | Number of patent applications / Date published |
381940800 | Peak limiting or pulsive noise compensation | 7 |
20080240466 | SIGNAL REPRODUCTION CIRCUITRY - A sound reproduction device includes a filter, which detects a repeated bit sequence of a predetermined length in an input bit stream. When any repeated bit sequence having the predetermined length is detected, the input bit stream is applied to a filter for attenuating signals at the frequency corresponding to the predetermined length. | 10-02-2008 |
20090016546 | Audio control apparatus - An audio control apparatus. The audio control apparatus comprises a processing module, an amplification module, and a control module. The processing module receives and processes an audio signal according to a control signal, and generates a processed signal. The amplification module coupled to the processing module, amplifies the processed signal to generate an output signal. The control module coupled to the processing module and the amplification module, receives the output signal to generate the control signal. | 01-15-2009 |
20090116663 | Combining an audio power amplifier and a power converter in a single device - An apparatus is described that includes an audio power amplifier having an input and an output. An alternating-current to direct-current power converter is coupled to the audio power amplifier in a single package to supply power to the audio power amplifier. | 05-07-2009 |
20100284547 | SYSTEMS AND METHODS TO MINIMIZE STARTUP TRANSIENTS IN CLASS-D AMPLIFIERS - Systems and methods for minimizing startup transients in digital audio controllers that may result in audible artifacts in the output of an audio amplification system. One embodiment comprises a digital PWM amplifier that includes a mechanism for controlling the amount of dead time in the audio output signal. When the amplifier starts up, the PWM signals provided to the output stage are simultaneously deasserted (i.e., there is dead time) for most of each switch period. The amount of dead time is gradually reduced over a series of switch periods until a nominal operating amount of dead time in each switch period is reached. Thus, the PWM signals are slowly ramped up from having a very large percentage of dead time (e.g., nearly 100%) to having a very small percentage of dead time (e.g., 1-2% to prevent shoot-through.) | 11-11-2010 |
20110116654 | DELAY TECHNIQUES IN ACTIVE NOISE CANCELLATION CIRCUITS OR OTHER CIRCUITS THAT PERFORM FILTERING OF DECIMATED COEFFICIENTS - This disclosure describes circuit configurations that may be used for active noise cancellation in the digital domain. In particular, this disclosure proposes the use a down sample unit and an up sample unit, rather than memory-based delay circuits, to achieve one or more desired delays in digital adaptive noise cancellation circuits or other circuits that use delay for signal processing. The delay achieved by the down sample unit and the up sample unit may be tunable so as to allow flexibility in producing the necessary delay for different active noise cancellation circuit configurations. Many different adaptive noise cancellation circuit configurations are discussed, and the techniques may also be useful for other types of circuits, such as low-latency equalization circuits. | 05-19-2011 |
20110235824 | System and Method for Excursion Limiting - The present disclosure generally relates to a system for limiting the excursion of an audio speaker. The system may include first lowpass filter circuitry configured to receive a system input signal and to generate a first signal. The system may further include clipping circuitry configured between the first lowpass filter circuitry and the first combiner circuitry. The system may include first highpass filter circuitry configured to receive the system input signal and to generate a second signal. The system may include second lowpass filter circuitry configured to receive a combined output signal from the first combiner circuitry. The system may include allpass filter circuitry configured to receive the system input signal and to generate a fourth signal. The system may include second highpass filter circuitry configured to receive the fourth signal from the allpass filter circuitry. The second combiner circuitry may be configured to generate an excursion limiting output signal. | 09-29-2011 |
20160173993 | Circuit Module For Silicon Condenser Microphone | 06-16-2016 |