Entries |
Document | Title | Date |
20080253511 | Scintillator aspects of compton scattered X-Ray visualization, imaging, or information providing - One aspect relates to visualizing, imaging, or providing information at least partially through at least some matter of an at least a portion of an individual, based at least in part on Compton scattering to at least partially form scattered X-rays, the Compton scattering occurring primarily in the at least some matter of the at least the portion of the individual, wherein the visualizing, imaging, or providing information is at least partially performed by converting the scattered X-rays into an at least one scintillated viewable and/or visible light that is detectable by a user. Another aspect relates to Compton scattered X-ray based visualizing, imaging, or providing information of an at least some matter of an at least a portion of an at least one individual to allow the at least one individual and/or an untrained assistant to at least partially visualize, image, or provide information into the at least some matter of the at least the portion of the individual based at least partially on Compton scattered X-rays. | 10-16-2008 |
20080273657 | SYSTEM AND METHOD TO ACQUIRE RADIOLOGICAL IMAGES OF AN IMAGED SUBJECT - A system to acquire radiological images of an imaged subject is provided. A gantry moves a radiation source and image receptor to multiple positions in relation to an imaged subject. A controller comprises program instructions that include correlating sequence selectors with sequences of acquired images acquired at multiple positions of the gantry, detecting actuation of a first selector correlated to a first sequence, instructing the gantry to position the radiation source and receptor at a first position to acquire a first image in the first sequence, moving the radiation source and receptor while simultaneously detecting actuation of the validation pedal until reaching the first position, acquiring the first image, automatically instructing the gantry to move the radiation source and receptor to a second position to acquire a second image in the first sequence, repeating these steps to acquire the remainder of the images in the first sequence. | 11-06-2008 |
20080292049 | Device for obtaining perfusion images - A system and method for obtaining perfusion images is disclosed. The system and method includes hardware and software for determining physiological characteristics of a patient and determining imaging parameter values for an imaging modality based on the patient's physiological characteristics. The system also includes a controller operative to receive the imaging parameter values for controlling an X-ray device. The X-ray device is coupled with the controller and acquires projection images of the patient, and outputs the projection images to a perfusion evaluation computer for evaluating the perfusion of an region of interest represented in the projection images. The perfusion rate of the region of interest is then output to an output device, such as a display or printer. | 11-27-2008 |
20090010383 | Device for recording projection images - A device for recording projection images using high-energy radiation has a radiation source and a radiation detector. A radiation axis of the X-ray system can be freely established. A control device for the X-ray system enables the distance between the radiation source and radiation detector to be set with the aid of a control element set up for controlling a motion with one degree of freedom. | 01-08-2009 |
20090141858 | Beam admission unit, beam generation device and tomography device - A beam admission unit is disclosed. In at least one embodiment, the beam admission unit includes a plurality of admission segments having at least one admission slit for admitting radiation emanating from a radiation source onto a predetermined admission region. So as to implement a particularly space-saving, robust and reliable design, in at least one embodiment the admission segments are interconnected in an articulated fashion to form an admission plate chain which can be rolled up. | 06-04-2009 |
20090154641 | Method of and software for Conducting Motion Correction in Tomographic Scanning and System for Tomographic Scanning Using The Method - During data acquisition in a tomographic scan of a subject unscattered events and scatter events are collected. The data are corrected for the scatter events and movement of the subject during the scan. A scatter estimate is derived for use in the reconstruction of an image of the subject; a first step in the derivation has a first dependence on the movement of the subject. The image of the subject is derived from the detected events using the scatter estimate; a second step in this derivation has a second dependence on the movement of the subject, the dependence being different from that of the first step. | 06-18-2009 |
20100014633 | Scattered radiation collimator, radiation detector and radiation detection device - A scattered radiation collimator is disclosed for radiological radiation. In at least one embodiment, the scattered radiation collimator includes a multiplicity of absorber elements connected one behind the other in a collimation direction and at least two plate-like holding elements which are arranged substantially parallel with respect to one another and have absorber element holders for holding the absorber elements. In order to avoid erroneous positioning when transverse forces are acting, it is proposed in at least one embodiment, to connect the holding elements to each other by cross beams running along the end face of the absorber elements. | 01-21-2010 |
20100046697 | X-RAY TOMOGRAPHY METHOD AND APPARATUS USED IN CONJUNCTION WITH A CHARGED PARTICLE CANCER THERAPY SYSTEM - The invention comprises an X-ray tomography method and apparatus used in conjunction with multi-axis charged particle or proton beam radiation therapy of cancerous tumors. In various embodiments, 3-D images are generated from a series of 2-D X-rays images; the X-ray source and detector are stationary while the patient rotates; the 2-D X-ray images are generated using an X-ray source proximate a charged particle beam in a charged particle cancer therapy system; and the X-ray tomography system uses an electron source having a geometry that enhances an electron source lifetime, where the electron source is used in generation of X-rays. The X-ray tomography system is optionally used in conjunction with systems used to both move and constrain movement of the patient, such as semi-vertical, sitting, or laying positioning systems. The X-ray images are optionally used in control of a charged particle cancer therapy system. | 02-25-2010 |
20100086101 | METHOD OF AND SOFTWARE FOR CALCULATING A SCATTER ESTIMATE FOR TOMOGRAPHIC SCANNING AND SYSTEM FOR TOMOGRAPHIC SCANNING - The method calculates a scatter estimate for scatter correction of detection data from a subject in a positron emission tomographic scanner. The detection data represent the scattered events and unscattered events of annihilation photons emitted in the subject. The method uses the following steps:
| 04-08-2010 |
20100091938 | MULTI-BEAM X-RAY DEVICE - A multi-beam x-ray device has a multi-beam x-ray tube in the form of a polygon, wherein the focal spots of the x-ray radiation are arranged along the polygon sides. An x-ray tube control unit controls the x-ray radiation emission such that an x-ray beam is alternately emitted from each polygon side in a specified sequence. Multiple first diaphragms with at least one respective first diaphragm aperture are arranged such that they can move into the beam path of the x-ray tube. A first diaphragm, whose first diaphragm aperture limits the cross section of the x-ray beam emitted from the x-ray tube, is associated with every polygon side. A number of slice images can be generated from different directions without a movement of the x-ray tube. | 04-15-2010 |
20100091939 | CIRCULAR MULTI-BEAM X-RAY DEVICE - A multi-beam x-ray device has a multi-beam x-ray tube with an interior in the form of a circle. Focal spots of the x-ray radiation are arranged along the circle. An x-ray tube control unit controls the x-ray radiation emission such that an x-ray beam is emitted from each segment of the circle in specified sequence. The circle is divided up into at least two segments, and multiple diaphragms, each with at least one diaphragm aperture therein, one mounted to rotate around the center point of the circular path into the beam path of the x-ray tube. A first diaphragm, whose first diaphragm aperture limits the cross section of the x-ray beam emitted from the x-ray tube, is associated with each segment of the circular path. A number of slice images can be acquired without a movement of the x-ray tube. | 04-15-2010 |
20100124312 | Tomographic image capturing apparatus - A tomographic image capturing apparatus includes a radiation source movable along a predetermined path, for applying radiation to a subject at different angles, a dose adjuster for adjusting the radiation source to make constant the dose of the radiation emitted from the radiation source independently of irradiation angles of the radiation with respect to the subject, a radiation detector for detecting the radiation transmitted through the subject while the radiation source moves along the predetermined path and converting the detected radiation into radiographic image information, and a tomographic image generator for generating a tomographic image of the subject based on the radiographic image information converted from the radiation detected by the radiation detector. | 05-20-2010 |
20100189214 | RADIOGRAPHIC APPARATUS - An X-ray tube and a flat panel X-ray detector (FPD) are constructed movable parallel to each other in the same direction along a body axis which is a longitudinal direction of a patient. The X-ray tube intermittently emits radiation and the FPD detects radiation transmitted through the patient irradiated intermittently whenever the X-ray tube and FPD move every pitch. X-ray images O | 07-29-2010 |
20100246759 | RADIATION IMAGING APPARATUS AND CONTROL METHOD FOR THE SAME - A radiation imaging apparatus that captures radiographic images includes a radioactive ray generating unit configured to irradiate a subject with a plurality of radioactive rays generated by a plurality of electron sources. A radioactive ray detection unit captures a plurality of first radiographic images based on detection of the plurality of radioactive rays that have passed through the subject at different irradiation angles. Area specification unit specifies an object area using the plurality of first radiographic images captured by the radioactive ray detection unit, and a determination unit determines an electron source to be driven from the plurality of electron sources based on the object area specified by the area specification unit, such that a second radiographic image is captured based on the radioactive rays generated by the electron source determined by the determination unit. | 09-30-2010 |
20100329416 | X-RAY IMAGING APPARATUS, METHOD OF CONTROLLING THE SAME, AND COMPUTER PROGRAM - An X-ray imaging apparatus includes an X-ray source including a plurality of X-ray focuses, an X-ray detector which detects X-rays emitted from the X-ray focuses and transmitted through an object, and a control unit which controls the X-ray source and the X-ray detector. The X-ray imaging apparatus selects a pair of X-ray focuses, of X-ray focuses of the plurality of X-ray focuses which project images on the X-ray detector through a region of interest which is an imaging region of the object, from which emitted X-rays define an intersecting angle coinciding with a predetermined angle in the region of interest, and decides an X-ray focus to be used for imaging from X-ray focuses between the selected pair of X-ray focuses. An X-ray image is captured by emitting X-rays from the decided X-ray focus and causing the X-ray detector to detect the X-rays. | 12-30-2010 |
20110002441 | HIGH-RESOLUTION QUASI-STATIC SETUP FOR X-RAY IMAGING WITH DISTRIBUTED SOURCES - A method for acquiring X-ray image data of an imaging volume is disclosed, the method using a detector and a distributed X-ray source structure having a plurality of single source elements, which are uniformly distributed with a common pitch to each other, the method comprises moving the distributed X-ray source structure and/or the detector with respect to the imaging volume, importantly, the maximum moving distance d | 01-06-2011 |
20110026670 | Portable Inspection Apparatus For X-Ray Tomography - An inspection apparatus for tomographing an object includes a moving unit and a rotating unit, which is disposed on the moving unit and rotates the object to be tomographed. A method for tomographing an object includes steps of disposing an object on an inspection apparatus; rotating the object by operating the inspection apparatus; and tomographing the object. | 02-03-2011 |
20110064188 | Medical X-ray apparatus - A medical X-ray apparatus comprising a supporting part for supporting an X-ray generator and a two-dimensional X-ray detector while interposing an object to be examined therebetween, a radiation area restricting part for restricting a radiation area of X-ray generated from the X-ray generator, and a scan driving part for scanning the object with the X-ray restricted by the radiation area restricting part as X-ray beam and for executing radiography. A direction intersecting with X-ray scan direction is defined as a height direction, the apparatus further comprises a radiation area setting part for setting at least one of both ends of width of the X-ray beam in the height direction at a desired position in accordance with the position of an interested area of the object; and the X-ray beam is irradiated only to the radiation area as set by the radiation area setting part with its beam width in height direction restricted by the radiation area restricting part. | 03-17-2011 |
20110069811 | METHOD FOR SCANNING THE INTERNAL QUALITY OF WOODEN ELEMENTS HAVING A MAIN DIRECTION OF EXTENSION, SUCH AS LOGS OR PLANKS - A method for scanning the internal quality of wooden elements ( | 03-24-2011 |
20110069812 | Radiation imaging apparatus - A radiation imaging apparatus capable of easily improving measurement accuracy of the position of tube focus in radiation imaging. The apparatus includes a radiation source for emitting radiation, a radiation detector for detecting radiation emitted from the radiation source and transmitted through a subject, a shifting section for holding and shifting the radiation source in a direction parallel to a detection surface of the radiation detector, and a acceleration sensor for obtaining a position of a tube focus of the radiation source, in which the acceleration sensor is integrally disposed adjacent to the radiation source and radiation imaging is performed while shifting the radiation source by the shifting section. | 03-24-2011 |
20110080996 | Acquisition of Projection Images for Tomosynthesis - Some aspects include acquisition of a first plurality of projection images of a volume using a megavoltage x-ray source, each of the first plurality of projection images associated with a respective one of a first plurality of locations of the megavoltage x-ray source, acquisition of a second plurality of projection images of the volume using a kilovoltage x-ray source, each of the second plurality of projection images associated with a respective one of a second plurality of locations of the kilovoltage x-ray source, and performance of digital tomosynthesis reconstruction to generate a three-dimensional image of the volume based on the first plurality of projection images and the second plurality of projection images. The first axis may be perpendicular to the second axis. | 04-07-2011 |
20110080997 | RADIATION SOURCE AND METHOD FOR THE GENERATION OF X-RADIATION - In a radiation source and a method for the generation of X-radiation, a liquid is arranged in a liquid line, the liquid being completely surrounded by the liquid line in the direction of an evacuated chamber. A portion of the liquid line is permeable to an electron beam such that the electron beam extending through the chamber is able to enter via the liquid line so as to interact with the liquid in an interaction zone for the generation of X-radiation. The radiation source ensures a good dissipation of heat from the interaction zone and prevents liquid from entering the chamber. | 04-07-2011 |
20110096896 | METHOD FOR THE TOMOGRAPHIC MEASUREMENT OF MECHANICAL WORKPIECES - In a method for measuring mechanical workpieces by tomography, a workpiece and radiation penetrating the workpiece are moved relative to one another step-by-step. A two-dimensional image of the workpiece is generated in an imaging plane from the interaction of the workpiece and the radiation in each movement position of the workpiece. In addition, a three-dimensional representation of the workpiece is computed from the two-dimensional images. From at least two two-dimensional images showing a regular actual structure existing within the workpiece, points at a high-contrast transition are registered. A three-dimensional equivalent body is determined from the position of the points, and said equivalent body is compared to a predefined nominal structure. | 04-28-2011 |
20110096897 | RADIATION TOMOGRAPHY APPARATUS - Radiation tomography apparatus of this invention has a shield that shields entering of radiation flying from outside of the gantry. The shield is formed of shielding pieces. Consequently, there is no need for manufacturing the shield in a large and expensive furnace. Accordingly, the radiation tomography apparatus may be provided that is easily manufactured and achieves suppressed cost. Moreover, with the radiation tomography apparatus of this invention, maintenance may be performed through removal of the shielding pieces without removing the entire shield. | 04-28-2011 |
20110135055 | X-RAY APPARATUS FOR TOMOSYNTHESIS - X-ray apparatus that allows performing tomosynthesis as well as lateral thoracic radiographs from stretcher itself, for which is comprises a fixed column and a revolving base that can move vertically along the fixed column, as well as rotate. Associated to this revolving base is a folding board and a support base for an arm of the x-ray tube and collimator assembly, with the specific property that the x-ray tube arm can turn independently of the detector, and the rotation of the revolving base is performed about an axis adjoining one of the sides of the fixed column, so that when the assembly is rotated it is possible to perform lateral thoracic radiographs without having to move patients from the stretcher on which they have been brought. | 06-09-2011 |
20110158382 | ROTATING RING APPARATUS - The present invention relates to a rotating ring apparatus comprising: —a stationary ring ( | 06-30-2011 |
20110176657 | SINGLE CRYSTAL SCINTILLATOR MATERIAL, METHOD FOR PRODUCING SAME, RADIATION DETECTOR AND PET SYSTEM - A method for producing a single crystal scintillator material according to the present invention includes the steps of: providing a solvent including: at least one element selected from the group consisting of Li, Na, K, Rb and Cs; W and/or Mo; B; and oxygen; melting a Ce compound and a Lu compound that have been mixed with the solvent by heating the mixture to a temperature of 800° C. to 1,350° C.; and growing a single crystal by cooling the compounds melted. The single crystal is represented by the compositional formula (Ce | 07-21-2011 |
20110188628 | X-RAY IMAGING APPARATUS, METHOD OF CONTROLLING THE SAME, AND COMPUTER PROGRAM - An X-ray imaging apparatus includes an X-ray source including a plurality of X-ray focuses, an X-ray detector which detects X-rays emitted from the X-ray focuses and transmitted through an object, and a control unit which controls the X-ray source and the X-ray detector. The X-ray imaging apparatus selects a pair of X-ray focuses, of X-ray focuses of the plurality of X-ray focuses which project images on the X-ray detector through a region of interest which is an imaging region of the object, from which emitted X-rays define an intersecting angle coinciding with a predetermined angle in the region of interest, and decides an X-ray focus to be used for imaging from X-ray focuses between the selected pair of X-ray focuses. An X-ray image is captured by emitting X-rays from the decided X-ray focus and causing the X-ray detector to detect the X-rays. | 08-04-2011 |
20110228902 | Medical Radiography In 3D - The present invention relates to medical 3D radiography, such as mammography, in which individual images of an object are taken at different projection angles and a 3D image subsequently synthesized from this image information. According to the invention, the object to be imaged is arranged locked in a object positioning means ( | 09-22-2011 |
20120033785 | Detector Arrangement And X-Ray Tomography Device For Performing Phase-Contrast Measurements And Method For Performing A Phase-Contrast Measurement - A detector arrangement is disclosed for performing phase-contrast measurements, including at least two transducer layers arranged one behind the other, wherein at least the first transducer layer arranged in the radiation direction includes alternate sensitive areas having a high absorptance for the conversion of incident radiation quanta into signals and less sensitive areas having a lower absorptance in comparison thereto. Further, a corresponding X-ray tomography device and a method for performing phase-contrast measurements are also enclosed. | 02-09-2012 |
20120039437 | MULTI-MODE TOMOSYNTHESIS/MAMMOGRAPHY GAIN CALIBRATION AND IMAGE CORRECTION USING GAIN MAP INFORMATION FROM SELECTED PROJECTION ANGLES - A multi-mode tomosynthesis/mammography system and method in which a mammography gain map is used to gain correct mammographic images of a patient's breast but enhanced gain maps for respective projection angled are used to correct tomosynthesis images acquired with the same system. | 02-16-2012 |
20120069957 | RADIOLOGICAL IMAGE DISPLAYING DEVICE AND METHOD - Diagnosis using a tomographic image and a stereoscopic image can be easily performed. A reconstruction unit generates a tomographic image from a plurality of radiological images with different radiographing directions, which is stored in a radiological image storage unit. A display control unit displays a stereoscopic image using a standard radiological image and a reference radiological image, among the plurality of radiological images, on a monitor. In this case, the tomographic image is superimposed on the stereoscopic image. | 03-22-2012 |
20120069958 | Systems and Methods for Bioluminescent Computed Tomographic Reconstruction - An image of an object is synergistically reconstructed using two or multiple imaging modalities. A first reconstructed image, showing structural information of the object is produced using a first imaging modality. The first reconstructed image is segmented, and known optical properties of the object are then mapped to the first reconstructed image. Optical signal emissions from the object are detected and registered with the first reconstructed image. A second reconstructed image volume is then produced using a second imaging modality, based on the mapped optical properties after registration between the first image and the data from the second modality. The second reconstructed image depicts some optical property, such as a bioluminescent source distribution, or optical properties, such as, attenuation and scattering properties, of the object. | 03-22-2012 |
20120128123 | WAVE RAMP TEST METHOD AND APPARATUS - Method and apparatus are provided for use with a tomographic imaging device. A test object comprising a plurality of angled ramps may be provided to facilitate evaluating performance of the tomographic imaging device. A method for evaluating performance of a tomographic imaging device includes scanning the test object to produce a tomographic slice image and performing analysis on a waveform profile extracted from the image, to determine spatial performance of the tomographic imaging device. A tomographic imaging device may be provided comprising a scanning device and a data processing unit for performing a method of evaluating performance of the tomographic imaging device. | 05-24-2012 |
20130003920 | X-RAY IMAGING APPARATUS, METHOD OF CONTROLLING THE SAME, AND COMPUTER PROGRAM - An X-ray imaging apparatus includes an X-ray source including a plurality of X-ray focuses, an X-ray detector which detects X-rays emitted from the X-ray focuses and transmitted through an object, and a control unit which controls the X-ray source and the X-ray detector. The X-ray imaging apparatus selects a pair of X-ray focuses, of X-ray focuses of the plurality of X-ray focuses which project images on the X-ray detector through a region of interest which is an imaging region of the object, from which emitted X-rays define an intersecting angle coinciding with a predetermined angle in the region of interest, and decides an X-ray focus to be used for imaging from X-ray focuses between the selected pair of X-ray focuses. An X-ray image is captured by emitting X-rays from the decided X-ray focus and causing the X-ray detector to detect the X-rays. | 01-03-2013 |
20130039459 | TOMOGRAPHY APPARATUS AND TOMOGRAPHY METHOD - A tomography apparatus that generates images of an object includes a radiation source emitting a radiation beam, wherein the radiation beam rotates around the object and penetrates the object; a radiation detector rotating around the object opposite the radiation source so that the radiation detector detects the radiation beam after penetration of the object; a radiation mask surrounding the object that masks the radiation beam, wherein the radiation mask is arranged in a path of the radiation beam between the radiation source and the radiation detector and the radiation beam passes the radiation mask only once between the radiation source and the radiation detector. | 02-14-2013 |
20130259192 | Method and System for Controlling X-Ray Focal Spot Characteristics for Tomosynthesis and Mammography Imaging - An x-ray tube is described that includes components for increasing x-ray image clarity in the presence of a moving x-ray source by modifying focal spot characteristics, including focal spot size and focal spot position. In a first arrangement a static focal spot is moved in a direction contrary to the movement of the x-ray source so that an effective focal spot position is essentially fixed in space relative to one of the imaged object and/or detector during a tomosynthesis exposure. In a second arrangement, the size of the static focal spot is increased, and the resulting increase in tube current reduces the exposure time and concomitant blur effect. The methods may be used alone or in combination; for example an x-ray tube with a larger, moveable static focal spot will result in a system that fully utilizes the x-ray tube generator, provides a high quality image with reduced blur and, due to the decrease in exposure time, may scan the patient more quickly. | 10-03-2013 |
20140112433 | LABORATORY X-RAY MICRO-TOMOGRAPHY SYSTEM WITH CRYSTALLOGRAPHIC GRAIN ORIENTATION MAPPING CAPABILITIES - A method and system for three dimensional crystallographic grain orientation mapping illuminates a polycrystalline sample with a broadband x-ray beam derived from a laboratory x-ray source, detects, on one or more x-ray detectors, diffracted beams from the sample, and processes data from said diffracted beams with the sample in different rotation positions to generate three dimensional reconstructions of grain orientation, position, and/or 3-D volume. A specific, cone beam, geometry leverages the fact that for a point x-ray source with a divergent beam on reflection of an extended crystal grain diffracts x-rays such that they are focused in the diffraction plane direction. | 04-24-2014 |
20140233696 | RADIATION TUBE AND RADIATION IMAGING SYSTEM USING THE TUBE - A radiation tube includes a cathode unit including an electron source, and an anode unit including a target and a shield member arranged around the target. The target is to be irradiated with electrons emitted from the electron source to emit radiation. The cathode unit and the anode unit are joined to each other via a plurality of spacers. | 08-21-2014 |
20150316493 | LABORATORY X-RAY MICRO-TOMOGRAPHY SYSTEM WITH CRYSTALLOGRAPHIC GRAIN ORIENTATION MAPPING CAPABILITIES - A method and system for three dimensional crystallographic grain orientation mapping illuminates a polycrystalline sample with a broadband x-ray beam derived from a laboratory x-ray source, detects, on one or more x-ray detectors, diffracted beams from the sample, and processes data from said diffracted beams with the sample in different rotation positions to generate three dimensional reconstructions of grain orientation, position, and/or 3-D volume. A specific, cone beam, geometry leverages the fact that for a point x-ray source with a divergent beam on reflection of an extended crystal grain diffracts x-rays such that they are focused in the diffraction plane direction. | 11-05-2015 |
20150320371 | DIRECTED X-RAY FIELDS FOR TOMOSYNTHESIS - Radiographic imaging systems and/or methods embodiments capable of both tomosynthesis x-ray imaging and general projection radiography x-ray imaging can include a single x-ray source assembly including a plurality of distributed x-ray sources, where at least one of the plurality of distributed x-ray sources is configured to output a beam sufficient for standard projection radiography, and each of at least two of the plurality of distributed x-ray sources is configured to output a beam at a lower radiation dose sufficient for tomosynthesis. In one embodiment, radiographic imaging systems and/or methods embodiments can include a single x-ray source; a first collimator that is configured to be adjustable for at least two dimensions; and a second collimator that is configured to provide fixed collimation. In one embodiment, a single x-ray source can include a single radiation shield or a single vacuum chamber. | 11-12-2015 |
20160066870 | X-RAY INTERFEROMETRIC IMAGING SYSTEM - An x-ray interferometric imaging system in which the x-ray source comprises a target having a plurality of structured coherent sub-sources of x-rays embedded in a thermally conducting substrate. The structures may be microstructures with lateral dimensions measured on the order of microns, and in some embodiments, the structures are arranged in a regular array. | 03-10-2016 |
20160071293 | ARTIFACT-REDUCTION FOR X-RAY IMAGE RECONSTRUCTION USING A GEOMETRY-MATCHED COORDINATE GRID - A method for processing image data of an X-ray device ( | 03-10-2016 |
20160095563 | IMAGE DISPLAY DEVICE, IMAGE DISPLAY METHOD AND IMAGE DISPLAY PROGRAM - When at least one of a two-dimensional radiological image and a plurality of tomographic images of the same subject is displayed on a monitor, a depth map creation unit creates a depth map in which each position on the pseudo two-dimensional image is associated with depth information indicating the position of a tomographic plane corresponding to each position in a depth direction. A display control unit specifies the depth information of a predetermined position in the two-dimensional radiological image, with reference to the depth map, and displays the tomographic image of the tomographic plane indicated by the specified depth information on the monitor. | 04-07-2016 |
20160120495 | CONTROL DEVICE FOR CONTROLLING TOMOSYNTHESIS IMAGING, IMAGING APPARATUS, IMAGING SYSTEM, CONTROL METHOD, AND PROGRAM FOR CAUSING COMPUTER TO EXECUTE THE CONTROL METHOD - In tomosynthesis imaging for obtaining a tomographic image from a plurality of projected images, in a case where a reconstruction condition and the tone conversion condition have been changed, control is performed to determine whether or not to use the changed tone conversion condition for tone conversion processing to be performed on a tomosynthesis image reconstructed in accordance with the changed reconstruction condition. | 05-05-2016 |
20160128648 | CONTROL DEVICE FOR CONTROLLING TOMOSYNTHESIS IMAGING, IMAGING APPARATUS, IMAGING SYSTEM, CONTROL METHOD, AND PROGRAM FOR CAUSING COMPUTER TO EXECUTE THE CONTROL METHOD - In tomosynthesis imaging for obtaining a tomosynthesis image from a projected image group captured by irradiating an object with X-rays from a plurality of different angles by using an X-ray generation unit and an X-ray detection unit, in association with a process for setting data of a projected image group as a reject, data of a tomosynthesis image generated on the basis of the projected image group is set as a reject. | 05-12-2016 |
20160128649 | CONTROL DEVICE FOR CONTROLLING TOMOSYNTHESIS IMAGING, IMAGING APPARATUS,IMAGING SYSTEM, CONTROL METHOD, AND PROGRAM FOR CAUSING COMPUTER TO EXECUTE THE CONTROL METHOD - In tomosynthesis imaging for obtaining a tomosynthesis image from a projected image group captured by irradiating an object with X-rays from a plurality of different angles by using an X-ray generation unit and an X-ray detection unit, whether or not to cause a new icon corresponding to set process conditions to be displayed on a display unit is controlled in accordance with process conditions set by a condition setting unit | 05-12-2016 |