Class / Patent application number | Description | Number of patent applications / Date published |
367100000 | With correlation or matched filtering | 12 |
20090135672 | Direction detecting device and direction detecting system - In a direction detecting device, a transmitting wave generator encodes a transmitting signal with a code having a high autocorrelation so as to generate a transmitting wave. A transmitter transmits the transmitting wave and a plurality of receiver elements receives a reflected wave reflected by an object. A direction calculating unit calculates a direction of the object based on a phase difference between a correlation value calculated based on the reflected wave received by one of the receiver elements and a correlation value calculated based on the reflected wave received by another one of the receiver elements, a distance between the one of the receiver elements and the another one of the receiver elements, and a wavelength of the transmitting wave. | 05-28-2009 |
20090213696 | ECHO DETECTION - An echo detection circuit that detects an echo by detecting the magnitude of a digitally mixed representation of the received acoustic signal and reference sine and cosine signals. That magnitude is then compared against an echo threshold to verify the presence or absence of an echo signal. A low pass filter with a configurable cut-off frequency may be used to define the selectivity of the echo detector. | 08-27-2009 |
20090323473 | TARGET SEARCHING DEVICE, TARGET SEARCHING PROGRAM, AND TARGET SEARCHING METHOD - The target searching device includes: a sound source which transmits a sound wave into a propagation space; a transducer array placed in an area to receive a forward scattering wave which scatters forward from the target within the propagation space; a subtraction processing device which subtracts a traveling wave directly traveling towards the transducer array from a mixed wave of the forward scattering wave and the traveling wave so as to separate the forward scattering wave; a passive-phase conjugate processing device which performs passive-phase conjugate processing on the forward scattering wave separated by the subtraction processing device so as to generate a passive-phase conjugated signal of the forward scattering wave; an autocorrelation processing device which performs autocorrelation processing on the traveling wave to generate an autocorrelation processed signal of the traveling wave; and a correlation device which judges a similarity between the autocorrelation processed signal and the passive-phase conjugated signal. | 12-31-2009 |
20100149923 | System and method for detecting obstacles for vehicles - The present invention refers to a system for detecting obstacles for vehicles, comprising at least one sensor able to transmit a detection signal and to receive an echo signal reflected off at least one obstacle, means of parametric evaluation of said received echo signal which comprise means of comparison between at least two successive echo signals for the determination of a reference echo signal able to define the position of at least one fixed obstacle with respect to said at least one sensor. | 06-17-2010 |
20110261653 | OBJECT PROBING DEVICE, OBJECT PROBING PROGRAM, AND OBJECT PROBING METHOD - An object probing device includes: a sound source which projects a sound pulse within a propagation environment; a transducer array disposed in a region for receiving the forward scattered wave scattered forward from the object existing in the propagation environment; an addition processing unit which extracts only a signal of the forward scattered wave by applying vector addition processing on a reference signal in a reference sound field received by the transducer array when the object does not exist in the propagation environment and a mixed signal in a probe sound field received when the object exists; a time reversal processing unit which generates a time-reversed sound pulse by applying time reversal processing on the extracted forward scattered wave; and a phase conjugation determination unit which checks whether or not a phase conjugacy is established in the propagation environment by employing a passive phase conjugation to the time-reversed sound pulse. | 10-27-2011 |
20110280106 | ULTRASONIC SENSOR AND METHOD FOR OPERATING AN ULTRASONIC SENSOR - The ultrasonic sensor having a switchable receive filter has a first bandwidth for a near measuring range of the ultrasonic sensor, and a second bandwidth for a distant measuring range of the ultrasonic sensor, the first bandwidth being greater than the second bandwidth. | 11-17-2011 |
20120113753 | POSITION DETECTION SYSTEM, TRANSMISSION DEVICE AND RECEPTION DEVICE, AND POSITION DETECTION METHOD - A position detection system, includes at least one moving body (MB) including a transmission device simultaneously emitting a trigger signal indicating transmission timing and an ultrasonic signal obtained by modulating a signal of a frequency as a reference by pseudo random sequence data having high self-correlativity, and a reception device detecting MB position. The reception device includes ultrasonic reception units, a unit calculating a correlation value between a waveform of the ultrasonic signal and a model waveform of the pseudo random sequence, a unit subjecting the waveform of the ultrasonic signal and the model waveform to calculate a correlation value between the two waveforms, a unit calculating a propagation time of each ultrasonic to arrive at each of the ultrasonic reception units from trigger signal reception to correlation peak detection, and a unit calculating MB position from the ultrasonic propagation time and the interval length between the ultrasonic reception units. | 05-10-2012 |
20130033964 | METHOD AND DEVICE FOR ACTIVELY DETECTING OBJECTS IN VIEW OF PREVIOUS DETECTION RESULTS - A method for detecting an object within a surrounding area of a vehicle, includes: repeatedly transmitting wave pulses into the surrounding area; repeatedly receiving wave pulses, which correspond to the transmitted wave pulses reflected by the objects; detecting the object with the aid of a signal representation of the received wave pulses, and ascertaining at least one signal characteristic of a first received wave pulse. The detecting of the object includes: comparing the curve in the form of the signal characteristic of the first received wave pulse to the curve of a further received wave pulse, which was received after the first received wave pulse, location information of the object being corrected in light of the comparison. | 02-07-2013 |
20130279295 | DUAL FREQUENCY ULTRASONIC LOCATIONING SYSTEM - A dual frequency ultrasonic locationing system includes an emitter operable to emit two different ultrasonic frequencies simultaneously in one ultrasonic burst. A receiver with at least two microphones is operable to receive the ultrasonic burst. A correlator is operable to correlate the signals obtained from each microphone to derive a time difference of arrival of the ultrasonic burst at each microphone. The time difference of arrival of the ultrasonic signal from the emitter impinging on each microphone of the receiver is utilized to determine a location of the emitter. | 10-24-2013 |
20130301391 | SYSTEM AND METHOD FOR OBJECT POSITION ESTIMATION BASED ON ULTRASONIC REFLECTED SIGNALS - A system for small space positioning comprises a transmitting element at a fixed and known location, which transmitting a modulated continuous wave, for example an ultrasonic wave, having a continuous carrier signal part and a base-band signal modulated thereon. The transmitting element transmits the modulated continuous wave over a range in which an object to be positioned may appear. A receiving element receives signals transmitted by the transmitting device and reflected by the object, and a position detection element determines a position of the object from analysis of both the carrier signal part and the base-band signal received from the reflected signal. | 11-14-2013 |
20140198620 | ENVIRONMENT MONITORING DEVICE IN A MOTOR VEHICLE AND METHOD FOR MONITORING THE ENVIRONMENT USING A CORRELATION - An environment monitoring device in a motor vehicle having a signal generating device for generating a transmitted signal, at least one ultrasonic transducer for converting electric oscillations into acoustic oscillations and/or vice versa, and an evaluation device which evaluates an electric received signal in order to determine distances to objects in an environment of the motor vehicle, wherein the signal generating device is linked to the at least one ultrasonic transducer so that the ultrasonic transducer emits an ultrasonic transmitted signal into the environment in accordance with the electric transmitted signal, and the evaluation device is connected to the at least one ultrasonic transducer or at least one further ultrasonic transducer in order to receive the electric received signal. Also disclosed is a method for monitoring an environment by using a cross-correlation. | 07-17-2014 |
20150309173 | ENVIRONMENT MEASUREMENT SYSTEM AND ENVIRONMENT MEASUREMENT METHOD - An environment measurement system according to the present invention is provided with a first unit comprising: a transmitter which is located undersea and transmits an acoustic wave in a designated direction a plurality of times; a first receiver which is located undersea and receives an acoustic wave reflected by a reflecting body at the sea surface or the seabed; a transmission direction setting unit which designates, to the transmitter, transmission directions specified in advance by a user, so as to cause the transmitter to transmit acoustic waves in the directions; a first necessary time measurement unit which, for each of the transmission directions, measures from the transmission and reception times of an acoustic wave a time necessary for the acoustic wave to return, as a necessary time, and outputs an average of the measured necessary time as an average necessary time for each of the transmission directions; a layer setting unit which partitions between the sea surface and the seabed into layers each extending horizontally, at intervals of preset distances; a simultaneous equations set-up unit which sets up simultaneous equations using the transmission directions, the necessary times and the layer thicknesses and taking average sound velocities in the respective layers as unknown variables; a simultaneous equations solving unit which solves the simultaneous equations; an initial parameter setting unit which sets initial values necessary for the simultaneous equations solving unit to solve the simultaneous equations, as parameter initial values; and a sound velocity profile output unit which creates a profile of sound velocities obtained by determining solutions acquired by the simultaneous equations solving unit to be average sound velocities in the respective layers and arranging the average sound velocities in the respective layers in order of depth, and outputs the profile. | 10-29-2015 |