Class / Patent application number | Description | Number of patent applications / Date published |
376283000 | Pressure suppression and relief | 28 |
20090067565 | Nuclear engineering plant and closure apparatus for its containment - A nuclear engineering plant has a containment, whose interior chamber is subdivided by a wall into a systems chamber and an operating chamber which is accessible during normal operation. The containment ensures a particularly high operational reliability, in particular also in incident situations, in which hydrogen is released in the systems chamber. For this purpose, a number of overflow openings are provided in the partition wall, the respective overflow opening is closed by a closure element of a closure apparatus which opens automatically when a trigger condition associated with the respective overflow opening is reached. Closure apparatuses are provided which open both as a function of pressure and independently of pressure. The closure apparatus furthermore has a closure element containing a bursting film or a bursting diaphragm. The closure apparatus is configured such that it frees the overflow opening automatically when a predetermined environment-side trigger temperature is reached. | 03-12-2009 |
20090154634 | Passive check valve system - A passive check valve system according to the present disclosure includes a vacuum breaker operatively connecting a wetwell and a drywell. A discharge pool of water may be provided in the drywell. A housing structure is provided in the drywell to enclose the vacuum breaker. The housing structure may have one or more discharge pipes extending into the discharge pool, and the volume of the discharge pool may be greater than an interior volume of the one or more discharge pipes. | 06-18-2009 |
20090323884 | CONTAINMENT VESSEL AND NUCLEAR POWER PLANT THEREWITH - A containment vessel for containing a reactor pressure vessel and steam generators has a main containment vessel, a diaphragm, a pressure suppression chamber, LOCA vent pipes. The reactor pressure vessel contains a reactor core of a pressurized water reactor. The diaphragm partitions the main containment vessel into an upper vessel and a lower vessel. The pressure suppression chamber has a suppression pool to store water and gas phase of the pressure suppression chamber communicates with the upper vessel. The LOCA vent pipes connect the pressure suppression chamber to the lower vessel. All of the equipments and piping that constitute the reactor pressure boundary, including the reactor pressure vessel, the steam generators, a cold leg pipe and a hot leg pipe, are contained in the lower vessel. | 12-31-2009 |
20110058637 | PRESSURE CONTROL UNIT AND METHOD FACILITATING SINGLE-PHASE HEAT TRANSFER IN A COOLING SYSTEM - A pressure control unit and method are provided for facilitating single-phase heat transfer within a liquid-based cooling system. The pressure control unit includes a pressure vessel containing system coolant, and a pressurizing mechanism associated with the pressure vessel. A coolant line couples system coolant in the pressure vessel in fluid communication with the coolant loop of the cooling system, and a regulator mechanism couples to the pressurizing mechanism to maintain pressure within the pressure vessel at or above a defined pressure threshold, thus maintaining pressure within the coolant loop above the pressure threshold. The defined pressure threshold is set to facilitate system coolant within the coolant loop remaining single-phase throughout an operational temperature range of the system coolant within the coolant loop. More particularly, the pressure threshold is set to ensure pressure of system coolant within the coolant loop remains above the coolant's saturation pressure at maximum operational temperature. | 03-10-2011 |
20110170650 | PRESSURIZER WITH A MECHANICALLY ATTACHED SURGE NOZZLE THERMAL SLEEVE - A thermal sleeve is mechanically attached to the bore of a surge nozzle of a pressurizer for the primary circuit of a pressurized water reactor steam generating system. The thermal sleeve is attached with a series of keys and slots which maintain the thermal sleeve centered in the nozzle while permitting thermal growth and restricting flow between the sleeve and the interior wall of the nozzle. | 07-14-2011 |
20110249784 | DRIVING SYSTEM OF RELIEF SAFETY VALVE - In one embodiment a relief safety valve driving system that supplies a driving gas by use of a relief safety valve driving unit and thereby opens a relief safety valve provided in a main steam system of a nuclear power plant if an accident or a transient state occurs, for protecting a reactor against pressurization, wherein the relief safety valve driving unit opens the relief safety valve by supplying the driving gas to the relief safety valve by one or more auto-depressurization system actuating signals, among auto-depressurization system actuating signals respectively belonging to three safety segments, or by a relief valve functions actuating signal, and closes the relief safety valve without supplying the driving gas thereto when none of the auto-depressurization system actuating signals and the relief valve functions actuating signal is generated. | 10-13-2011 |
20110299649 | ACOUSTIC LOAD MITIGATOR - A system for reducing an acoustic load of a fluid flow includes a first pipe to carry the fluid flow; a standpipe connected to the first pipe at an opening in the first pipe; and a standpipe flow tripper provided in the standpipe. The flow tripper includes an edge extending through the opening into the flow on a downstream side of the opening. A method of reducing an acoustic load of a standing wave in a standpipe connected to a first pipe configured to carry a flow includes disrupting the flow in the first pipe at a downstream side of an opening in the first pipe to which the standpipe is connected. | 12-08-2011 |
20110311014 | SYSTEM AND METHOD FOR CLOSED RELIEF OF A POLYOLEFIN LOOP REACTOR SYSTEM - A reactor system including an enclosed pressure relief system and/or a control system. The enclosed pressure relief system including a slurry separation system communicatively coupled with a pressure relief valve coupled to a loop reactor such that activation of the pressure relief valve results in discharge of a slurry from the loop reactor to the slurry separation system, wherein the slurry separation system is capable of separating solid and liquid components from gas components of the slurry and transmitting the gas components to a flare via a flare header. | 12-22-2011 |
20120155597 | NUCLEAR REACTOR AUTOMATIC DEPRESSURIZATION SYSTEM - A blocking device for preventing the actuation of an automatic depressurization system in a pressurized nuclear reactor system due to spurious signals resulting from a software failure. The blocking signal is removed when the coolant level within the core makeup tanks drop below a predetermined level. | 06-21-2012 |
20130077730 | Nuclear Power Plant - A nuclear power plant has a reactor pressure vessel, a primary containment vessel and a passive pressure suppression pool cooling system. The reactor pressure vessel is installed in the primary containment vessel. A pressure suppression pool filled with cooling water is formed in a lower portion of the primary containment vessel. The passive pressure suppression pool cooling system is provided with a steam condensing pool in which cooling water is filled, disposed outside the primary containment vessel, a steam condenser disposed in the steam condensing pool, a steam supply pipe connecting the reactor pressure vessel to the steam condenser, and a condensed water discharge pipe connected to the steam condenser for discharging condensed water generated in the steam condenser. Another end portion of the condensed water discharge pipe is disposed in the pressure suppression pool. | 03-28-2013 |
20130094623 | SAFETY/RELIEF VALVE DISCHARGE LINE HEADER IN A BOILING WATER REACTOR - To install a safety/relief valve(S/RV) discharge line header in addition, on a current S/RV discharge lines in a BWR, can provide a steam release path to many quencher devices. Then the steam blowdown during the S/RV discharge can be more even or symmetrically distributed into the suppression pool in a BWR. The S/RV discharge line header is installed at the middle sections of either all or a portion of S/RV discharge pipes. A current S/RV discharge pipe is installed with a S/RV and a vacuum breaker and its discharge tailpipe is welded with the end of a quencher device inlet. The proposed discharge lines include components such as reactor safety/relief valves, discharge pipes, vacuum breakers, a discharge line header, quencher devices, etc. | 04-18-2013 |
20130129034 | HYDROGEN VENTING DEVICE FOR COOLING WATER OF NUCLEAR REACTORS - A hydrogen venting device for separating and releasing hydrogen gas from a gaseous mixture comprising hydrogen and steam generated in nuclear power plants is disclosed. The method includes providing a chamber at a high point in the cooling water circuit, allowing the collection chamber to cool below a gaseous mixture inlet temperature thereby allowing the hydrogen to collect at a first elevation within the collection chamber and condensate of the steam to collect at a second elevation within the collection chamber below the first elevation, and releasing substantially only hydrogen from the collection chamber at or proximal the first elevation when a threshold temperature, less than the first temperature, is reached. | 05-23-2013 |
20130182812 | METHOD FOR DEPRESSURIZING A NUCLEAR POWER PLANT, DEPRESSURIZATION SYSTEM FOR A NUCLEAR POWER PLANT, AND ASSOCIATED NUCLEAR POWER PLANT - A method and a device depressurize a nuclear power plant. A depressurization flow is conducted out of a containment shell into the atmosphere via a depressurization line having a filter system. The filter system contains a filter chamber having an inlet, an outlet, and a sorbent filter. The depressurization flow is first conducted in a high-pressure section, then is depressurized by expansion at a throttle device, then conducted through the filter chamber having the sorbent filter, and finally blown out. To enable an effective retention of activity carriers contained in the depressurization flow, including organic compounds containing iodine, the depressurization flow depressurized by the throttle device is conducted through a superheating section before the depressurization flow enters the filter chamber, in which superheating section the depressurization flow is heated from the not yet depressurized depressurization flow to a temperature that is at least 10 ° C. above the dew point temperature. | 07-18-2013 |
20130259183 | PASSIVE COOLING AND DEPRESSURIZATION SYSTEM AND PRESSURIZED WATER NUCLEAR POWER PLANT - A passive cooling and depressurization system for a pressurized water nuclear plant is provided with a cooling water pool, a steam supply piping, a heat exchanger, a steam supply valve, a coolant return pipe and an outlet valve. The steam supply piping extends from the gas phase of the pressurizer. The heat exchanger exchanges heat between water stored in the cooling water pool and steam flowing through the steam supply piping. The steam supply valve is equipped on the steam supply piping. The coolant return pipe extends from the heat exchanger to a liquid phase of the reactor pressure boundary. The outlet valve is equipped on the coolant return pipe. | 10-03-2013 |
20130287161 | HEAT REMOVAL SYSTEM AND METHOD FOR A NUCLEAR REACTOR - In one embodiment, the heat removal system includes a storage tank configured to store a heat transfer medium, a transfer system configured to selectively transfer the heat transfer medium from the storage tank to the nuclear reactor, and a delivery system operationally connected to the transfer system. The delivery system is configured to deliver the heat transfer medium to a suppression pool room of the nuclear reactor. The suppression pool room houses a suppression pool. | 10-31-2013 |
20140003568 | NUCLEAR TECHNOLOGY PLANT AND METHOD FOR THE PRESSURE RELIEF OF A NUCLEAR TECHNOLOGY PLANT | 01-02-2014 |
20140185729 | CONTAINMENT VENT SYSTEM WITH PASSIVE MODE FOR BOILING WATER REACTORS (BWRS), AND METHOD THEREOF - A system and a method for a passive containment vent system for a Boiling Water Reactor (BWR). The system is capable of venting and scrubbing a gaseous discharge from the primary containment of the BWR over a prolonged period of time leading up to or following a serious plant accident, without the need for monitoring by on-site plant personnel. External electrical power is not required (following initial activation of the system) in order to operate the containment vent system. The system may protect the integrity of primary containment during and following the serious plant accident. | 07-03-2014 |
20140233688 | INTERNAL DRY CONTAINMENT VESSEL FOR A NUCLEAR REACTOR - A power module assembly includes a reactor core immersed in a coolant and a reactor vessel housing the coolant and the reactor core. An internal dry containment vessel submerged in liquid substantially surrounds the reactor vessel in a gaseous environment. During an over-pressurization event the reactor vessel is configured to release the coolant into the containment vessel and remove a decay heat of the reactor core through condensation of the coolant on an inner surface of the containment vessel. | 08-21-2014 |
20140241484 | PRESSURIZED WATER REACTOR DEPRESSURIZATION SYSTEM - A passive cooling system of a pressurized water reactor that relies on a depressurization system to reduce the pressure in the reactor vessel in the event of a loss of coolant accident and vent the steam generated by the decay heat of the reactor core in a post loss of coolant accident stage. The depressurization results in a low pressure difference between the reactor vessel and the containment and enables gravity driven cooling system injection into the reactor vessel. The depressurization system includes a flow restrictor within an orifice in the reactor vessel wall that connects to a vent pipe which forms a flow path between the interior of the reactor vessel and the containment atmosphere when a valve within the vent pipe is in an open position. Preferably, the flow restrictor is a venturi that has a gradual contraction and a gradual expansion in the flow path area. | 08-28-2014 |
20140254738 | ALTERNATIVE AIR SUPPLY AND EXHAUST PORT FOR AIR-OPERATED VALVE - The present invention is directed to remote operation of an operation valve such as an air operated valve even at the time of power loss. A gas supply apparatus of the present invention includes: an operation valve mounted in some midpoint of a piping for passing at least gas in a plant and operating a valve body by the gas flowing in the piping; an solenoid valve mounted in some midpoint of the piping and allowing/stopping flow of the gas to the operation valve; and a gas supply source for supplying gas to the solenoid valve. A switching valve for switching between exhaust from the solenoid valve and gas supply to the solenoid valve is mounted in an exhaust line of the solenoid valve and, at the time of power loss, the switching valve is switched to connection to the gas supply source for supplying gas to the solenoid valve. | 09-11-2014 |
20140301524 | UNDERWATER ELECTRICITY PRODUCTION MODULE - The underwater electricity production module according to the invention includes means in the form of an elongated cylindrical box ( | 10-09-2014 |
20150117586 | ALTERNATIVE SAFETY FUNCTION SYSTEM FOR NUCLEAR REACTOR - In conjunction with a pressurized water reactor (PWR) and a pressurizer configured to control pressure in the reactor pressure vessel, a decay heat removal system comprises a pressurized passive condenser, a turbine-driven pump connected to suction water from at least one water source into the reactor pressure vessel; and steam piping configured to deliver steam from the pressurizer to the turbine to operate the pump and to discharge the delivered steam into the pressurized passive condenser. The pump and turbine may be mounted on a common shaft via which the turbine drives the pump. The at least one water source may include a refueling water storage tank (RWST) and/or the pressurized passive condenser. A pressurizer power operated relief valve may control discharge of a portion of the delivered steam bypassing the turbine into the pressurized passive condenser to control pressure in the pressurizer. | 04-30-2015 |
20160019986 | VENTING SYSTEM FOR THE CONTAINMENT OF A NUCLEAR PLANT AND METHOD OF OPERATING THE VENTING SYSTEM - A pressure-relief system for a containment of a nuclear plant has a pressure-relief line which is led through the containment and is closed by a shutoff device, and a wet scrubber being switched into the pressure-relief line lying outside the containment, for the pressure-relief gas flow developing in the pressure-relief operating mode with the shutoff device being open. An effective, reliable operation of the wet scrubber with a compact structural configuration is made possible. This is achieved by a reservoir, arranged in the containment or fluidically connected therewith such that an overpressure, as compared with the outer environment, present in the containment, is transferred to the reservoir, and a feeding line which is led from the reservoir to the wet scrubber and can be closed by a shutoff device, for feeding a liquid active as a scrubbing liquid from the reservoir to the wet scrubber. | 01-21-2016 |
20160019987 | PRESSURE RELIEF SYSTEM FOR THE CONTAINMENT OF A NUCLEAR POWER FACILITY, NUCLEAR POWER FACILITY AND METHOD OF OPERATING A PRESSURE RELIEF SYSTEM - A pressure-relief system for the containment of a nuclear power facility allows reliable operation of a wet scrubber for the pressure relief flow with a simultaneously compact structural design. The pressure relief system has a pressure relief line guided through the containment and can be closed by a shut-off valve, a wet scrubber arranged in a portion of the pressure relief line located inside the containment, for the pressure relief flow which forms in the pressure-relief mode when the shut-off valve is open, a reservoir arranged inside the containment and is fluidically connected to the remaining inner space of the containment such that any overpressure, with respect to the surroundings outside the containment, prevailing in the containment is transferred at least in part to the reservoir, and a supply line leading from the reservoir to the wet scrubber for supplying the wet scrubber with fluid from the reservoir. | 01-21-2016 |
20160042816 | REACTOR AND OPERATING METHOD FOR THE REACTOR - Provided are a reactor and an operating method for the reactor, and more particularly, a reactor which may passively cool excessively generated heat without an operation of an operator at the time of abnormality of the reactor, completely passively perform the cooling operation for safety procedures by a structure of the reactor and a change in environmental conditions such as a pressure, etc., without a separate control command, and have a simpler structure than the existing reactor safety system, and an operating method for the reactor. | 02-11-2016 |
20160042817 | Emergency Cooling System for Improved Reliability for Light Water Reactors - A passive cooling system using only reactive processes without moving parts to power its startup and operation is designed to maximize the reliability of decay heat removal for the current generation of nuclear power plants and for advanced passive reactors. In order to reduce the number of failure modes processes independent from any external power source—such as the electrical power grid or Diesel generators—are used exclusively for all safety functions. | 02-11-2016 |
20160189809 | NUCLEAR POWER PLANT - The invention relates to a nuclear power plant including a containment vessel including a reactor pressure vessel for receiving fissionable nuclear fuel, an aerosol filter stage a pressure relief conduit through which a gas volume flow which is filtered in the aerosol filter stage is releasable to ambient through a pass through opening in the containment vessel, and an iodine filter stage through which the gas volume flow that is filtered in the aerosol filter stage is filterable before being released to the ambient, wherein the iodine filter stage is arranged within the containment vessel, characterized in that the aerosol filter stage and the iodine filter stage are connected with one another so that transferring the gas volume flow from the aerosol filter stage to the iodine filter stage is performed essentially at an identical pressure level. | 06-30-2016 |
376284000 | By fusible means (e.g., ice) | 1 |
20120121057 | NUCLEAR ENGINEERING PLANT AND CLOSURE APPARATUS FOR ITS CONTAINMENT - A nuclear engineering plant has a containment, whose interior chamber is subdivided by a wall into a systems chamber and an operating chamber which is accessible during normal operation. The containment ensures a particularly high operational reliability, in particular also in incident situations, in which hydrogen is released in the systems chamber. For this purpose, a number of overflow openings are provided in the partition wall, the respective overflow opening is closed by a closure element of a closure apparatus which opens automatically when a trigger condition associated with the respective overflow opening is reached. Closure apparatuses are provided which open both as a function of pressure and independently of pressure. The closure apparatus furthermore has a closure element containing a bursting film or a bursting diaphragm. The closure apparatus is configured such that it frees the overflow opening automatically when a predetermined environment-side trigger temperature is reached. | 05-17-2012 |