Class / Patent application number | Description | Number of patent applications / Date published |
378127000 | Temperature modification | 23 |
20100266102 | X-RAY TARGET ASSEMBLY AND METHODS FOR MANUFACTURING SAME - The x-ray target assemblies have an oxide dispersion strengthened (ODS) refractory metal alloy substrate that is bonded to a carbon-containing heat sink. The x-ray target assemblies have excellent bonding between the substrate and the heat sink. The improved bonding is achieved by placing an oxide-free barrier layer between the ODS metal substrate and the heat sink. The oxide-free barrier layer minimizes or eliminates chemical reactions that would otherwise be possible between the dispersed oxides and the carbon-based heat sink during the manufacturing process. Preventing these undesired reactions while manufacturing the x-ray target assembly yields a device with improved bonding between the heat sink and the substrate, compared to devices manufactured without the barrier layer. | 10-21-2010 |
20100322383 | X-RAY TUBE BEARING ASSEMBLY - In one example, an x-ray tube comprises an evacuated enclosure and a cathode disposed within the evacuated enclosure. An anode is also disposed within the evacuated enclosure opposite the cathode so as to receive electrons emitted by the cathode. A rotor sleeve is coupled to the anode, the rotor sleeve being responsive to applied electromagnetic fields such that a rotational motion is imparted to the anode. A magnetic assist bearing assembly rotatably supports the anode. | 12-23-2010 |
20100322384 | ROTATING ANODE WITH HUB CONNECTED VIA SPOKES - One example embodiment includes an anode. The anode comprises an anode hub, an annular target and a plurality of spokes. The spokes connect the anode hub to the annular target. The spokes are configured to substantially mechanically and/or thermally isolate the anode hub from the annular target. | 12-23-2010 |
20110129068 | HYBRID DESIGN OF AN ANODE DISK STRUCTURE FOR HIGH PROWER X-RAY TUBE CONFIGURATIONS OF THE ROTARY-ANODE TYPE - The present invention is related to high power X-ray sources, in particular to those ones that are equipped with rotating X-ray anodes capable of delivering a much higher short time peak power than conventional rotating X-ray anodes according to the prior art. The herewith proposed design principle thereby aims at overcoming thermal limitation of peak power by allowing extremely fast rotation of the anode and by introducing a lightweight material with high thermal conductivity ( | 06-02-2011 |
20150043718 | Single-Pole X-Ray Emitter - A single-pole x-ray emitter includes an emitter housing, in which an x-ray tube with a vacuum housing and a drive motor are arranged. A cathode that generates an electron beam, and a rotating anode that is struck by the electron beam along a focal path are arranged in the vacuum housing. The vacuum housing includes a drive-side housing wall and an anode-side housing wall, and the rotating anode is held in a torsionally rigid manner on an anode tube that is rotatably mounted on a stationary part of a rotor shaft that is coupled to the drive motor. The stationary part of the rotor shaft is joined to the anode-side housing wall of the vacuum housing via a ring-shaped fixing. The anode tube incorporates a temperature compensation element. The focal path is arranged on a side of the rotating anode that faces away from the anode-side housing wall. | 02-12-2015 |
378128000 | With thermal impedance | 2 |
20080226032 | ADAPTIVE GRADIENT WEIGHTING TECHNIQUE FOR DETECTOR BAD CELL CORRECTION - An imaging system includes a two-dimensional detector having a plurality of cells wherein each cell is configured to detect energy or signal passing through an object. The imaging system includes a computer programmed to acquire imaging data for the plurality of cells, identify a cell to be corrected, based on the imaging data, interpolate I | 09-18-2008 |
20150311027 | ANODE MODULE AND RAY TUBE APPARATUS - A miniaturized anode module includes a target, a rotor module, a first rotation shaft, a second rotation shaft, and a heat barrier. The target is used for receiving an electron beam in order to excite a ray. The rotor module is used for driving the target in rotation. The first rotation shaft is coupled to the target. The second rotation shaft is coupled to the first rotation shaft and the rotor module, such that the rotor module drives the first rotation shaft and the target in synchronous rotation by the second rotation shaft. The heat barrier is disposed between the first rotation shaft and the second rotation shaft, and is used to block the transfer of heat generated by the target when exciting the ray to the second rotation shaft through the first rotation shaft. | 10-29-2015 |
378129000 | With increased emissivity | 4 |
20090080615 | METHOD AND APPARATUS FOR INCREASING HEAT RADIATION FROM AN X-RAY TUBE TARGET SHAFT - A target for generating x-rays includes a target substrate, a target shaft attached to the target substrate, and a radiation emissive coating applied to at least one of the target substrate and the target shaft, wherein a center-of-gravity of the target is positioned between a front bearing assembly and a rear bearing assembly of an x-ray tube. | 03-26-2009 |
20120189104 | TUNGSTEN OXIDE COATED X-RAY TUBE FRAME AND ANODE ASSEMBLY - An x-ray tube having a coated x-ray tube frame inner surface and a coated anode assembly is provided. The x-ray tube includes an x-ray tube frame in which an anode assembly is disposed therein. A cathode assembly is also disposed within the x-ray tube frame that emits an electron beam to strike a target surface of the anode assembly and form x-rays. A plasma-sprayed tungsten oxide coating is formed on an inner surface of the x-ray tube frame and on the anode assembly to dissipate heat created by the electron beam. | 07-26-2012 |
20140105366 | FINNED ANODE - Finned anode. In one example embodiment, an anode suitable for use in an x-ray tube includes a hub, a front side, and a target surface disposed on the front side. The hub is configured to attach to a bearing assembly and the front side substantially faces the bearing assembly. The anode further includes a rear side substantially opposite the front side, as well as two or more annular anode fins extending from the rear side. The annular anode fins are positioned radially outward from the hub to an outer periphery of the rear side. | 04-17-2014 |
20150103978 | Cooled Rotary Anode for an X-Ray Tube | 04-16-2015 |
378130000 | With cooling fluid | 12 |
20100027753 | HIGH FLUX X-RAY TARGET AND ASSEMBLY - An X-ray tube anode assembly and an X-ray tube assembly are disclosed that include an X-ray target and a drive assembly configured to provide an oscillatory motion to the X-ray target. The drive assembly is configured to provide an oscillatory motion to the target assembly. | 02-04-2010 |
20100150313 | COOLING DEVICE FOR A ROTATABLE ANODE - The invention relates to a cooling device ( | 06-17-2010 |
20100150314 | X-RAY DEVICE - An x-ray device has a cathode aligned on a target region in a tube housing with a rotating anode unit. The rotating anode unit is borne to rotate around a rotational axis inside the tube housing. The rotating anode unit has a rotating anode plate with the target region and a shaft rotationally connected with the rotating anode plate. A magnetic bearing supports the shaft without contact in the tube housing. The rotating anode plate has an axial extension facing away from the shaft. The axial extension dips into a fluid-filled receptacle space of the tube housing for heat dissipation. Such an x-ray device allows high rotation speeds of the rotating anode unit, and thus a high operational power. | 06-17-2010 |
20100260324 | AIR-COOLED FERROFLUID SEAL IN AN X-RAY TUBE AND METHOD OF FABRICATING SAME - An x-ray tube includes a rotatable shaft having a first end and a second end, a target coupled to the first end of the rotatable shaft, the target positioned to generate x-rays toward a subject upon impingement of electrons thereon, and an impeller coupled to the second end of the rotatable shaft and positioned to blow a gas into an inlet of an aperture passing into the rotatable shaft. | 10-14-2010 |
20100310050 | ROTATING UNION FOR A LIQUID COOLED ROTATING X-RAY TARGET - A rotating union for an X-ray target is provided. The rotating union for the X-ray target comprises a housing, a coolant-slinging device comprising a rotating shaft having an inner diameter and an outer diameter, a proximal end and a distal end, and a bore therein, one or more slingers coupled to a proximal end of the rotating shaft; a drain annulus coupled to the one or more slingers, wherein the one or more slingers are configured to direct a coolant to the drain annulus and the drain annulus is configured to direct the coolant through a primary coolant outlet; and a stationary tube having a first end and a second end, wherein at least a portion of the stationary tube is disposed within the bore of the rotating shaft. | 12-09-2010 |
20110058654 | ROTARY ANODE X-RAY TUBE - A rotary anode X-ray tube apparatus according to an embodiment of the present invention includes a stationary shaft, a cooling bath that is provided in the stationary shaft, a rotary cylinder that is rotatably supported to the stationary shaft, a target that is provided in the rotary cylinder, a cathode that is disposed to face the target, and a vacuum enclosure that stores these components. The stationary shaft has a large-diameter portion provided in a portion thereof and is provided with a flow passage through which a cooling fluid flows. The cooling bath is provided by thinning the wall thickness of the large-diameter portion to increase the flow passage diameter of a portion of the flow passage. The rotary cylinder covers an area of the stationary shaft including the large-diameter portion through a liquid metal and is rotatably supported to the stationary shaft. The target has a hollow circular plate shape that is provided on an outer circumferential surface of the rotary cylinder. The vacuum enclosure stores the stationary shaft, the rotary cylinder, the target, and the cathode and supports the stationary shaft. | 03-10-2011 |
20120106709 | ACTIVE THERMAL CONTROL OF X-RAY TUBES - The present embodiments relate to active thermal control of X-ray tubes, for example X-ray tubes used in CT imaging. In one embodiment, a system for thermal control of an X-ray tube is provided. The system includes an X-ray tube having an electron beam target, a rotary bearing supporting the target in rotation, and a coolant flow passage, at least a portion of the coolant flow passage being disposed in the center of the rotary bearing, and the coolant flow passage is configured to receive a coolant. The system also includes a coolant circulating system coupled to the coolant flow passage and configured to circulate the coolant thorough the coolant flow passage, and a control circuit coupled to the coolant circulating system and the rotary bearing, the control circuit being configured to control heat flow between components of the X-ray tube by regulating extraction of heat from the X-ray tube via the coolant and by regulating a rotation rate of the rotary bearing. | 05-03-2012 |
20140247922 | ROTATING ANODE X-RAY TUBE - According to one embodiment, a rotating anode X-ray tube includes a fixed shaft, a rotor, a lubricant, target, and a supporting member. The fixed shaft includes a small-diameter portion provided with a first radial bearing surface including first grooved surfaces, and a large-diameter portion provided with a second radial bearing surface including second grooved surfaces. The rotor includes a third radial bearing surface. The lubricant is filled in a gap between the fixed shaft and the rotor, and drawn by the first and second grooved surfaces. | 09-04-2014 |
20150078531 | ROTATING-ANODE X-RAY TUBE ASSEMBLY AND ROTATING-ANODE X-RAY TUBE APPARATUS - According to one embodiment, a rotating-anode X-ray tube assembly includes an X-ray tube, a stator coil, a housing, an X-ray radiation window, and a coolant. The housing includes a first divisional part which includes an X-ray radiation port and to which the X-ray tube is directly or indirectly fixed, and a second divisional part located on a side opposite to an anode target with respect to an anode target rotating mechanism and coupled to the first divisional part. A coupling surface between the first divisional part and the second divisional part is located on one plane, and is inclined to an axis, with exclusion of a direction perpendicular to the axis. | 03-19-2015 |
20150124936 | ROTATING-ANODE X-RAY TUBE ASSEMBLY - According to one embodiment, a rotating-anode X-ray tube assembly includes a rotating-anode X-ray tube, a housing, a coolant, a first shell, an X-ray shielding member, a second shell and an air introduction unit. The first shell is provided apart from the housing and an envelope of the rotating-anode X-ray tube, and surrounds the envelope. The X-ray shielding member is provided between the first shell and the housing and apart from the housing. The second shell is provided apart from the housing to cause an airway to be formed between the second shell and the housing. The air introduction unit produces a flow of air in the airway. | 05-07-2015 |
20160029468 | ROTATION ANODE X-RAY TUBE UNIT AND ROTATION ANODE X-RAY TUBE ASSEMBLY - A rotation anode X-ray tube unit includes a rotation anode X-ray tube, a flow-passage formation member, and a X-ray shielding section. The X-ray shielding section includes an X-ray shield and a frame-shaped X-ray shielding member. | 01-28-2016 |
20190148102 | TARGET ASSEMBLY, APPARATUS INCORPORATING SAME, AND METHOD FOR MANUFACTURING SAME | 05-16-2019 |