Entries |
Document | Title | Date |
20080198881 | OPTIMIZATION OF LASER BAR ORIENTATION FOR NONPOLAR AND SEMIPOLAR (Ga,Al,In,B)N DIODE LASERS - Optical gain of a nonpolar or semipolar Group-III nitride diode laser is controlled by orienting an axis of light propagation in relation to an optical polarization direction or crystallographic orientation of the diode laser. The axis of light propagation is substantially perpendicular to the mirror facets of the diode laser, and the optical polarization direction is determined by the crystallographic orientation of the diode laser. To maximize optical gain, the axis of light propagation is oriented substantially perpendicular to the optical polarization direction or crystallographic orientation. | 08-21-2008 |
20080240173 | Method for controlling operation of light emitting transistors and laser transistors - A method for controlling operation of a transistor includes the following steps: providing a bipolar transistor having emitter, base and collector regions; applying electrical signals to the transistor to produce light emission from the transistor; effecting photon-assisted tunneling of carriers in the transistor with self-generated photons of the light emission, and controlling operation of the transistor by controlling the photon-assisted tunneling. | 10-02-2008 |
20090052478 | Beam Director Flow Control - Systems and methods are described for controlling flow disturbances emanating from a protrusion, such as a beam propagating device. In one embodiment, a method includes positioning a flow control element at least partially around a base portion of a protrusion, wherein the flow control element includes at least one flow expanding feature. A reduced pressure zone is generated proximate an aft portion of the protrusion by expanding at least a portion of a flowfield. One or more flow disturbances emanating downstream from the protrusion are deflected using the at least one reduced pressure zone. | 02-26-2009 |
20090110010 | FIBER-FOCUSED DIODE-BAR OPTICAL TRAPPING FOR MICROFLUIDIC MANIPULATION - The direct integration of light and optical control into microfluidic systems presents a significant hurdle to the development of portable optical trapping-based devices. A simple, inexpensive fiber-based approach is provided that allows for easy implementation of diode-bars for optical particle separations within flowing microfluidic systems. Models have also been developed that demonstrate the advantages of manipulating particles within flow using linear geometries as opposed to individually focused point traps as traditionally employed in optical-trapping micromanipulation. | 04-30-2009 |
20090185584 | LASER OSCILLATOR - The present invention provides a laser oscillator using an electroluminescent material that can enhance directivity of emitted laser light and resistance to a physical impact. The laser oscillator has a first layer including a concave portion, a second layer formed over the first layer to cover the concave portion, and a light emitting element formed over the second layer to overlap the concave portion, wherein the second layer is planarized, an axis of laser light obtained from the light emitting element intersects with a planarized surface of the second layer, the first layer has a curved surface in the concave portion, and a refractive index of the first layer is lower than that of the second layer. | 07-23-2009 |
20090219954 | Conversion device with multi-faceted output face and laser projection system incorporating the same - The present invention relates generally to multi-faceted wavelength conversion devices and laser projection systems incorporating the same. | 09-03-2009 |
20090274176 | COMPACT, THERMALLY STABLE MULTI-LASER ENGINE - Various embodiments of a multi-laser system are disclosed. In some embodiments, the multi-laser system includes a plurality of lasers, a plurality of laser beams, a beam positioning system, beam focusing optics, a thermally stable enclosure and a temperature controller. The thermally stable enclosure is configured to thermally and mechanically couple to a flow cell. The thermally stable enclosure substantially comprises a material with high thermal conductivity. The thermally stable enclosure can have a relatively small volume. | 11-05-2009 |
20100172381 | Apparatus and method for generating short optical pulses - An apparatus for generating short optical pulses is provided having a storage medium capable of storing optical energy, a first module for delivering pumping optical pulses or continuous beam into the storage medium to energize the storage medium, and a second module for delivering one or more trigger optical pulses to the optical storage medium. Each of the trigger optical pulses has a rising edge which causes a cascade release of the energy stored in the storage medium in an output optical pulse having a greater power and narrower in width or duration (at full width at half maximum) than the trigger optical pulse that caused the output pulse. A control module in the apparatus controls the operation of the pump module and trigger module so as to provide the desired characteristics of output optical pulses from the apparatus. | 07-08-2010 |
20110080926 | Laser irradiation system - A laser irradiation system includes a laser configured to irradiate light, a laser transfer unit configured to transfer the laser along a target irradiation area, the target irradiation area being divided into a plurality of sections, a laser transfer controller configured to control a speed of the laser in each of the plurality of sections of the target irradiation area, a laser output controller configured to control an output level of the laser in each of the plurality of sections of the target irradiation area, and a main controller configured to control the laser output controller and the laser transfer controller. | 04-07-2011 |
20110103410 | LASER BEAM CONTROL SYSTEM AND METHOD - A laser beam control system includes an output aperture through which a laser beam is directed toward a target. A laser beam return is also received through the output aperture, with the laser beam return including scatter from the laser beam. A deformable mirror is adapted to control the outgoing laser beam, and a sensor is adapted to detect the wavefront of the laser beam return. An optics controller is operationally coupled to the deformable mirror and is adapted to adjust the deformable mirror in response to the wavefront of the laser beam return. | 05-05-2011 |
20110116518 | Dynamic Redirection of a Laser Beam - A method for processing workpieces includes performing a laser processing operation in which a laser beam is directed at a first mirror face and at a second mirror face of a redirecting mirror. The second mirror face is at least partially surrounded by the first mirror face. During the laser processing operation, the second mirror face performs a pendulum movement relative to the first mirror face. | 05-19-2011 |
20120236882 | METHOD AND SYSTEM FOR SUPPRESSION OF STIMULATED RAMAN SCATTERING IN LASER MATERIALS - A composition of matter is provided having the general chemical formula K(H,D) | 09-20-2012 |
20120243562 | Laser Diode Driver - Embodiments of the invention provide a laser light source comprising: a plurality of lasers connected in series; and a laser driver controllable to simultaneously drive a substantially same current through a combination of the lasers selectable from different combinations of lasers in the plurality of lasers and not through lasers in the plurality of lasers that are not in the combination. | 09-27-2012 |
20120269213 | OPTICAL DEVICE AND METHOD FOR CONTROLLING THE SAME - An optical device includes: a light source that emits laser beams; a detecting unit that detects the laser beams and converts light amounts of the detected laser beams into voltage values; a first storage unit that stores in advance a light amount to be output for each of the laser beams and the voltage value; a second storage unit that stores in advance a value indicating light use efficiency of an optical system that guides the laser beams to a surface to be scanned for scanning; a calculating unit that calculates a target voltage value for each of the laser beams based on the light amount and the voltage value and also on the value indicating the light use efficiency; and a control unit that controls emission power for each of the laser beams so that the voltage value output from the detecting unit approaches the target voltage value. | 10-25-2012 |
20120275476 | OPTICAL DEVICE, IMAGE FORMING APPARATUS, AND METHOD FOR CONTROLLING OPTICAL DEVICE - An optical device includes a drive unit configured to drive a light source that outputs a laser beam; a detecting unit configured to detect the laser beam output from the light source; a converting unit configured to convert an output of the detecting unit into a value within a predetermined range; and a control unit configured to control the drive unit to switch a light quantity of the laser beam output from the light source from a first light quantity within an imaging light quantity range for forming an image to a second light quantity outside the imaging light quantity range, or vice versa. The converting unit converts an upper limit light quantity in the imaging light quantity range into a maximum value in the predetermined range, and converts a lower limit light quantity in the imaging light quantity range into a minimum value in the predetermined range. | 11-01-2012 |
20120281721 | Substrate Guided Relay with Image Compensation - A display system includes a substrate guided relay and a scanning projector. The scanning projector exhibits a brightness variation on a resonant scanning axis, and the substrate guided relay exhibits a brightness variation along a length of an output coupler. The scanning projector includes a brightness compensation circuit to compensate for both the brightness variation caused by the resonant scanning and the brightness variation along the length of the output coupler. | 11-08-2012 |
20130177032 | REAL TIME EQUIVALENT MODEL, DEVICE AND APPARATUS FOR CONTROL OF MASTER OSCILLATOR POWER AMPLIFIER LASER - The present invention provides, in at least one embodiment, a system and method for power control of lasers. The system includes a device's control signal fed into a laser. The laser can be a master oscillator power amplifier (MOPA) fiber laser. The device includes an equivalent model circuit representing at least one parameter of the laser, such as the gain fiber inversion in the power amplifier. The device measures the power at the equivalent model circuit. Then, the device uses its feedback signal to control and/or adjust the output power control signal fed into the laser based on the measured power. By controlling the power fed into the laser, the laser can be operated at much lower frequencies while keeping the laser power within acceptable limits. | 07-11-2013 |
20130215915 | Device for Amplifying a Laser Beam with Suppression of Transverse Lasing - A device for amplifying a laser beam along an axis comprises: an amplifying bar structure of index n | 08-22-2013 |
20130266031 | SYSTEMS AND ASSEMBLIES FOR TRANSFERRING HIGH POWER LASER ENERGY THROUGH A ROTATING JUNCTION - There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber. | 10-10-2013 |
20140079080 | Image Display Apparatus and Electronic Apparatus Having Projector Function - This image display apparatus includes a plurality of laser beam source portions outputting laser beams of a plurality of color components different from each other, a synthesized beam generation portion synthesizing the laser beams of the plurality of color components, a control portion controlling the outputs of the laser beam source portions, and a driving current correction portion estimating a variation in the threshold current of each of the laser beam source portions and correcting a driving current on the basis of the estimated variation in the threshold current. | 03-20-2014 |
20140105232 | ON-CHIP OPTICAL REFERENCE CAVITY EXHIBITING REDUCED RESONANCE CENTER FREQUENCY FLUCTUATIONS - An optical apparatus comprises a waveguide substrate and an optical reference cavity. The optical reference cavity comprises an optical waveguide formed on the waveguide substrate and arranged to form a closed loop greater than or about equal to 10 cm in length. The RMS resonance frequency fluctuation is less than or about equal to 100 Hz. The Q-factor can be greater than or about equal to 10 | 04-17-2014 |
20150372443 | EXCIMER LASER COMPOSITE CAVITY - Disclosed is an excimer laser composite cavity, comprising a laser discharge cavity, a laser output module, a line-width narrowing module, and a laser amplification module. The laser discharge cavity contains work gas for generating laser when it is activated by an excitation source. The laser discharge cavity, the laser output module, and the line-width narrowing module constitute a line-width narrowing cavity configured to narrow down a line-width of the laser generated by the work gas. The laser discharge cavity, the laser output module, and the laser amplification module constitute an amplification cavity configured to amplify power of the laser with the line-width having been narrowed down by the line-width narrowing cavity. | 12-24-2015 |
20160111850 | WAVELENGTH COMBINED LASER SYSTEM - A beam combiner may include source elements, each configured to output a beam of light locked at a center wavelength different from center wavelengths of other source elements. The beam combiner may include a dispersive element configured to combine the beams of light into a combined beam, and a beam separator configured to separate the combined beam into an output beam and a locking beam. The beam combiner may include a spatial filter configured to prevent crosstalk within the locking beam, and to redirect the locking beam to the source elements. The dispersive element may be configured to disperse the locking beam into constituent wavelength beams. Each constituent wavelength beam may be directed to a respective one of the source elements for locking that source element at its center wavelength, and may correspond in wavelength to the center wavelength of the respective source element. | 04-21-2016 |
20160124125 | STRUCTURED LIGHT GENERATION DEVICE - A structured light generation device is equipped with a lens unit. The lens unit is installed in a compact housing of the structured light generation device such that it can be workable for two different optical path lengths, and hence for a range of parameter, such as effective focal length, back focal length, or working distance. By the lens unit, an infrared laser spot is collimated into a linear infrared laser beam or specific light pattern if with a free-form type structure formed on a surface where the free form contains diffractive, refractive, and/or reflective optical structures simultaneously or effectively. Consequently, the infrared laser spot is shaped into a structured light for detection or interactive action. | 05-05-2016 |