Class / Patent application number | Description | Number of patent applications / Date published |
372003000 | RAMAN LASER | 40 |
20080205456 | Laser uses for single-crystal CVD Diamond - The present invention is directed to new laser-related uses for single-crystal diamonds produced by chemical vapor deposition. One such use is as a heat sink for a laser; another such use is as a frequency converter. The invention is also directed to a χ | 08-28-2008 |
20080259969 | Slectable Multiwavelength Laser for Outputting Visible Light - The invention provides a laser system ( | 10-23-2008 |
20090010285 | Articulated robot for laser ultrasonic inspection - An ultrasonic non-destructive evaluation (NDE) system operable to inspect target materials is provided. This ultrasonic NDE system includes an articulated robot, an ultrasound inspection head, a processing module, and a control module. The ultrasound inspection head couples to or mounts on the articulated robot. The ultrasound inspection head is operable to deliver a generation laser beam, a detection laser beam, and collect phase modulated light scattered by the target materials. The processing module processes the phase modulated light and produces information about the internal structure of the target materials. The control module directs the articulated robot to position the ultrasound inspection head according to a pre-determined scan plan. | 01-08-2009 |
20090034561 | BACKWARD STIMULATED RAYLEIGH-BRAGG SCATTERING DEVICES BASED ON MULTI-PHOTON ABSORBING MATERIALS AND THEIR APPLICATIONS - The present invention relates to a method and system of generating backward stimulated Rayleigh-Bragg scattering by focusing activating radiation through a multi-photon absorbing dye solution, thereby producing coherent output radiation with no measured frequency shift and measured pump threshold values independent of the spectral line width of the input activating radiation. | 02-05-2009 |
20090092156 | DEVICES AND METHODS FOR PROVIDING STIMULATED RAMAN LASING - Devices and methods for providing stimulated Raman lasing are provided. In some embodiments, devices include a photonic crystal that includes a layer of silicon having a lattice of holes and a linear defect that forms a waveguide configured to receive pump light and output Stokes light through Raman scattering, wherein the thickness of the layer of silicon, the spacing of the lattice of holes, and the size of the holes are dimensioned to provide Raman lasing. In some embodiments, methods include forming a layer of silicon, and etching the layer of silicon to form a lattice of holes with a linear defect that forms a waveguide configured to receive pump light and output Stokes light through Raman scattering, wherein the thickness of the layer of silicon, the spacing of the lattice of holes, and the size of the holes are dimensioned to provide Raman lasing. | 04-09-2009 |
20090274175 | FIBER LASER - This fiber laser is provided with: a signal light source that outputs a signal light; a rare earth-doped fiber that amplifies and outputs the signal light from the signal light source; a Raman amplifying fiber that is routed as a portion of an optical transmission path in order to output the output light from the rare earth-doped fiber to an outside thereof; and a wavelength selecting element that is provided in the optical transmission path from the Raman amplifying fiber to the signal light source and does not allow transmission of a Stokes light that is generated in the Raman amplifying fiber. | 11-05-2009 |
20090296743 | Mid-Infrared Fiber Laser Using Cascaded Raman Wavelength Shifting - A mid-infrared system for optical probing is disclosed that comprises a mid-infrared fiber laser based on cascaded Raman wavelength shifting, a sample volume, and a detector or detection system. The cascaded Raman wavelength shifting process in optical fibers involves the emission of a plurality of optical phonons for at least some of the pump photonics involved in the process. As one example, using the cascaded Raman wavelength shifting process a pump laser wavelength between 1 and 2 μm can be shifted down to between 2.5 to 10 μm. In one embodiment, the mid-infrared fiber laser comprises a pump laser with a wavelength between 1 and 2 μm, one or more stages of cascaded Raman oscillators implemented in fused silica fiber, and one or more stages of cascaded Raman oscillators implemented in mid-infrared fiber that transmits beyond 2 μm. Examples of mid-infrared fibers include chalcogenides, fluorides and tellurite fibers. The output wavelength from the mid-infrared fiber laser is at an exemplary wavelength longer than 2.5 μm. The mid-infrared optical probing system can be used in applications such as semiconductor process control, combustion monitoring for engines, and defense or homeland security applications such as chemical sensing and infrared counter-measures. | 12-03-2009 |
20090323732 | Optical Wave Generator - An optical wave generator comprising a first-level Raman sideband generator (RSBG). The first-level RSBG comprises a first hollow-core photonic crystal fibre HCPCF ( | 12-31-2009 |
20100054284 | CONTINUOUS-WAVE LASER - A continuous wave Raman laser for producing visible laser output comprising: a resonator cavity; at least a first reflector and a second reflector said first and second reflectors being located at opposite ends of the resonator cavity; a laser gain medium located in the resonator cavity for generating a continuous wave fundamental beam which resonates within the resonator cavity when pumped by a pump beam from a pump source external to the resonator cavity; a solid Raman-active medium positioned in the resonator cavity for Raman shifting the fundamental beam to produce a continuous wave Raman beam which resonates within the resonator cavity; and a non-linear medium positioned in the resonator cavity for frequency converting the continuous wave Raman beam to a converted wavelength to produce a continuous wave converted beam. | 03-04-2010 |
20100098112 | Method and apparatus for preventing distortion of powerful fiber-laser systems by backreflected signals - A powerful fiber laser system is configured with at least one filtering element capable of preventing a backreflected Raman component of the main signal from propagating along the upstream stretch of the system. The filtering element includes a slanted fiber grating, one or more cladding formations disposed in a cladding of fiber and having a refractive index greater than that one of the cladding, but lower than a refractive index of the core, and/or a combination of two spaced apart single mode fibers and a low mode fiber spliced to the opposing ends of the respective SM fibers. | 04-22-2010 |
20100103957 | FRACTIONAL RAMAN ORDER PUMPING IN OPTICAL COMMUNICATION SYSTEMS - An optical communication system includes a gain medium that receives optical signal(s) of one or more optical signal wavelengths. The system also includes pump source(s) that are capable of generating at least a first pump signal and a second pump signal. The first pump signal includes at least one integer Raman order wavelength that includes a Raman gain peak that is one stokes shift away from at least one of the one or more optical signal wavelengths. The second pump signal includes at least one fractional Raman order pump wavelength that includes a Raman gain peak that is a non-integer multiple of a stokes shift from each of the one or more optical signal wavelengths. Optionally, there might be one or more other pump signals that do not satisfy the criteria specified for the first pump signal or the second pump signal. | 04-29-2010 |
20100265971 | CASCADE RAMAN LASER - The invention provides a cascade Raman laser including a pumping laser light source that generates pumping light, a cascade Raman resonator having an input-side optical reflector that receives the pumping light and selectively reflects light of each wavelength corresponding to a n-th Stokes ray (n is an integer more than 1) of Raman scattering to the pumping light, a Raman optical fiber that is connected to the input-side optical reflector and generates Raman scattering light at least by the pumping light and an output-side optical reflector that is connected to the Raman optical fiber and selectively reflects light of each wavelength corresponding to the n-th Stokes ray and a blocking device interposed between the pumping laser light source and the cascade Raman resonator and blocks the first Stokes ray generated within the cascade Raman resonator from entering the pumping laser light source side. | 10-21-2010 |
20100329287 | METHOD AND DEVICE FOR STABILIZING THE SPECTRUM OF A PULSED COHERENT OPTICAL SOURCE - The invention relates to a method for stabilizing the spectrum of a pulsed coherent optical source that comprises controlling the offset frequency ω | 12-30-2010 |
20110170563 | APPARATUS AND METHOD FOR ENABLING QUANTUM-DEFECT-LIMITED CONVERSION EFFICIENCY IN CLADDING-PUMPED RAMAN FIBER LASERS - Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation. | 07-14-2011 |
20110176563 | CVD SINGLE CRYSTAL DIAMOND MATERIAL - Single crystal diamond material produced using chemical vapour deposition (CVD), and particularly diamond material having properties suitable for use in optical applications such as lasers, is disclosed. In particular, a CVD single crystal diamond material having preferred characteristics of longest linear internal dimension, birefringence and absorption coefficient, when measured at room temperature, is disclosed. Uses of the diamond material, including in a Raman laser, and methods of producing the diamond are also disclosed. | 07-21-2011 |
20110249689 | DEVICES, SYSTEMS, AND METHODS PROVIDING MICRO-RING AND/OR MICRO-RACETRACK RESONATOR - Provided herein are certain embodiments of systems, methods and devices for Raman lasers based on micro-ring and mircro-racetrack resonators, and the manufacturing thereof. For example, a device can be provided which is structured to receive an electro-magnetic radiation including a resonator arrangement which has a distance from one edge thereof to another edge thereof of at most approximately a wavelength of the electro-magnetic radiation that impacts the resonator arrangement. According to some embodiments, the resonator arrangement can be configured to generate a Raman radiation when impacted by a further electro-magnetic radiation. In some embodiments, the resonator arrangement can solely generate the Raman radiation which is lasing, which Raman radiation can be generated by the resonator arrangement in a continuous mode and/or a pulsed lasing mode. The resonator arrangement can generate the Raman radiation which is lasing without a use of an external electrical driver. | 10-13-2011 |
20110268140 | MULTIPLE WAVELENGTH RAMAN LASER - A pulsed laser system may include a Raman fiber that is configured to act as multiple wavelength Raman laser. The fiber is configured to receive a pulsed input beam from an input source and convert the input beam to an output beam having narrow band outputs at first and second frequencies v | 11-03-2011 |
20110280262 | MODULAR, HIGH ENERGY, WIDELY-TUNABLE ULTRAFAST FIBER SOURCE - A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses. | 11-17-2011 |
20110286474 | FIBER LASER DEVICE - Provided is a fiber laser device capable of preventing laser light from damaging a laser oscillator even if the laser light is reflected by an object to be irradiated or at an output end. | 11-24-2011 |
20120113994 | LOW NOISE RAMAN LASER DEVICE, RAMAN LASER SYSTEM AND ASSOCIATED METHOD - A Raman laser device includes:
| 05-10-2012 |
20120147906 | LASER COOLING OF MODIFIED SOI WAFER - A laser cooling system includes a substrate, an REO layer of single crystal rare earth oxide including at least one rare earth element positioned on the surface of the substrate, and an active layer of single crystal semiconductor material positioned on the REO layer to form a semiconductor-on-insulator (SOI) device. Light guiding structure is at least partially formed by the REO layer so as to introduce energy elements into the REO layer and produce cooling by anti-Stokes fluorescence. The active layer of single crystal semiconductor material is positioned on the REO layer in proximity to the light guiding structure so as to receive the cooling. | 06-14-2012 |
20120236881 | PULSED FIBER LASER - A method and a laser system for generating a pulsed laser signal with a laser signal wavelength and a laser signal repetition rate, the laser system includes a fiber laser unit includes a cladding pumped fiber laser includes a fiber laser light guiding region surrounded by a pump cladding, the fiber laser light guiding region includes at least one active element; at least one pump laser unit for launching a pump signal into the cladding pumped fiber laser, the pump signal unit includes at least one pump diode emitting a signal at a pump signal wavelength; and a modulating unit for modulating the pump signal into a plurality of pump pulses. | 09-20-2012 |
20120263196 | ULTRAFAST RAMAN LASER SYSTEMS AND METHODS OF OPERATION - A Raman laser system, the system comprising a resonator cavity comprising a plurality of reflectors, wherein at least one reflector is an output reflector adapted for outputting a pulsed output beam from the resonator cavity at a frequency corresponding to a Raman shifted frequency of the pump beam, wherein the output reflector is partially transmitting at the Raman-converted frequency; a solid state Raman-active medium located in the resonator cavity to be pumped by a pulsed pump beam having a pump repetition rate and for Raman-converting a pump pulse incident on the Raman-active medium to a resonating pulse at a Raman-converted frequency resonating in the resonator cavity; a resonator adjuster for adjusting the optical length of the resonator to match the round-trip time of the resonating Raman-converted pulse with the pump beam repetition rate such that the resonating pulse is coincident both temporally and spatially with a pump pulse in the Raman-active medium on each round trip, to Raman amplify the resonating pulse at the Raman-converted frequency in the Raman-active medium. Also a multiwavelength Raman laser system further comprising a dispersive element and a plurality of coupled resonator cavities. Also, methods for providing ultrafast pulsed Raman laser operation. | 10-18-2012 |
20120275474 | Laser Device - A laser apparatus for producing mode locked pulses includes a closed optical system adapted to connect to a fibre grain medium to form a laser cavity. The fibre gain medium is adapted to receive pulses characterized by a first state and to output pulses characterized by a second state. The closed optical system is adapted to receive the pulses in the second state and output pulses in a state similar to the first state. | 11-01-2012 |
20120314722 | RAMAN CONVERTING LASER SYSTEMS - In one embodiment, the instant invention provides a method that includes: outputting a first laser beam having: a beam quality factor (M | 12-13-2012 |
20130182724 | OPTICAL PARAMETRIC AMPLIFICATION, OPTICAL PARAMETRIC GENERATION, AND OPTICAL PUMPING IN OPTICAL FIBERS SYSTEMS - Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 to 2100 nm and after frequency doubling in the wavelength range of 900 to 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 to 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber. | 07-18-2013 |
20130215912 | MULTI-MEDIA RAMAN RESONATORS AND RELATED SYSTEM AND METHOD - A system includes a laser configured to generate a pump beam at a pump wavelength. The system also includes a multi-media Raman resonator configured to receive the pump beam and generate an output beam. The multi-media Raman resonator includes multiple mirrors and multiple Raman media optically located between the minors. Output power in the output beam is spectrally concentrated around a single dominant wavelength that is longer than a pump wavelength. The longer wavelength of the output beam is associated with a combination of at least one Stokes shift associated with each of the individual Raman media. A filter could be configured to absorb light at a wavelength that is absorbed by one of the Raman media or to redirect light at the wavelength absorbed by one of the Raman media away from that Raman medium. | 08-22-2013 |
20130329755 | Green and Red Despeckling - An apparatus and method for despeckling that includes a pulsed green laser, a green laser diode assembly, and stimulated Raman scattering light formed in an optical fiber. The stimulated Raman scattering light is divided into green light and red light. The green light from the stimulated Raman scattering is combined with the green laser diode assembly to form a green primary light. The red light from the stimulated Raman scattering light forms a red primary light. The green primary light and the red primary light are used to project a digital image. | 12-12-2013 |
20140016655 | Reducing The Spectral Bandwidth Of Lasers - A laser system for semiconductor inspection includes a fiber-based fundamental light source for generating fundamental light that is then converted/mixed by a frequency conversion module to generate UV-DUV laser light. The fundamental light source includes a nonlinear chirp element (e.g., a Bragg grating or an electro-optic modulator) that adds a nonlinear chirp to the seed light laser system prior to amplification by the fiber amplifier(s) (e.g., doped fiber or Raman amplifiers). The nonlinear chirp includes an x | 01-16-2014 |
20140023098 | OPTICAL FIBER LASERS - A fiber gain medium provided by a rare-earth doped fiber ( | 01-23-2014 |
20140112357 | Raman Distributed Feedback Fiber Laser and High Power Laser System Using the Same - A Raman distributed feedback (DFB) fiber laser is disclosed. It includes a pump source and a Raman gain fiber of a length smaller than 20 cm containing a distributed feedback (DFB) grating with a discrete phase structure located within no more than 10% off the center of the grating and wherein the Raman DFB fiber laser generates a laser signal with an optical spectrum, which has an optical bandwidth at half maximum optical intensity of less than 1 gigahertz (GHz) (wherein a maximum intensity frequency is different from the frequency of the pump laser). The Raman laser includes compensation for the nonlinear phase change due to Kerr effect and thermal effect resulting from absorption of the optical field, thus enhancing the conversion efficiency. | 04-24-2014 |
20140254614 | CASCADED RAMAN LASING SYSTEM - In a Raman system, a primary laser source emits laser light at an initial wavelength, and a seed source emits a multi-wavelength seed laser light. The seed wavelengths correspond to a respective Stokes orders of the primary laser light. The primary laser light and the seed laser light are combined and fed into a Raman gain medium. Stimulated Raman scattering (SRS) causes the primary laser light to be converted into laser light at a selected target wavelength. The seeding of the primary light mediates the conversion process, so as to reduce spontaneous Raman scattering. | 09-11-2014 |
20140269786 | CONTINUOUSLY VARIABLE PULSE-WIDTH, HIGH-SPEED LASER - A laser comprises a master oscillator, a modulator, a controller, and an amplifier. The master oscillator has an optical cavity and provides a signal, which may be continuous or pulsed. The modulator resides outside of the optical cavity, receives the signal, and modulates the signal to create a new train of pulses, where the pulses of the train of pulses include a pulse width. The controller, coupled to the modulator, instructs the modulator to control the pulse width of the pulses of the pulse train. The amplifier, optically coupled to the master oscillator, amplifies the train of pulses provided by the modulator. | 09-18-2014 |
20140269787 | WAVELENGTH VERSATILE VECSEL RAMAN LASER - A tunable lasing device including a vertical external cavity surface emitting laser, adapted to generate a fundamental laser beam in response to pumping from a pump source, said fundamental laser beam having a fundamental wavelength and a fundamental linewidth; a fundamental resonator cavity adapted to resonate the fundamental beam therein; a first optical element located within the fundamental resonator cavity for control of the fundamental linewidth of the fundamental beam; a Raman resonator located at least partially in said fundamental resonator adapted to receive the fundamental beam and comprising therein, a solid state Raman active medium located therein for generating at least a first Stokes beam from the fundamental beam wherein said Raman resonator cavity is adapted to resonate said Stokes beam therein and further adapted to emit an output beam; and further comprising a nonlinear medium located within the Raman resonator cavity for nonlinear frequency conversion of at least one of the beams present in the fundamental or the Raman resonator cavity; said tunable lasing device further comprising an output coupler adapted to emit an output beam, said output beam comprising at least a portion of said frequency converted beam being derived from at least one of the resonating beams in said fundamental or said Raman resonator cavities. | 09-18-2014 |
20140355630 | RAMAN SCATTERING PHOTOENHANCEMENT DEVICE, METHOD FOR MANUFACTURING RAMAN SCATTERING PHOTOENHANCEMENT DEVICE, AND RAMAN LASER LIGHT SOURCE USING RAMAN SCATTERING PHOTOENHANCEMENT DEVICE - A Raman scattered light enhancement device including a waveguide provided in a photonic crystal ( | 12-04-2014 |
20140376573 | RAMAN CONVERTING LASER SYSTEMS - In one embodiment, the instant invention provides a method that includes: outputting a first laser beam having: a beam quality factor (M2) between 1 and 5, and a spectral width of less than 0.15 nm, where the outputting is performed by a laser generating component that includes a alexandrite laser oscillator; converting the first laser beam through a first Raman cell to produce a second laser beam, where the first Raman cell is filled with a first gas; and converting the second laser beam through a second Raman cell to produce a final laser beam, where the second Raman cell is filled with a second gas and is operationally positioned after the first Raman cell, where the first gas and the second gas are different gasses, and where the final laser beam having: a second energy of at least 1 mJ, and at least one wavelength longer than 2.5 micron. | 12-25-2014 |
20150117473 | METHOD AND APPARATUS FOR HIGH-POWER RAMAN BEAM-COMBINING IN A MULTIMODE OPTICAL FIBER - According to an embodiment of the disclosure, a system for producing a higher power laser beam is provided. The system includes an optical fiber having a length. The optical fiber is configured to receive inputs from multiple laser pumps and an input from a Stokes seed laser pump. The optical fiber has a core that is doped. The core, when viewed from a cross-section of the optical fiber, has a higher concentration of doping at a location near an axis of the optical fiber than a location further from the axis of the optical fiber. The optical fiber is also configured to convert pump power to Stokes power along the length of the optical fiber when subjected to a Stimulated Raman Scattering (SRS) process. | 04-30-2015 |
20150325976 | A LASER AND A METHOD OF CONTROLLING THE GENERATION OF A LIGHT - A laser configured to optimise output power at a desired wavelength, by suppression of unwanted Stokes orders in a Raman cascade, the laser comprising a resonating structure configured to resonate precursor light and Raman light frequencies, having a Raman medium configured to interact with the precursor resonating light to generate the Raman light; a control nonlinear medium configured to reduce an extraction of power from the precursor resonating light by the Raman process; and an output nonlinear medium configured to interact with the precursor resonating light to generate a desired output light thereby extracting power from the precursor resonating light; whereby the control nonlinear medium reduces the extraction of power from the precursor resonating light by the Raman process to enhance the extraction of power from the precursor resonating light by the output nonlinear medium interacting with the precursor resonating light thereby increasing the power of desired output the light. | 11-12-2015 |
20150333473 | High Power Raman-Based Fiber Laser System and Method of Operating the Same - A fiber Raman laser is configured with a microstructured double clad passive fiber which has an inner cladding receiving and guiding a high intensity pump light. The double-clad passive fiber farther has a eon surrounded by the inner cladding and an outer cladding. An arrangement of air holes is configured to define the inner, waveguiding cladding so that an NA of the latter varies between about 0.25-0.9 allowing this to reduce the diameter of the inner cladding. The passive fiber is characterized by a substantial overlap between the pump light and 1 | 11-19-2015 |
20160006209 | PUMP LASER ARCHITECTURE AND REMOTELY PUMPED RAMAN FIBER AMPLIFIER LASER GUIDE STAR SYSTEM FOR TELESCOPES - There is provided a system for remote pumping of a Raman fiber amplifier comprising a pump laser located remotely from the Raman fiber amplifier and a laserhead and one or more optical fibers to optically couple the high power pump light from the remote pump laser to the Raman fiber amplifier where a seed laser light is amplified wherein the pump laser for producing a high power laser light of a predetermined pump wavelength comprises a first fiber laser emitting light at the predetermined pump wavelength and one (second) or two (third) laser emitting light at a wavelength lower than the predetermined pump wavelength and multiplexed with light from the first laser into an optical fiber providing Raman gain at the predetermined pump wavelength to convert the second (and optionally also the third) laser light to light at the predetermined pump wavelength. | 01-07-2016 |