Class / Patent application number | Description | Number of patent applications / Date published |
378018000 | With tissue equivalent material | 11 |
20080253506 | Bone Density Calibration Method and System - Disclosed is a method for pictorially representing and determining tissue densities of a body region, especially in the mouth/jaw/face region ( | 10-16-2008 |
20080273654 | Multi-Modal Imaging Registration Calibration Device and Method - A phantom and associated method for calibrating registration in a multi-modal medical diagnostic imaging system are presented. The phantom features a plurality of emission point sources arranged in multiple parallel planes along the length of the phantom, with enough planes to allow mode registration to be calibrated over the length of an entire full-body scan. According to the method, calibration scans are performed at each of several scan positions along the length of the phantom, with at least two planes of emission point sources covered by the scan at each position. | 11-06-2008 |
20080298540 | DEFORMABLE PHANTOM APPARATUS - A deformable phantom apparatus for simulating motion of a patient's anatomy in 3D during breathing, the apparatus comprising a chamber fillable with a first fluid, a deformable member comprising tissue equivalent material of the anatomy being simulated, the deformable member being positionable within the chamber in the first fluid and having an open end in fluid communication with a second fluid outside the chamber in use; and a mechanism for causing the second fluid to flow through the open end to deform the deformable member between a normal state and a deformed state to simulate motion during breathing. | 12-04-2008 |
20080317198 | Method of Evaluating the Resolution of a Volumetric Imaging System and Image Phantom Used During the Resolution Evaluation - A method for evaluating the spatial resolution of a volumetric medical imaging system comprises imaging an image phantom including a sphere surrounded by a uniform medium. The image phantom is imaged and the resulting volumetric data set is used to generate an edge response function in three dimensions. Differentiating the edge response function produces a plane spread function. The method simultaneously measures the spatial resolution in all directions, providing a bulk measurement resolution. Alternatively, the edge response function may be assembled in a manner so as to independently measure the axial and trans-axial resolution of the volumetric imaging system. | 12-25-2008 |
20090080600 | PROCESS AND APPARATUS FOR IMAGING - Processes for producing a microCT image for virtual histology using x-ray microscopic computed tomography are described along with processes for rapid and inexpensive high-throughput methods of high resolution imaging for screening an ex vivo embryo for phenotype using computed tomography imaging. Staining of particular components of specimens with one or more staining agents is described which contributes to high quality image generation and identification of anatomical structures as well as localization of molecular targets. Inventive animal and specimen holders are detailed which allow for reduced post-imaging processing of generated images. In particular, animal and specimen holders are provided which include a highly transparent bed or liner which separates the animal or specimen from a less transparent structure. A further animal holder is provided for placing and/or maintaining the animal in a desired position during an imaging procedure or multiple imaging procedures including a bed conforming to the animal's body. | 03-26-2009 |
20090110140 | Systems and Methods Related to Radiation Delivery - Devices and methods are disclosed which relate to the calibration and quality assurance of motion tracking enabled radiation therapy machines. A phantom, capable of mimicking human breathing through inflation and deflation of the lungs, houses an independently moving target (tumor) that detects the amount of radiation received from the radiation therapy machine. This amount can be compared with a desired amount to determine if adjustment or repositioning is necessary. The servo-mechanism(s) of the motion tracking enabled radiation therapy machine(s) are adjusted in comparison of detected versus programmed motion of the respiring phantom having incorporated independently moving target that incorporated radiation dose detector(s). In the invention, motion tracking and irradiation mechanisms of the radiation therapy machine are adjusted to calibrate with reference to performance specifications of the radiation therapy machine. | 04-30-2009 |
20120076259 | Method and Apparatus Pertaining to Computed Tomography Scanning Using a Calibration Phantom - These various embodiments serve to facilitate improving the accuracy of a computed tomography (CT) process. This can comprise operably coupling at least one calibration phantom to a CT scan table and then, during a CT scan of an object that is disposed on the scan table, also gathering calibration information using that calibration phantom(s). By one approach, this calibration phantom can comprise one or more annular-shaped members. When using a plurality of annular-shaped members, at least some of the annular-shaped members can be disposed concentrically with one another. By one approach, in lieu of the foregoing or in combination therewith, this calibration phantom can comprise one or more pins and/or spherically-shaped members (and/or other shapes of geometric interest). If desired, such spherically-shaped members can be combined with the aforementioned pins. | 03-29-2012 |
20120093282 | Method For Calibrating A CT System With At Least One Focus-Detector Combination With A Quanta-Counting Detector - A method is disclosed for calibrating a CT system with at least one focus-detector combination with a quanta-counting detector including a plurality of detector elements, with the focus-detector combination being arranged to enable it to be rotated around a measurement region and a system axis arranged therein, and an X-ray bundle going out from the focus to the detector which possesses an X-ray energy spectrum over an energy range. In at least one embodiment of the method, actual attenuation values from CT scans obtained with an X-ray energy spectrum are compared with theoretical mono-energetic required attenuation values even in the paralysis range of the quanta-counting detector and a transfer function is determined between the required attenuation values and the actual attenuation values for each detector element and thereby a calibration of the measured attenuation values is carried out. | 04-19-2012 |
20140211911 | CT APPARATUS AND AN IMAGE PROCESSING METHOD USED BY THE SAME - A method for automatically determining the best effective reconstruction gap, the method including scanning a phantom to collect image data of the phantom, using a plurality of different gap values to reconstruct image of the phantom respectively, based on the image data, thus obtaining a plurality of images respectively associated with different gap values, selecting the best image from the plurality of images, and automatically determining the gap value associated with the best image, and save it as the best effective reconstruction gap. | 07-31-2014 |
20140294140 | RADIOGRAPHIC PHANTOM APPARATUSES - There is provided a radiographic phantom for inter alia mimicking specific anatomical parts in a computerized tomography scan. Methods are provided for a variety of purposes including detecting a difference between a measured optical deformation of a radiographic phantom pair and a theoretical deformation of the radiographic phantom pair. | 10-02-2014 |
20140321608 | X-RAY CT DEVICE, CALCURATION DEVICE, RECORDING MEDIUM FOR X-RAY CT DEVICE, AND MAINTENANCE METHOD FOR X-RAY CT DEVICE - In X-ray CT devices, degradation of quantitative determination ability for CT values resulting from the beam hardening (BH) effect of X-ray is prevented. X-ray absorption characteristic S obtained by simulation and a target value T thereof are saved beforehand, the simulation value S is revised by using projection data measured by maintenance measurement for obtaining basic data required for BH correction, and a BH correction coefficient is calculated by using the revised X-ray absorption characteristic S and the target value T. With a few actually measured values, BH correction accuracy can be improved, and reduction of incorrect diagnosis resulting from inhomogeneity of the CT values and improvement in the diagnostic ability based on improvement in quantitative determination ability for the CT values can be realized. | 10-30-2014 |