Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


By movement of control element or by release of neutron absorbing material

Subclass of:

376 - Induced nuclear reactions: processes, systems, and elements

376207000 - WITH CONTROL OF REACTOR (E.G., CONTROL OF COOLANT FLOW)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
376219000 By movement of control element or by release of neutron absorbing material 83
20090190710FAST REACTOR HAVING REACTIVITY CONTROL REFLECTOR - A fast reactor having a reactivity control reflector has a reactor vessel in which a coolant is accommodated, a reactor core which is installed in the reactor vessel and dipped with the coolant, and a reflector installed outside of the reactor core so as to be movable in a vertical direction for controlling the reactivity of the reactor core. The reflector of the fast reactor has a lower neutron reflecting portion having a neutron reflection capability higher than that of the coolant and an upper cavity portion located above the neutron reflecting portion and having a neutron reflection capability lower than that of the coolant. The cavity portion is composed of a plurality of cylindrical hermetically-sealed vessels.07-30-2009
20100119027Self-Regulating Nuclear Power Module - The present invention includes a nuclear fission reactor apparatus comprising a core open to an atmosphere containing a hydrogen or a hydrogen isotope material, said core consisting essentially of a powdered fissile metal hydride material that remains entirely within said core; a plurality of trays outside said core that store a non-fissile material thereon wherein said non-fissile material absorbs and desorbs said hydrogen isotope material based on said core's temperature; a means for heating and cooling said plurality of trays; and a means for extracting energy produced in said core.05-13-2010
20110150161Method of stabilization and controlling of the nuclear ammunitions physical and mechanical parameters by means of usage "absorbing shutter" changing own aggregate state during of the initiation process - It is presented, the method of stabilization and controlling of nuclear devices' parameters by means of usage of “absorbing shutter”. This method is based on usage of neutron's absorbing substance as “absorbing shutter” that split and shield active parts of nuclear device and may carry out the controlled changing own aggregate state for starting of initiation's process. When its aggregate state is changed, “absorbing shutter” can vary mechanical and physical parameters of a nuclear device's active main body.06-23-2011
20120099691SUPPORT STRUCTURE FOR A CONTROL ROD ASSEMBLY OF A NUCLEAR REACTOR - A control rod guide frame comprises a self supporting stack of two or more columnar elements defining a central passage. The columnar elements may include mating features that mate at abutments between adjacent columnar elements of the stack. The control rod guide frame is suitably used in conjunction with a control rod drive mechanism (CRDM) operatively connected with at least one control rod, and a nuclear reactor core, in which the CRDM moves the at least one control rod into and out of the nuclear reactor core under guidance of the control rod guide frame. In another embodiment, a control rod guide frame comprises a stack of two or more columnar elements defining a central passage having a constant cross-section as a function of position along the central passage. In another embodiment, a control rod guide frame comprises an extruded columnar element providing continuous control rod guidance.04-26-2012
20120148005REACTOR SHUTDOWN SYSTEM - A rector shutdown system includes a reactor, a control-rod drive unit that can drive a control rod in pulling and inserting directions with respect to a fuel assembly, a power source that can supply power to the control-rod drive unit, and a power converter that is provided between the control-rod drive unit and the power source, in which when power supply is cut off, the control-rod drive unit inserts the control rod into the fuel assembly to stop nuclear reaction in the reactor, and the rector shutdown system includes a reactor trip breaker provided between the power converter and the control-rod drive unit, a safety protection-system device that controls the reactor trip breaker to cut off power supply to the control-rod drive unit, and a CCF device that controls the power converter to cut off power supply to the control-rod drive unit.06-14-2012
20120263266METHOD AND DEVICE FOR DETECTING THE DROP OF A CLUSTER IN A NUCLEAR REACTOR - The present invention relates to a method for detecting the drop of a cluster in a pressurized-water nuclear reactor, comprising the steps of: detecting a negative time derivative of the neutron flux, and comparing the absolute value of said time derivative to a first threshold value (S10-18-2012
20130051509Initial Core of Nuclear Reactor and Method of Loading Fuel Assemblies of Nuclear Reactor - In an initial core of a nuclear reactor, a plurality of water regions having a square cross section for occupying a cross sectional area capable of disposing four fuel assemblies are formed. No fuel assemblies are loaded in these water regions. In the initial core, each fuel assembly is supported by fuel supports. A pressure loss of a first orifice installed in a cooling water supply passage formed in first fuel supports disposed in a central portion of the initial core is larger than that of a second orifice installed in a cooling water supply passage formed in second fuel supports disposed in a peripheral portion surrounding the central portion. Each water region is formed right above a part of the first fuel supports disposed in the central portion. The control rod operation in the nuclear reactor can be simplified by action of cooling water in the water regions.02-28-2013
20130136223METHOD FOR TREATING NEUTRONS GENERATED FROM SPENT NUCLEAR FUEL - A method for treating neutrons generated from spent nuclear fuel is provided, which includes a step of injecting neutron absorption material into the spent nuclear fuel storage water in which cooling function is lost. Accordingly, as the neutron absorption material in the form of particles is injected into a spent nuclear storage pool missing cooling function and deposited on the surface of the spent nuclear fuel, the possibility reaching nuclear criticality is reduced since the neutrons generated from spent nuclear fuel are absorbed. Also, immediate neutron absorbing power is provided upon refilling the pool water into the spent nuclear fuel storage pool in which pool water is depleted.05-30-2013
20130177120APPARATUS AND METHODS FOR CONTROLLING REACTIVITY IN A NUCLEAR FISSION REACTOR, NUCLEAR FISSION REACTORS, AND METHODS OF FABRICATING A REACTIVITY CONTROL APPARATUS - Illustrative apparatuses, assemblies, and methods for controlling reactivity in a nuclear fission reactor are disclosed, illustrative nuclear fission reactors are disclosed, and illustrative methods for fabricating a reactivity control apparatus are disclosed.07-11-2013
20130223579CONTROL ROD DRIVE MECHANISM ("CRDM") ASSEMBLY FOR A NUCLEAR REACTOR - The present invention relates to a control rod drive mechanism assembly for a nuclear reactor having a nuclear reactor vessel, a nuclear reactor core, a reactor vessel head, a latch housing nozzle, a latch housing, a rod travel housing, a latch assembly, a drive rod assembly and a rod control cluster assembly. The latch housing is integrated with the latch housing nozzle, the rod travel housing is welded to the latch housing, and the latch assembly is connected to the rod travel housing. The latch assembly includes the drive rod assembly and the rod control cluster assembly which is attached to the drive rod assembly.08-29-2013
20130287158SUSPENDED UPPER INTERNALS WITH TIE ROD COUPLINGS FOR COMPACT NUCLEAR REACTOR - A suspended basket includes a plurality of plates, tie rods, and adjustable length threaded tie rod couplings connecting threaded ends of the tie rods with threaded features of the plates. Control rod drive mechanisms (CRDMs) with CRDM motors are mounted in the suspended basket, which is suspended in a pressure vessel above a nuclear reactor core to control insertion of control rods into the reactor core. In one embodiment each adjustable length threaded tie rod coupling is a turnbuckle coupling that includes a sleeve threaded onto the threaded end of the tie rod and onto the threaded feature of the plate, and the sleeve is rotatable to adjust the position of the tie rod respective to the plate. Guide frames may be mounted in the suspended basket between the CRDMs and the nuclear reactor core to guide portions of the control rods withdrawn from the nuclear reactor core.10-31-2013
20130336438SECURING DEVICE FOR A CONTROL ROD IN A NUCLEAR PLANT - A securing device for a control rod in a nuclear plant contains a control rod drive and a drive housing, which encloses the control rod drive and which is configured to be fed through a reactor pressure wall. The aim of the securing device is to prevent, in the most reliable manner possible, the control rod from being extended in an uncontrolled manner. Furthermore, the securing device should be as inexpensive as possible and should pose the slightest obstacle possible to installation work. For this purpose, the drive housing has at least one coupling element for forming a force-locked and/or form-fit connection of the drive housing to the reactor pressure wall.12-19-2013
20140140463SMALL MODULAR REACTOR FUEL ASSEMBLY - A pressurized water reactor (PWR) comprises a pressure vessel containing primary coolant water. A nuclear reactor core is disposed in the pressure vessel and includes a plurality of fuel assemblies. Each fuel assembly includes a plurality of fuel rods containing a fissile material. A control system includes a plurality of control rod assemblies (CRA's). Each CRA is guided by a corresponding CRA guide structure. A support element is disposed above the CRA guide structures and supports the CRA guide structures. The pressure vessel may be cylindrical, and the support element may comprise a support plate having a circular periphery supported by the cylindrical pressure vessel. The CRA guide structures suitably hang downward from the support plate. The lower end of each CRA guide structure may include alignment features that engage corresponding alignment features of the upper end of the corresponding fuel assembly.05-22-2014
20140270036CRDM WITH SEPARATE SCRAM LATCH ENGAGMENT AND LOCKING - A control rod drive mechanism (CRDM) configured to latch onto the lifting rod of a control rod assembly and including separate latch engagement and latch holding mechanisms. A CRDM configured to latch onto the lifting rod of a control rod assembly and including a four-bar linkage closing the latch, wherein the four-bar linkage biases the latch closed under force of gravity.09-18-2014
20140334586CRDM DESIGNS WITH SEPARATE SCRAM LATCH ENGAGMENT AND LOCKING - A control rod drive mechanism (CRDM) includes a lifting rod supporting a control rod and a holding mechanism comprising an electromagnetic circuit with magnetic poles drawn together when the electromagnetic circuit is energized to hold the lifting rod. The hold is released upon de-energizing the electromagnetic circuit. A translation mechanism linearly translates the lifting rod held by the holding mechanism. The holding mechanism may include a non-magnetic spacer between the magnetic poles that defines a gap between the drawn together magnetic poles. The translation mechanism may include latches configured to engage an upper end of the lifting rod, and the holding mechanism draws the magnetic poles together to hold the latches engaged with the upper end of the lifting rod. A four-bar cam assembly may be used to cam the latches closed in response to a vertical actuation force applied to the cam bars.11-13-2014
20150139380CONTROL ROD DRIVE MECHANISM BUILT IN NUCLEAR REACTOR - Disclosed is a control rod drive mechanism. More specifically, the control rod drive mechanism includes a guide member 05-21-2015
20150348653MAGNETIC JACK TYPE IN-VESSEL CONTROL ELEMENT DRIVE MECHANISM - A magnetic jack type in-vessel control element drive mechanism includes: an upper coil assembly which includes a first sleeve configured to coaxially wrap a control element drive shaft, a first coil, and a first coil housing which is externally coupled to the first sleeve; a lower coil assembly which includes a second sleeve configured to coaxially wrap the control element drive shaft, a second coil, and a second coil housing which is externally coupled to the second sleeve, wherein the lower coil assembly is located under the upper coil assembly, a connecting member which connects the upper coil assembly and the lower coil assembly; a support tube which extends downward from the lower coil assembly; a motor assembly which is located between the control element drive shaft, and the first and second sleeves; and an anti-separation cap which prevents separation of the motor assembly.12-03-2015
20160042815ACTUATING A NUCLEAR REACTOR SAFETY DEVICE - A nuclear reactor trip apparatus includes a remote circuit breaker trip device operatively connected to a reactor trip breaker to release a control rod into a nuclear reactor core, an active power source, a passive power source, and a local circuit breaker trip device operatively connected to the reactor trip breaker including a sensor to trigger the local circuit breaker trip device upon sensing a predefined condition. The active power source is electrically coupled to energize the remote circuit breaker trip device under normal operating conditions. The passive power source is electrically coupled to energize the remote circuit breaker trip device based on a loss of the active power source.02-11-2016
20160254065CONTROL ROD/CONTROL ROD DRIVE MECHANISM COUPLINGS09-01-2016
376220000 Wherein the control element is a reflector or moderator material 23
20090010374REACTIVITY CONTROL ROD FOR CORE, CORE OF NUCLEAR REACTOR, NUCLEAR REACTOR AND NUCLEAR POWER PLANT - In a nuclear reactor in which a primary coolant is contained, the primary coolant moves upwardly from the core by an operation thereof. An annular steam generator is arranged in an upper side of the core into which the upwardly moving primary coolant flows and transfers heat in the primary coolant into water therein to generate a steam. A passage structure defines a coolant passage for the primary coolant to an outside of the core. The heat-transferred primary coolant in the annular steam generator flows downwardly in the coolant passage so as to flow into the core, thereby moving upwardly. A reactor vessel is arranged to surround the coolant passage so as to contain the core, the annular steam generator and the passage means therein.01-08-2009
20090175403REACTIVITY CONTROLLING APPARATUS AND FAST REACTOR - A fast reactor has a reactivity control assembly including a reactor shutdown rod of a backup reactor shutdown system and neutron absorbers to suppress the initial surplus reactivity, a reactor shutdown rod drive mechanism for releasing the reactor shutdown rod and units of neutron absorber drive mechanism capable of moving the respective neutron absorbers up and down. The reactor shutdown rod and the neutron absorbers are arranged in a wrapper tube. The reactor shutdown rod drive mechanism causes an inner extension tube to fall and release the reactor shutdown rod by means of a gripper section at the lowermost end of an outer extension tube by turning off the power supply to a holding magnet at the time of scram. Each of the units of neutron absorber drive mechanism has a dual tube type drive shaft including an outer extension shaft and an inner extension shaft. When grasping the neutron absorbers, the outer extension shaft is pulled up to allow both of the extension shafts to be inserted. After the outer extension tube gets to the handling head section of the neutron absorber, the outer extension shaft is pushed down to grasp the neutron absorber externally by means of the latch fingers of the gripper section thereof so that the neutron absorber can be moved up and down.07-09-2009
20100239060REFLECTOR-CONTROLLED FAST REACTOR - In a reflector-controlled fast reactor in which neutron reflectors disposed outside a rector core, immersed in a primary coolant, are moved vertically to thereby adjust leakage of neutrons from the reactor core and control reactivity of the rector core, a region, which is located around the reactor core and in which the neutron reflectors move, is surrounded by a material inferior to the primary coolant in terms of neutron reflection capability.09-23-2010
20100254501Traveling wave nuclear fission reactor, fuel assembly, and method of controlling burnup therein - A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.10-07-2010
20100254502Traveling wave nuclear fission reactor, fuel assembly, and method of controlling burnup therein - A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.10-07-2010
20110064180METHOD OF HANDLING CONTROL ROD AND CONTROL ROD HANDLING APPARATUS - A control rod grasped by a hook of a grasping equipment is moved down and is positioned at an upper end of a hollow piston of a control rod drive mechanism (CRD) in a state that the control rod is fully withdrawn from a core. Furthermore, the hook is inserted into an opening of a handle of the control rod. The hook is lifted up so as to make contact with the handle. The control rod grasped by the grasping equipment is rotated by a grasping equipment rotation apparatus. A state that gaps formed between joint convexities in a coupling socket of the control rod are positioned right above coupling spud convexities of the hollow piston occurs. At this time, the control rod falls by its own weight and the coupling spud convexities pass through the gaps. A grasping equipment movement apparatus suppresses the falling speed of the control rod. The control rod is rotated at 90° and the control rod and CRD are connected. The time required for connecting the control rod and the hollow piston of the control rod drive mechanism can be shortened even further.03-17-2011
20110103535FAST REACTOR HAVING REFLECTOR CONTROL SYSTEM AND NEUTRON REFLECTOR THEREOF - A fast reactor having a reflector control system is provided which decreases the change in reactivity of the reactor core with time without performing control of a reflector lifting speed and that of a water flow rate. The above fast reactor has a liquid metal coolant, a reactor core immersed therein, and a neutron reflector which is provided outside the reactor core and which is moved in a vertical direction for adjusting leakage of neutrons therefrom for controlling the reactivity of the reactor core. The neutron reflector described above is gradually moved in an upward direction with the change in reactivity caused by fuel burn-up, and at least a part of a lower region of the neutron reflector is a high reflection region having a high neutron reflection ability as compared to that of the other region. The high reflection region is located from the bottom to a place between one fourth and one half of the height of the neutron reflector from the bottom end thereof.05-05-2011
20110110479Systems and methods for controlling reactivity in a nuclear fission reactor - Illustrative embodiments provide a reactivity control assembly for a nuclear fission reactor, a reactivity control system for a nuclear fission reactor having a fast neutron spectrum, a nuclear fission traveling wave reactor having a fast neutron spectrum, a method of controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, methods of operating a nuclear fission traveling wave reactor having a fast neutron spectrum, a system for controlling reactivity in a nuclear fission reactor having a fast neutron spectrum, a method of determining an application of a controllably movable rod, a system for determining an application of a controllably movable rod, and a computer program product for determining an application of a controllably movable rod.05-12-2011
20110164714Standing wave nuclear fission reactor and methods - Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.07-07-2011
20110194664REACTIVITY CONTROL ROD FOR CORE, CORE OF NUCLEAR REACTOR, NUCLEAR REACTOR AND NUCLEAR POWER PLANT - In a nuclear reactor in which a primary coolant is contained, the primary coolant moves upwardly from the core by an operation thereof. An annular steam generator is arranged in an upper side of the core into which the upwardly moving primary coolant flows and transfers heat in the primary coolant into water therein to generate a steam. A passage structure defines a coolant passage for the primary coolant to an outside of the core. The heat-transferred primary coolant in the annular steam generator flows downwardly in the coolant passage so as to flow into the core, thereby moving upwardly. A reactor vessel is arranged to surround the coolant passage so as to contain the core, the annular steam generator and the passage means therein.08-11-2011
20120033776NUCLEAR REACTOR - A nuclear reactor comprises a fuel rod into which nuclear fuel is enclosed and a control rod that controls nuclear reactions of the nuclear fuel. A concentration of a neutron absorber in a primary coolant at a full power operation of the nuclear reactor, when an operation of the nuclear reactor is started, is set equal to or lower than a value that is obtained by adding a predetermined value to a value obtained by subtracting a concentration of the neutron absorber that is required for maintaining a cold shutdown state of the nuclear reactor when an operation of the nuclear reactor is started from a concentration of the neutron absorber that is required for maintaining cold shutdown of the nuclear reactor when an operation of the nuclear reactor is completed.02-09-2012
20120076254COMPACT NUCLEAR REACTOR - A pressurized water nuclear reactor (PWR) includes a once through steam generator (OTSG) disposed in a generally cylindrical pressure vessel and a divider plate spaced apart from the open end of a central riser. A sealing portion of the pressure vessel and the divider plate define an integral pressurizer volume that is separated by the divider plate from the remaining interior volume of the pressure vessel. An internal control rod drive mechanism (CRDM) has all mechanical and electromagnetomotive components including at least a motor and a lead screw disposed inside the pressure vessel. Optionally CRDM units are staggered at two or more different levels such that no two neighboring CRDM units are at the same level. Internal primary coolant pumps have all mechanical and electromagnetomotive components including at least a motor and at least one impeller disposed inside the pressure vessel. Optionally, the pumps and/or CRDM are arranged below the OTSG.03-29-2012
20120183113REACTIVITY CONTROL ROD FOR CORE, CORE OF NUCLEAR REACTOR, NUCLEAR REACTOR AND NUCLEAR POWER PLANT - In a nuclear reactor in which a primary coolant is contained, the primary coolant moves upwardly from the core by an operation thereof. An annular steam generator is arranged in an upper side of the core into which the upwardly moving primary coolant flows and transfers heat in the primary coolant into water therein to generate a steam. A passage structure defines a coolant passage for the primary coolant to an outside of the core. The heat-transferred primary coolant in the annular steam generator flows downwardly in the coolant passage so as to flow into the core, thereby moving upwardly. A reactor vessel is arranged to surround the coolant passage so as to contain the core, the annular steam generator and the passage means therein.07-19-2012
20120288048NUCLEAR REACTOR CONTROL METHOD AND APPARATUS - A method for controlling a nuclear reactor is disclosed. The method includes providing a moderator zone in a core of the nuclear reactor, providing a fuel in the moderator zone, and providing one or more housings, each having a cavity, adjacent to the fuel. The method also includes allowing movement of a moderator between the moderator zone and the cavity of the one or more housings at a lower portion of the one or more housings. The method further includes confining moderator in the cavity of the one or more housings at an upper portion of the one or more housings.11-15-2012
20130051510CONTROL ROD FOR A NUCLEAR POWER LIGHT WATER REACTOR - The invention concerns a control rod configured for a nuclear power light water reactor of the BWR or PWR kind. The control rod contains absorber material. At least 50%, with respect to weight, of the absorber material that is in the control rod is in the form of hafnium hydride. The invention also concerns the use of such a control rod during operation in a nuclear power light water reactor of the BWR or PWR kind.02-28-2013
20130294563FAST REACTOR AND FAST REACTOR REFLECTOR ASSEMBLY - A fast reactor performing reflector control to control reactivity of the core by moving a neutron reflector in the vertical direction, including: a core fuel assembly; a neutron absorption assembly in the middle of the core fuel assembly; a reflector assembly at the circumference of the core fuel assembly; plural inner neutron shields at the circumference of the reflector assembly; a cylindrical core barrel surrounding entirety of the plural neutron shields; and a drive mechanism controlling the reflector. The reflector assembly includes: a reflector element that reflects neutrons from the core fuel assembly towards the core; a cavity section, arranged thereabove, that permits leakage of neutrons to outside the core; a linkage mechanism that links the reflector element and the cavity section; a guide tube that defines a space for removal/insertion of these; and a connecting section that connects the drive mechanism and the cavity section.11-07-2013
20150357056REACTOR UNIT CONTROL SYSTEM FOR SPACE AND TERRESTRIAL APPLICATIONS - A reactor energy system comprises a reactor core and a control system. The control system includes one or more rotating reflectors or control drums formed of a primary reflector material and a lesser reflector disposed on a selected surface. The reflected neutron flux is regulated by rotating the reflector with respect to the reactor core, increasing the reflected neutron flux when the primary reflector is disposed proximate or toward the reactor core, and decreasing the reflected neutron flux when the secondary neutron reflector is disposed proximate or toward the reactor core.12-10-2015
20160049210MODULAR TRANSPORTABLE NUCLEAR GENERATOR - The present invention relates generally to electric power and process heat generation using a modular, compact, transportable, hardened nuclear generator rapidly deployable and retrievable, comprising power conversion and electric generation equipment fully integrated within a single pressure vessel housing a nuclear core. The resulting transportable nuclear generator does not require costly site-preparation, and can be transported fully operational. The transportable nuclear generator requires an emergency evacuation area substantially reduced with respect to other nuclear generators as it may be configured for operation with a melt-proof conductive ceramic core which allows decay heat removal even under total loss of coolant scenarios.02-18-2016
20160155521NEUTRON-ABSORBING GLASS AND NEUTRON-ABSORBING MATERIAL USING THE SAME, AND MANAGEMENT METHOD OF CORIUM, UNLOADING METHOD OF CORIUM, AND SHUTDOWN METHOD OF NUCLEAR REACTOR TO WHICH THE SAME IS APPLIED06-02-2016
20160196883Traveling Wave Nuclear Fission Reactor, Fuel Assembly, and Method of Controlling Burnup Therein07-07-2016
376221000 Variable fluent reflector/moderator level or density 3
20090080586REACTIVITY CONTROL ROD FOR CORE, CORE OF NUCLEAR REACTOR, NUCLEAR REACTOR AND NUCLEAR POWER PLANT - In a nuclear reactor in which a primary coolant is contained, the primary coolant moves upwardly from the core by an operation thereof. An annular steam generator is arranged in an upper side of the core into which the upwardly moving primary coolant flows and transfers heat in the primary coolant into water therein to generate a steam. A passage structure defines a coolant passage for the primary coolant to an outside of the core. The heat-transferred primary coolant in the annular steam generator flows downwardly in the coolant passage so as to flow into the core, thereby moving upwardly. A reactor vessel is arranged to surround the coolant passage so as to contain the core, the annular steam generator and the passage means therein.03-26-2009
20100067641REACTIVITY CONTROL ROD FOR CORE, CORE OF NUCLEAR REACTOR, NUCLEAR REACTOR AND NUCLEAR POWER PLANT - In a nuclear reactor in which a primary coolant is contained, the primary coolant moves upwardly from the core by an operation thereof. An annular steam generator is arranged in an upper side of the core into which the upwardly moving primary coolant flows and transfers heat in the primary coolant into water therein to generate a steam. A passage structure defines a coolant passage for the primary coolant to an outside of the core. The heat-transferred primary coolant in the annular steam generator flows downwardly in the coolant passage so as to flow into the core, thereby moving upwardly. A reactor vessel is arranged to surround the coolant passage so as to contain the core, the annular steam generator and the passage means therein.03-18-2010
20130301773NUCLEAR REACTOR CONTROL METHOD AND APPARATUS - A method for controlling a nuclear reactor is disclosed. The method includes providing a moderator zone in a core of the nuclear reactor, providing a fuel in the moderator zone, and providing one or more housings, each having a cavity, adjacent to the fuel. The method also includes allowing movement of a moderator between the moderator zone and the cavity of the one or more housings at a lower portion of the one or more housings. The method further includes confining moderator in the cavity of the one or more housings at an upper portion of the one or more housings.11-14-2013
376223000 Rotatable control elements 1
20130329846ROTARY ACTUATOR - A rotary actuator has a driven element including a plurality of recesses that are spaced in a circumferential arrangement around an axis of rotation of the driven element by a spacing angle, and first, second and third latch elements that are each movable between a retracted position, and an extended position in which it is engageable with a corresponding one of the recesses. Sequential movement of the first, second and third latch elements between retracted and extended positions causes rotation of the driven element.12-12-2013
376224000 Finger-type control elements (insertable into fuel element positions) 3
20130329847NUCLEAR CONTROL ROD WITH FLEXURE JOINT - A rod cluster control assembly having a control rod upper end plug formed in two parts and connected together with a flexible joint coupling located at or below a connecting finger on a spider vane. The upper portion of the upper control rod end plug is screwed into the connecting finger on the spider vane and lock welded between a lower portion of the finger and a shoulder on an abutting ledge of the upper portion of the end plug.12-12-2013
20140247915METHOD FOR PRODUCING A WEAR-RESISTANT AND CORROSION-RESISTANT STAINLESS STEEL PART FOR A NUCLEAR REACTOR, CORRESPONDING PART AND CORRESPONDING CONTROL CLUSTER - A method for producing a wear-resistant and corrosion-resistant stainless steel part for a nuclear reactor is provided. This method comprises steps of providing a blank in stainless steel; shaping the blank; finishing the blank to form the part in stainless steel, the finishing step allowing the prevented onset or the removal of work hardness on the outer surface of the part; hardening the outer surface of the part via diffusion of one or more atomic species.09-04-2014
376225000 Including shock absorber 1
20130272464CONTROL ROD ASSEMBLY IMPACT LIMITER - A control rod assembly including at least one movable control rod including a neutron absorbing material, a control rod drive mechanism (CRDM) for controlling movement of the at least one control rod, and a coupling operatively connecting the at least one control rod and the CRDM. The coupling includes a terminal element engaged with a connecting rod of the CRDM and the at least one moveable control rod, and a kinetic energy absorbing element supported by the terminal element for absorbing kinetic energy during a SCRAM event, the kinetic energy absorbing element configured to act between the terminal element and an upper plate of an associated fuel assembly.10-17-2013
376226000 Wherein control element is driven directly into bed of fuel elements 1
20160196884REACTIVITY CONTROL METHOD AND TELESCOPED CONTROL ROD FOR PEBBLE-BED HIGH-TEMPERATURE GAS-COOLED REACTOR07-07-2016
376228000 Wherein driver or motivating is electric 15
20110026660DIGITAL NUCLEAR CONTROL ROD CONTROL SYSTEM - A digital rod control system that employs separate power modules to energize the respective coils of a magnetic jack control rod drive rod drive system so that two, independently powered grippers can simultaneously support the control rod drive rod when it is not in motion to avoid dropped rods. The basic building block of the system is two or more selecting cabinets which receive multiplex power from at least one moving cabinet and are under the control of a single logic cabinet. Each of the cabinets include monitoring features to confirm the reliability of the system.02-03-2011
20120148006NUCLEAR REACTOR CONTROL ROD DRIVE MECHANISM - A magnetic jack control rod drive mechanism for a nuclear reactor in which the stationary gripper coil, moveable gripper coil and lift coil are constructed with ceramic or quartz insulation.06-14-2012
20130022163ENVIRONMENTALLY ROBUST ELECTROMAGNETS AND ELECTRIC MOTORS EMPLOYING SAME FOR USE IN NUCLEAR REACTORS - An electromagnet comprises a plurality of nested freestanding electrically insulating former layers, and electrically conductive wire wrapped around the outsides of the freestanding electrically insulating former layers to define a multilayer electrical coil in which adjacent layers of the multilayer electrical coil are spaced apart by intervening freestanding electrically insulating former layers. Electrically energizing the multilayer electrical coil generates a magnetic field inside the multilayer electrical coil. In some embodiments the electrically conductive wire is bare wire not having electrical insulation. In some embodiments the former layers comprise a ceramic material. In some such embodiments the electromagnet further comprises a ferromagnetic core disposed inside the multilayer electrical coil. An electric motor employing such an electromagnet as a stator pole is also disclosed. Control rod drive mechanism (CRDM) and coolant pump embodiments are also disclosed employing such a motor, for use in a nuclear reactor.01-24-2013
20130272465POWER DISTRIBUTION PLATE FOR POWERING INTERNAL CONTROL ROD DRIVE MECHANISM (CRDM) UNITS - A power distribution plate (PDP) sits on top of a support plate. Control rod drive mechanism (CRDM) units are mounted on top of the PDP, but the PDP is incapable of supporting the weight of the CRDM units and instead transfers the load to a support plate. The PDP has receptacles which receive cable modules each including mineral insulated (MI) cables, the MI cables being connected with the CRDM units. The PDP may further include a set of hydraulic lines underlying the cable modules and connected with the CRDM units. The cable modules in their receptacles define conduits or raceways for their MI cables and for any underlying hydraulic lines.10-17-2013
20130301774LATERAL SUPPORT FOR CONTROL ROD DRIVE MECHANISM - Control rod drive mechanisms (CRDMs) include CRDM motors, and a support assembly provides bottom support of the CRDMs and includes a lateral alignment plate with openings receiving upper portions of the CRDMs. The upper portions of the CRDMs include compliance features engaging the openings of the lateral alignment plate. The compliance features may comprise angled leaf springs that wedge into the openings of the lateral alignment plate. In some embodiments the upper portion of each CRDM includes straps securing one or more cables to the upper portion of the CRDM, and the angled leaf springs are cut into or welded onto ends of the straps. Some embodiments further include a pressure vessel and a nuclear reactor core comprising fissile material disposed the pressure vessel, and the CRDM is an internal CRDM disposed in the pressure vessel along with the support assembly.11-14-2013
20130301775CRDM INTERNAL ELECTRICAL CONNECTOR - An internal control rod drive mechanism (CRDM) including an electric motor is disposed in a nuclear reactor and further includes a support surface with sealed electrical connectors electrically connected with the electric motor power the motor. The internal CRDM is disposed on a support element secured inside the nuclear reactor. The support element includes sealed electrical connectors mating with the sealed electrical connectors on the support surface of the internal CRDM to power the electric motor. The sealed electrical connectors may be sealed glass, ceramic, or glass-ceramic connectors welded onto the ends of the MI cables extending from the motor. Springs, are disposed between the mating sealed electrical connectors of the support element and the support surface. A purge line is integrated with each mated connection.11-14-2013
20130301776INTEGRAL PRESSURIZED WATER REACTOR WITH COMPACT UPPER INTERNALS ASSEMBLY - An integral pressurized water reactor (PWR) comprises: a cylindrical pressure vessel including an upper vessel section and a lower vessel section joined by a mid-flange; a cylindrical central riser disposed concentrically inside the cylindrical pressure vessel and including an upper riser section disposed in the upper vessel section and a lower riser section disposed in the lower vessel section; steam generators disposed inside the cylindrical pressure vessel in the upper vessel section; a reactor core comprising fissile material disposed inside the cylindrical pressure vessel in the lower vessel section; and control rod drive mechanism (CRDM) units disposed inside the cylindrical pressure vessel above the reactor core and in the lower vessel section. There is no vertical overlap between the steam generators and the CRDM units.11-14-2013
20130301777ELECTRICAL FEEDTHROUGHS FOR NUCLEAR REACTOR - A nuclear reactor includes a nuclear reactor core comprising fissile material and a pressure vessel containing the nuclear reactor immersed in primary coolant water at an operating pressure. The pressure vessel has a vessel penetration passing through a wall of the pressure vessel. An electrical feedthrough seals the vessel penetration and has an outside electrical connector mounted at the pressure vessel. The outside electrical connector is at atmospheric pressure. The electrical feedthrough may include a flange disposed inside the pressure vessel and sealing against an inside surface of the wall of the pressure vessel. The outside electrical connector of the electrical feedthrough may be inset into the wall of the pressure vessel.11-14-2013
20150325318FAIL-SAFE CONTROL ROD DRIVE SYSTEM FOR NUCLEAR REACTOR - A control rod drive system (CRDS) for use in a nuclear reactor. In one embodiment, the system generally includes a drive rod mechanically coupled to a control rod drive mechanism (CRDM) operable to linearly raise and lower the drive rod along a vertical axis, a rod cluster control assembly (RCCA) comprising a plurality of control rods insertable into a nuclear fuel core, and a drive rod extension (DRE) releasably coupled at opposing ends to the drive rod and RCCA. The CRDM includes an electromagnet which operates to couple the CRDM to DRE. In the event of a power loss or SCRAM, the CRDM may be configured to remotely uncouple the RCCA from the DRE without releasing or dropping the drive rod which remains engaged with, the CRDM and in position.11-12-2015
20150332795Rod Control and Information System, Control Rod Individual Controller, and Test Method for Rod Control and Information System - The invention includes conducting efficiently a functional verification test of a rod control and information system as a whole and of control rod on-site transmission devices only, the system performing and monitoring insertion and extraction of control rods to and from a nuclear reactor. Each on-site transmission device in the system includes a control rod drive controller and multiple control rod individual controllers each incorporating beforehand a software simulator that calculates position change of the control rods corresponding to a control rod drive command input to the individual controller via the control rod drive controller. During the test, a software simulator activation signal is issued to activate the software simulator calculating a simulated control rod position and outputting the position as a control rod position signal for use in determining the integrity of the on-site transmission devices and that of the system.11-19-2015
376229000 Electrofluidic 5
20100316177CONTROL ROD DRIVE MECHANISM FOR NUCLEAR REACTOR - A control rod drive mechanism (CRDM) for use in a nuclear reactor, the CRDM comprising: a connecting rod connected with at least one control rod; a lead screw; a drive mechanism configured to linearly translate the lead screw; an electromagnet coil assembly; and a latching assembly that latches the connecting rod to the lead screw responsive to energizing the electromagnet coil assembly and unlatches the connecting rod from the lead screw responsive to deenergizing the electromagnet coil assembly. The latching assembly is secured with and linearly translates with the lead screw, while the electromagnet coil assembly does not move with the lead screw. The electromagnet coil assembly is at least coextensive with a linear translation stroke over which the drive mechanism is configured to linearly translate the lead screw.12-16-2010
20110222640CONTROL ROD DRIVE MECHANISM FOR NUCLEAR REACTOR - A control rod drive mechanism (CRDM) comprises a lead screw, a motor threadedly coupled with the lead screw to linearly drive the lead screw in an insertion direction or an opposite withdrawal direction, a latch assembly secured with the lead screw and configured to (i) latch to a connecting rod and to (ii) unlatch from the connecting rod, the connecting rod being free to move in the insertion direction when unlatched, and a release mechanism configured to selectively unlatch the latch assembly from the connecting rod.09-15-2011
20120148007NUCLEAR REACTOR INTERNAL ELECTRIC CONTROL ROD DRIVE MECHANISM ASSEMBLY - A magnetic jack control rod drive rod drive system having the magnetic coils that operate the moving parts of the drive system wound from anodized aluminum magnet wire or ceramic coated nickel clad copper and enclosed within a hermetically sealed housing that is pressurized with helium.06-14-2012
20130223580CONTROL ROD DRIVE MECHANISM (CRDM) MOUNTING SYSTEM FOR PRESSURIZED WATER REACTORS - A standoff supporting a control rod drive mechanism (CRDM) in a nuclear reactor is connected to a distribution plate which provides electrical power and hydraulics. The standoff has connectors that require no action to effectuate the electrical connection to the distribution plate other than placement of the standoff onto the distribution plate. This facilitates replacement of the CRDM. In addition to the connectors, the standoff has alignment features to ensure the CRDM is connected in the correct orientation. After placement, the standoff may be secured to the distribution plate by bolts or other fasteners. The distribution plate may be a single plate that contains the electrical and hydraulic lines and also is strong enough to provide support to the CRDMs or may comprise a stack of two or more plates.08-29-2013
20130301778CRDM INTERNAL HYDRAULIC CONNECTOR - In a nuclear reactor, an internal control rod drive mechanism (CRDM) includes a motor and a hydraulically driven element connected by at least one hydraulic line with at least one hydraulic connector disposed on a mounting plate of the internal CRDM. A support element mounted in the nuclear reactor includes at least one hydraulic connector. The internal CRDM is supported on the support element by its mounting plate with each hydraulic connector of the internal CRDM mated with a corresponding hydraulic connector of the support element. The hydraulically driven element may be a piston controlling SCRAM, driven by coolant water, and the coolant water pressure in the at least one hydraulic line is higher than the coolant water pressure in the nuclear reactor. The mating of each hydraulic connector of the internal CRDM with a corresponding hydraulic connector of the support element may be a leaky mating that leaks coolant water into the pressure vessel.11-14-2013
376230000 Wherein driver or motivating is fluid 4
20100067642CONTROL ROD DRIVE MECHANISM - A control rod drive mechanism according to the present invention includes a cylindrical guide tube having a latch hole, a hollow piston coupled to the control rod and freely moving up and down within the guide tube, a latch provided in the hollow piston so as to freely swing and freely engaging with and disengaging from the latch hole of the guide tube, and a spring locking the latch to the latch hole of the guide tube. Further, an elevating member having a latch guide which can come into contact with the latch is provided so as to freely move up and down within the guide tube. Further, the latch includes a guide surface coming into contact with the latch guide of the elevating member, and the latch guide includes a guide roller coming into contact with the guide surface of the latch.03-18-2010
20120148008NUCLEAR REACTOR INTERNAL HYDRAULIC CONTROL ROD DRIVE MECHANISM ASSEMBLY - A control rod drive system for a nuclear reactor that employs hydraulic cylinders to operate a conventional plunger/gripper drive system to incrementally move control rods into and out of the core of a reactor. The pressure differential for driving hydraulic pistons within the cylinders is obtained from the difference in pressure between the outside and inside of the core barrel of the reactor and control of the pistons is obtained from external solenoids attached to the reactor control system. The external solenoids regulate a charging pump feed to Poppet valves that control the hydraulic feed to the cylinders. A hydraulic piston/cylinder drive is also provided for the shutdown rods which operate in either an all in or out of the core condition.06-14-2012
20130272466CRDM Divert Valve - A valve for controlling flow of high pressure fluid to a CRDM hydraulic latching mechanism of a nuclear reactor core. The valve includes a valve body having an inlet for receiving fluid from a fluid source, an outlet, and a dump port for dumping fluid backflow. A valve member is movable within the valve body between a first position restricting flow between the outlet and the dump port such that high pressure fluid entering the valve body through the inlet exits the valve body through the outlet, and a second position whereat the dump port is in fluid communication with the outlet such that at least a portion of any backflow fluid flowing back into the valve body via the outlet exits the valve body via the dump port.10-17-2013
20140177773CONTROL ROD DRIVE APPARATUS UTILIZING ALLOYS WITH LOW TO ZERO COBALT CONTENT - A control rod drive apparatus may include a cylindrical housing structure having a proximal end and an opposing distal end. A drive assembly including a drive piston and an index tube may be arranged within the cylindrical housing structure. A flange may be connected to the proximal end of the cylindrical housing structure and may define a vacancy therein. A check valve ball may be disposed within the vacancy, wherein the vacancy may be configured to facilitate a displacement of the check valve ball between an open position and a closed position. The control rod drive apparatus may also include a collet assembly within the cylindrical housing structure. The check valve ball and/or the collet assembly may be made of an alloy having less than 2% cobalt by weight.06-26-2014
376233000 Releasable coupling 2
20130016803CONTROL ROD BLADE EXTENSION FOR A NORDIC NUCLEAR REACTOR - An apparatus or system that may incorporate a single component to connect the control rod blade to the control rod drive system (CRD) of a Nordic-type of BWR. The apparatus or system may eliminate the need of using multiple components to connect the control rod blade with the CRD.01-17-2013
20150310942ACTUATOR - A pressure sensitive actuator includes: an actuator member (10-29-2015
376234000 Including shock absorber 1
20100091929STRUCTURE FOR SUPPRESSING FLOW VIBRATION OF INSTRUMENTATION GUIDE TUBE - An upper hole 04-15-2010
376235000 Means for locking control element in desired position 2
20130089173SECURING DEVICE FOR A CONTROL ROD IN A NUCLEAR FACILITY - A securing device for a control rod in a nuclear facility contains a control rod drive and a drive housing enclosing the control rod drive and configured to pass through a reactor pressure wall. The securing device further has a reactor pressure wall connection piece arranged inwardly of the reactor pressure wall and connected to the reactor pressure wall. A device of this type is to be producible as cost-effectively as possible, is to perform its intended tasks reliably and is to be maintenance-free during operation. Accordingly, a number of connection elements are provided for this purpose between the reactor pressure wall connection piece and the drive housing. A respective connection element forms a form-locking connection to the drive housing and a form-locking connection to the reactor pressure wall connection piece.04-11-2013
20140301520CRDM WITH SEPARATE SCRAM LATCH ENGAGMENT AND LOCKING - A control rod drive mechanism (CRDM) configured to latch onto the lifting rod of a control rod assembly and including separate latch engagement and latch holding mechanisms. A CRDM configured to latch onto the lifting rod of a control rod assembly and including a four-bar linkage closing the latch, wherein the four-bar linkage biases the latch closed under force of gravity.10-09-2014
376236000 Including control rod insertion and removal schemes 12
20080205574CONTROL ROD FOR NUCLEAR REACTOR AND METHOD OF MANUFACTURING CONTROL ROD - A control rod for nuclear reactors includes four wings including neutron absorbers containing hafnium, a front end structural member which has a cross shape in cross section and includes brackets bonded to the leading ends of the wings, and a terminal end structural member which has a cross shape in cross section and includes brackets bonded to the tailing ends of the wings. The four wings are bonded to a wing-bonding member including a cross-shaped center shaft so as to form a cross shape. The front end structural member and the wing-bonding member are made of a zirconium alloy. The wings include neutron-absorbing plates having neutron-absorbing portions and each have an outer surface which is opposed to a fuel assembly and at which a hafnium-zircaloy composite member covered with zircaloy is disposed. The neutron-absorbing plates are opposed to each other with trap spaces disposed therebetween.08-28-2008
20090046824NUCLEAR REACTOR ROBUST GRAY CONTROL ROD - A control rod having a lower tip absorber material which exhibits substantially lower irradiation induced swelling than a second absorber material which extends above the lower tip absorber material. The lower tip absorber material having a substantially lower reactivity worth than the second absorber material, extends from a lower end plug of the control rod to an elevation just above a dashpot in a thimble guide tube in a nuclear fuel assembly when the control rod is fully inserted within the thimble guide tube.02-19-2009
20100220830AXIAL POWER DISTRIBUTION CONTROL METHOD, AXIAL POWER DISTRIBUTION CONTROL SYSTEM AND AXIAL POWER DISTRIBUTION CONTROL PROGRAM - This document's object is to provide an axial power distribution control method in which only the control of an axial power distribution in a nuclear reactor with a simple operation with a clear operational target keeps the control of a xenon oscillation, thereby suppressing the xenon oscillation to an extremely small magnitude in advance at the same time. An axial power distribution control method comprises an axial offset calculation step of calculating an axial offset of the current power distribution (AO09-02-2010
20130343502NUCLEAR REACTOR CORE LOADING AND OPERATION STRATEGIES - Cores include different types of control cells in different numbers and positions. A periphery of the core just inside the perimeter may have higher reactivity fuel in outer control cells, and lower reactivity cells may be placed in an inner core inside the inner ring. Cores can include about half fresh fuel positioned in higher proportions in the inner ring and away from inner control cells. Cores are compatible with multiple core control cell setups, including BWRs, ESBWRs, ABWRs, etc. Cores can be loaded during conventional outages. Cores can be operated with control elements in only the inner ring control cells for reactivity adjustment. Control elements in outer control cells need be moved only at sequence exchanges. Near end of cycle, reactivity in the core may be controlled with inner control cells alone, and control elements in outer control cells can be fully withdrawn.12-26-2013
20140016732APPARATUS AND METHOD FOR CONTROLLING CONTROL ROD OF NUCLEAR REACTOR FOR NUCLEAR POWER PLANT - An apparatus and method for safely controlling a control rod of a nuclear reactor for a nuclear power plant is provided. The apparatus may include a first controller to output a signal to insert or withdraw the control rod, a mechanical portion to perform insertion or withdrawal of the control rod in response to the signal output by the first controller, the mechanical portion including a movement process portion, a stop latch to restrain the control rod, a moving latch to move the control rod, and a lift coil to insert or withdraw the control rod, a detector to detect a position or a speed of the control rod when the control rod is inserted or withdrawn, and a brake to stop the control rod by force when the control rod is withdrawn irrespective of an intended control of the control rod.01-16-2014
20140133619EXTENDED OPERATING CYCLE FOR PRESSURIZED WATER REACTOR - A pressurized water reactor (PWR) includes a pressure vessel containing a nuclear reactor core immersed in primary coolant water, control rod assemblies (CRA's), and control rod drive mechanisms (CRDM's) operating the CRA's. The reactor core has axially varying 05-15-2014
20160189805FLUX-SHIFTING REACTIVITY CONTROL SYSTEM - A control assembly for a nuclear reactor includes a first reactivity control assembly having a first neutron modifying material, a second reactivity control assembly having a second neutron modifying material, and at least one drive mechanism coupled to the first neutron modifying material and the second neutron modifying material. The first neutron modifying material and the second neutron modifying material are selectively repositionable relative to a fuel region of the nuclear reactor. The at least one drive mechanism is configured to provide the first neutron modifying material and the second neutron modifying material in different directions through the fuel region thereby shifting a flux distribution within the fuel region away from the second neutron modifying material.06-30-2016
376237000 Group movement of control elements 5
20110110480Methods and systems for migrating fuel assemblies in a nuclear fission reactor - Illustrative embodiments provide methods and systems for migrating fuel assemblies in a nuclear fission reactor, methods of operating a nuclear fission traveling wave reactor, methods of controlling a nuclear fission traveling wave reactor, systems for controlling a nuclear fission traveling wave reactor, computer software program products for controlling a nuclear fission traveling wave reactor, and nuclear fission traveling wave reactors with systems for migrating fuel assemblies.05-12-2011
20110110481Methods and systems for migrating fuel assemblies in a nuclear fission reactor - Illustrative embodiments provide methods and systems for migrating fuel assemblies in a nuclear fission reactor, methods of operating a nuclear fission traveling wave reactor, methods of controlling a nuclear fission traveling wave reactor, systems for controlling a nuclear fission traveling wave reactor, computer software program products for controlling a nuclear fission traveling wave reactor, and nuclear fission traveling wave reactors with systems for migrating fuel assemblies.05-12-2011
20110110482Methods and systems for migrating fuel assemblies in a nuclear fission reactor - Illustrative embodiments provide methods and systems for migrating fuel assemblies in a nuclear fission reactor, methods of operating a nuclear fission traveling wave reactor, methods of controlling a nuclear fission traveling wave reactor, systems for controlling a nuclear fission traveling wave reactor, computer software program products for controlling a nuclear fission traveling wave reactor, and nuclear fission traveling wave reactors with systems for migrating fuel assemblies.05-12-2011
20130101077METHOD OF ACHIEVING AUTOMATIC AXIAL POWER DISTRIBUTION CONTROL - A control strategy for a pressurized water nuclear reactor that employs separate, independent control rod banks for respectively controlling T04-25-2013
20140348285CONTROL ROD-DRIVING CONTROL APPARATUS AND A METHOD THEREOF - According to one embodiment, each of driving mechanisms is differently connected to one of control rods located in a nuclear reactor. A driving mechanism drives a connected control rod to be inserted and withdrawn with a high-pressure driving water by opening and closing control valves thereof. Driving time data of unlatch, insertion, withdrawal and settle of each control rod, is stored. The driving time data is measured by a test of insertion and withdrawal at a periodical inspection before starting operation of the nuclear reactor. At least one is selected from the control rods, based on a command to select and drive a control rod. A timing table that prescribes timings to open and close each control valve to unlatch, insert, withdraw and settle the selected control rod, is created based on the driving time data thereof. The selected control rod is driven based on the timing table.11-27-2014

Patent applications in class By movement of control element or by release of neutron absorbing material

Patent applications in all subclasses By movement of control element or by release of neutron absorbing material

Website © 2025 Advameg, Inc.