Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


CONTROL COMPONENT FOR A FISSION REACTOR

Subclass of:

376 - Induced nuclear reactions: processes, systems, and elements

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
376327000CONTROL COMPONENT FOR A FISSION REACTOR23
20080253496NUCLEAR REACTOR CONTROL ROD SPIDER ASSEMBLY - A control rod spider assembly connection between a connecting finger and a rodlet. An upper end plug of the rodlet is secured to the inner bore of the hollow connecting finger with a mating one of a right hand or left hand thread interfacing between the interior of the bore and the circumference of the rodlet. The upper end of the rodlet is captured by a second fastener mechanism having the other of the right hand or the left hand thread. The second fastener mechanism is anchored to one or both of the connecting finger or the upper end plug to secure the connection.10-16-2008
20100027732CONDUCTION COOLED NEUTRON ABSORBERS, APPARATUS AND METHODS FOR PRODUCING FAST FLUX NEUTRON FIELDS - A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cm·K. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.02-04-2010
20110255648NEUTRON ABSORBERS AND METHODS OF FORMING AT LEAST A PORTION OF A NEUTRON ABSORBER - Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.10-20-2011
20120148012CONTROL ROD - A control rod includes a tie-rod, a handle mounted to an upper end portion of the tie-rod, either a connector plate or a fall velocity limiter mounted to a lower end portion of the tie-rod, sheaths having a U-shaped cross-section, welded intermittently to the tie-rod at a plurality of locations in the axial direction of the tie-rod, and having an upper end welded to the handle and a lower end welded to either the connector plate or the fall velocity limiter, and a neutron absorbing member disposed inside each of the sheaths. An upper end of a weld portion located at uppermost position in an axial direction of the tie-rod among a plurality of weld portions between the tie-rod and the sheath is disposed at a position within a range between 0.8 and 13% of total axial length Ls of the sheath below an upper end of the sheath.06-14-2012
20120177169Core of Light Water Reactor and Fuel Assembly - A core of a light water reactor having a plurality of fuel assemblies, which are loaded in said core, having nuclear fuel material containing a plurality of isotopes of transuranium nuclides, an upper blanket zone, a lower blanket zone, and a fissile zone, in which the transuranium nuclides are contained, disposed between the upper blanket zone and the lower blanket zone, wherein a ratio of Pu-239 in all the transuranium nuclides contained in the loaded fuel assembly is in a range of 40 to 60% when burnup of the fuel assembly is 0, sum of a height of the lower blanket zone and a height of the upper blanket zone is in a range of 250 to 600 mm, and the height of said lower blanket zone is in a range of 1.6 to 12 times the height of the upper blanket zone.07-12-2012
20120207263CONTROL ROD FOR HIGH TEMPERATURE GAS REACTOR - A high-temperature gas reactor control rod is provided that does not degrade the joining state between the control rod elements even when stress is applied thereto, and that can improve the safety of the high temperature gas reactor remarkably by improving the heat resistance thereof.08-16-2012
20120243653CONTROL ROD FOR BOILING WATER REACTOR AND METHOD OF MANUFACTURING CONTROL ROD - A control rod has four blades, each of which has a rectangular cross section in a plane perpendicular to an axis of the control rod, disposed so as to form a cross-shaped cross section in the plane perpendicular to the axis. The blades include a plurality of aligned square tubes having a square cross section in a plane perpendicular to the axis and including a neutron absorber filling hole filled with neutron absorber, frame plates disposed parallel to the aligned square tubes in a direction perpendicular to a width direction of the blade, and on one side end and another side end of the blade in the width direction, respectively, and cover plates disposed along the width direction and sandwiching the aligned square tubes. Each blade has the aligned square tubes, the frame plates and the cover plates joined together as a single-piece construction by Hot Isostatic Pressing diffusion bonding.09-27-2012
20120281805NEUTRON ABSORBER CONSISTING OF REFRACTORY METAL INFUSED WITH DISCRETE NEUTRON ABSORBER - The present invention provides a gray rod control assembly for a nuclear reactor. The gray rod control assembly includes a spider assembly having a plurality of radial extending flukes and a plurality of gray rod assemblies coupled to the flukes of the spider assembly. Each of the gray rod assemblies includes an elongated tubular member, a first end plug, a second end plug, and a neutron absorber. The neutron absorber includes a matrix of refractory metal fabricated to be porous into which a metal or metal alloy is infused. The neutron absorber is distributed among a plurality of the gray rod assemblies.11-08-2012
20120288051CONTROL ROD FOR A PRESSURIZED WATER NUCLEAR REACTOR - A control rod for a pressurized-water nuclear reactor contains an absorber rod which is arranged in a casing tube. At least in a lower section, the absorber rod is provided with at least one recess which takes up at most a portion of the circumferential surface of this section. This reduces problems associated with an expansion in the volume of the absorber rod.11-15-2012
20130294566CONTROL ROD DRIVE (CRD) TUBES, METHOD OF MANUFACTURE, AND INSTALLATION THEREOF - A control rod drive (CRD) tube, its manufacture, and installation in a pressurized water reactor (PWR) is disclosed. The control rod drive tube includes a tube body adapted to penetrate an aperture in the RPV head and an offset flange formed around a circumference of the tube body at a predetermined location along its length. The offset flange increases circumferentially from a first point along the circumference of the tube body to a second point along the circumference of the tube body.11-07-2013
20140098925CONTROL ROD FOR NUCLEAR REACTOR AND METHOD OF MANUFACTURING CONTROL ROD - A control rod for nuclear reactors includes four wings including neutron absorbers containing hafnium, a front end structural member which has a cross shape in cross section and includes brackets bonded to the leading ends of the wings, and a terminal end structural member which has a cross shape in cross section and includes brackets bonded to the tailing ends of the wings. The four wings are bonded to a wing-bonding member including a cross-shaped center shaft so as to form a cross shape. The front end structural member and the wing-bonding member are made of a zirconium alloy. The wings include neutron-absorbing plates having neutron-absorbing portions and each have an outer surface which is opposed to a fuel assembly and at which a hafnium-zircaloy composite member covered with zircaloy is disposed. The neutron-absorbing plates are opposed to each other with trap spaces disposed therebetween.04-10-2014
20160049213Neutron Absorber Members, Insertion Apparatus, And Neutron Absorber Member Retainers - Neutron absorber members for a control rod guide tube of a spent fuel assembly are provided as a tube split throughout a length thereof. In further examples, an insertion apparatus for inserting a neutron absorber member into a control rod guide tube of a spent fuel assembly includes an insertion tool base and an insertion tool rod. The insertion tool rod is removably secured within and extending from the insertion tool base according to a position of the control rod guide tube into which the neutron absorber is to be inserted. In further examples, a neutron absorber member retainer for a top nozzle of a spent fuel assembly is provided. The retainer includes a plate configured to inhibit a neutron absorber member inserted in a control rod guide tube from removal.02-18-2016
376328000 Liquid control component 1
376330000 Liquid metal control component 1
20100296620HIGH POWER DENSITY LIQUID-COOLED PEBBLE-CHANNEL NUCLEAR REACTOR - A high-temperature nuclear reactor, cooled by a liquid fluoride salt, is described. The reactor uses an annular fuel pebble comprised of an inert graphite center kernel, a TRISO fuel particles region, and a graphite outer shell, with an average pebble density lower than the density of the liquid salt so the pebbles float. The pebbles are introduced into a coolant entering the reactor and are carried into the bottom of the reactor core, where they form a pebble bed inside a plurality of vertical channels inside one or more replaceable Pebble Channel Assemblies (PCAs). Pebbles are removed through defueling chutes located at the top of each PCA. Each PCA also includes channels for insertion of neutron control and shutdown elements, and channels for insertion of core flux mapping and other instrumentation.11-25-2010
376331000 Gaseous control component 1
20140105349FAIL-SAFE REACTIVITY COMPENSATION METHOD FOR A NUCLEAR REACTOR - The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.04-17-2014
376333000 Wherein concentration of the reactivity affecting material varies radially or axially of the control element 3
20110064182CONTROL ROD FOR BOILING WATER REACTOR - A control rod for a boiling water reactor is provided with a structure element having mutually-perpendicular four blades. The four blades have a neutron absorber-filling region that neutron absorber is held, respectively. In the structure element, a plurality of regions formed in an axial direction of the control rod include a first region having a first cross-section that forms a first united cruciform cross-section of the four blades connected one another, a second region having a second cross-section that has each separated cross-section of the four blades, and a third region having a third cross-section that has a second united cross-section of continuous two blades of the four blades, disposed in a diametrically opposite direction and facing each other and each separated cross-section of remaining two blades of the four blades, disposed perpendicularly to the continuous two blades. The first region is disposed in an upper end portion and a lower end portion of the structure element, respectively. The third region is disposed between the first regions. The second regions are disposed between the first regions exclusive of the third region.03-17-2011
20110170652NEUTRON ABSORBER CONSISTING OF REFRACTORY METAL INFUSED WITH DISCRETE NEUTRON ABSORBER - The present invention provides a gray rod control assembly (GRCA) containing an improved neutron absorber comprised of a porous matrix of refractory metal infused with a neutron absorbing metal or metal alloy for a nuclear reactor. The reactor has a plurality of fuel assemblies, each including numerous elongated fuel rods supported in an organized array by substantially transverse support grids, and a plurality of guide thimbles disposed through the support grids and along the fuel rods. The GRCA includes a spider assembly structured to provide controlled insertion of gray rod assemblies within the thimbles of the fuel assembly, thereby controlling the rate of power produced by the reactor. Each gray rod assembly includes an elongated tubular member, a first end plug, a second end plug and the improved neutron-absorber disposed within the tubular member. Delta-power of the reactor is improved by the relatively small percentage of neutron absorbing metal infused in the porous matrix of the refractory metal of the neutron absorber and by distributing the neutron absorber in segments among a plurality of rods of the GRCA.07-14-2011
20120033780AXIAL POWER DISTRIBUTION CONTROL METHOD AND AXIAL POWER DISTRIBUTION CONTROL SUPPORTING DEVICE - Parameters DAO02-09-2012
376336000 Fuse actuated devices 1
20130216016Device for Mitigating Serious Accidents for a Nuclear Fuel Assembly, With Improved Effectiveness - Passive safety device (08-22-2013
376338000 Particulate type (e.g., balls) 3
20090034674NUCLEAR REACTOR CONTROL ROD - A control rod for nuclear reactor having a lower section that contains an annular neutron absorber wrapped in a metal sleeve. The sleeve rests on a lower spacer which is seated on the control rod lower end cap. The upper portion of the sleeve extends above the annular neutron absorber of this lower section and is capped by an upper spacer. The standard neutron absorber is supported above this upper spacer which rests on the upper end of the metal sleeve to define a gap between the upper spacer and the annular neutron absorber to accommodate axial expansion.02-05-2009
20130208848SOLID INTERFACE JOINT WITH OPEN PORES FOR NUCLEAR CONTROL ROD - A new interface between the cladding and the stack of pellets in a nuclear control rod. According to the invention, an interface joint made of a material transparent to neutrons, in the form of a structure with a high thermal conductivity and open pores, adapted to deform by compression across its thickness, is inserted between the cladding and the stack of pellets made of B08-15-2013
20160189804NUCLEAR BATTERY BASED ON HYDRIDE/THORIUM FUEL - Methods, processes, and systems of transportable nuclear batteries are provided. In one embodiment, the battery may comprise a sealed reactor shell, a reactor core, and a generator. In further embodiments, the transportable nuclear battery may comprise a nuclear fuel in the reactor core wherein the fuel comprises plutonium, carbon, hydrogen, zirconium and, thorium. In some embodiments, the fuel may comprise hydrogen-containing glass microspheres, wherein the glass microspheres, may be coated with a burnable poison, and other coating materials that may aid in keeping the hydrogen within the microsphere glass at relatively high temperature. The disclosed methods, processes and systems may aid in providing energy to remote areas.06-30-2016
376339000 Nonconventional control material 2
20130148773CONTROL ROD WITH OUTER HAFNIUM SKIN - A control rod is used to control the reaction of a nuclear reactor. The control rod comprises one or more internal rodlet(s) and a hafnium skin that serves as the outermost layer, rather than a stainless steel cladding. Several variations on rodlets are contemplated. The rodlets are made of hafnium or Ag—In—Cd. The resulting control rod, due to the lack of a stainless steel cladding, has a greater rod reactivity worth, increased weight, and high flexibility.06-13-2013
20130235967METHOD FOR RECYCLING NUCLEAR CONTROL RODS AND RECYCLED CONTROL ROD SECTION - A method for recycling AgInCd control rod absorber bar material from a used control rod from a nuclear power plant includes sectioning AgInCd absorber bar from a used control rod into a first section and a second section, the first section having a higher radioactivity than the second section; and recycling the material of the second section of the AgInCd absorber bar.09-12-2013

Patent applications in class CONTROL COMPONENT FOR A FISSION REACTOR

Patent applications in all subclasses CONTROL COMPONENT FOR A FISSION REACTOR

Website © 2025 Advameg, Inc.