Class / Patent application number | Description | Number of patent applications / Date published |
372051000 | Liquid | 11 |
20120114007 | Underwater Laser-Guided Discharge - Methods for producing a laser-guided underwater electrical discharge are provided. One or more electrodes defining a desired electrical discharge path are situated in a body of water and are attached to an external electrical power supply. A high-powered, intense laser beam is fired into the water. The laser beam forms an optical filament in the water, which in turn forms an ionized channel having a much greater conductivity than the surrounding water. An external power supply drives an electrical discharge along the path of the ionized channel due to its greater conductivity. | 05-10-2012 |
20130148685 | Two-Laser Generation of Extended Underwater Plasma - A method for generating an extended underwater plasma. A first laser pulse is fired into a body of water to form an underwater optical filament coinciding with a low-energy plasma. A second laser pulse is fired into the water, targeted at the plasma. The second pulse heats the plasma, causing the formation of an extended superheated plasma volume in the water. The two laser pulses can be simultaneous or can be sequential, with the second pulse following the first pulse by up to the filament plasma lifetime. The extended superheated plasma creates an underwater acoustic pulse, wherein the duration, waveform and directivity of the pulse can be tailored by controlling the shape of the underwater laser-generated plasma. | 06-13-2013 |
20140133513 | LASER DEVICE AND METHOD FOR GENERATING LASER LIGHT - A laser device including a laser crystal, a first lens, an induced light source, a third light source and a second lens and a method for generating a laser light are disclosed. The laser crystal includes a gain medium, a first cross section and a second cross section. The first lens is located on the first cross section of the laser crystal. The induced light source is adapted to generate an induced light entering into the laser crystal through the first lens. The third light source is adapted to generate a third light which is adapted for emitting the laser crystal. The third light and the induced light are adapted to induce the liquid crystal to make the liquid crystal generate a first light and a second light. | 05-15-2014 |
372053000 | Dye | 7 |
20080298421 | TRIPLET QUENCHER FOR USE IN LASERS - There are disclosed compounds for assisting triplet absorption in a laser, such as a pulsed-dye laser, the compounds comprising at least one molecule chosen from nitroxides and nitrones. In one embodiment, the disclosed compounds may be mixed with the dye of a dye laser in an amount sufficient to assist in triplet absorption. In one embodiment, the nitroxide compound comprises tempol [4-hydroxy-2,2,6,6-tetramethyl-piperidinyloxy, free radical]. Also disclosed are methods of using the disclosed compounds to control the triplet absorption of a dye laser or improve the performance or life span of a gaseous or solid laser. | 12-04-2008 |
20080298422 | Dye Laser Medium, Dye Laser Device, and Laser Sensor - Although having been used for conventional dye laser solvents, organic solvents have a disadvantage of volatility and inflammability, which makes a dye laser device large and cumbersome. In the present invention, which has been developed to solve this problem, an ionic liquid is used as the dye laser solvent. An organic dye stably dissolves in an ionic liquid and the light-emitting property is almost comparable to the case where an organic solvent is used. Since ionic liquids do not have volatility and inflammability, the dye laser medium according to the present invention is extremely easy to handle. In addition, it also has a property that the photobleach is extremely low compared to conventional dye laser mediums using an organic solvent as the solvent thereof. It is easy to obtain a laser sensor for detecting a predetermined specimen with high sensitivity using the dye laser medium according to the present invention. | 12-04-2008 |
20100054294 | SOLID-STATE DYE LASER - To reduce the laser threshold by efficiently exciting a light-emitting body in a solid-state dye laser with light having high density, thereby facilitating emission of laser beams, and to miniaturize a solid-state dye laser including an excitation light source. A solid-state dye laser capable of emitting laser beams by efficiently introducing light from an excitation light source to a light-emitting body incorporated in an optical resonator structure and exciting the light-emitting body with light with high density, is realized. | 03-04-2010 |
20100303119 | Microfluidic Lasers - The present invention generally relates to lasers comprising fluidic channels, such as microfluidic channels. In some instances, the channel contains two or more fluids. The fluids may remain non-mixed within the channel, for example, due to immiscibility and/or laminar flow within the channel. The fluids may be arranged in the channel such that light propagating in a first fluid is prevented by the second fluid from exiting the first fluid, for example, due to differences in the indexes of refraction (e.g., causing internal reflection of the fluid to occur). Thus, in one embodiment, a first fluid may be at least partially surrounded by a second fluid having a second index of refraction lower than the index of refraction of the first fluid. In some embodiments, the fluidic channel is used as a laser, for instance, a dye laser, i.e., a laser created by directing light at a dye to produce coherent light. The dye may be present in one or more fluids within the fluidic channel. The incident light (for example, created by another laser) may be directed at the channel from any angle. In some cases, laser light may be produced in a direction substantially aligned with the longitudinal axis of the channel. In some embodiments, the laser is free of mirrors, prisms, or gratings, or the laser may produce coherent light using a non-resonant photonic pathway. However, in other cases, mirrors, prisms, or gratings may be used to reflect light along the channel to enhance stimulated emission of coherent light. Another aspect of the invention includes optical diffractors, such as prisms or gratings, which can contain a fluid. The optical diffractors, in certain embodiments, are positioned to diffract light, such as coherent light, emanating from the fluidic channel. Still other aspects of the invention provide devices, kits, and methods of making and using such lasers. | 12-02-2010 |
20120120979 | SOLID DYE RESONATOR, AND SOLID DYE LASER HANDPIECE COMPRISING SAME - The present invention relates to a solid dye resonator, and to a solid dye laser hand piece comprising same. The solid dye resonator comprises: solid dye; a high-reflection mirror; an output coupler; a first mounting plate on which the high-reflection mirror is mounted; a second mounting plate which is spaced apart from the first mounting plate and which has a surface on which the output coupler is mounted; a driving motor mounted on the first mounting plate, such that a motor shaft is directed toward the second mounting plate; and a rotary shaft interposed between the first mounting plate and the second mounting plate, and connected to the motor shaft of the driving motor such that the rotary shaft interlockingly rotates with the rotation of the driving motor. | 05-17-2012 |
20140269806 | SUB-WAVELENGTH PLASMON LASER - A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. | 09-18-2014 |
20140294032 | SOLID-STATE DYE LASER MEDIUM AND PROCESS FOR PRODUCTION THEREOF - The challenge of providing a long-life solid-state dye laser medium is tackled. This challenge is solved by a solid-state dye laser medium comprising a polydimethylsiloxane, and a dye dissolved in the polydimethylsiloxane. The dye is preferably a pyrromethene dye. | 10-02-2014 |
372054000 | Particular structural features | 1 |
20130223467 | SPHERICAL LIQUID-CRYSTAL LASER - The patent refers to one or more droplets of chiral liquid crystals used as point source(s) of laser light. The source is shaped as a droplet of chiral liquid crystals ( | 08-29-2013 |