Entries |
Document | Title | Date |
20080205191 | Methods and Apparatus of Source Control for Synchronized Firing of Air Gun Arrays with Receivers in a Well Bore in Borehole Seismic - Methods and apparatus for generating borehole seismic surveys are disclosed. The methods and apparatus enable more accurate surveys than previous surveying systems. In some embodiments, firing of remote seismic sources is synchronized with data recording in a borehole. In some embodiments, the synchronization is based on a universal time standard. In some embodiments, GPS positioning technology is used to predict firing times and synchronize firing times with downhole and surface recording. | 08-28-2008 |
20080267009 | Containerized Geophysical Equipment Handling and Storage Systems, and Methods of Use - Systems and methods for marine seismic cable deployment and retrieval are described. One system comprises a plurality of portable containers, each container temporarily storing a marine seismic component, at least some of the containers able to be removably fastened to a deck of a vessel of opportunity, and at least one of the portable containers storing a main cable winch on which is wound a marine seismic cable. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. | 10-30-2008 |
20080285380 | SEISMIC STREAMER WITH IRREGULARLY SPACED HYDROPHONES - A seismic streamer and a method for positioning a group of hydrophones in a seismic streamer. The hydrophones in a group are spaced irregularly along the length of the streamer to reduce the influence of bulge-wave noise and flow noise on the hydrophone group response. The irregular spacing may be produced as pseudorandom deviations of the actual positions of the hydrophones from a nominal uniform spacing of hydrophones. | 11-20-2008 |
20090052277 | Full wave seismic recording system - The present disclosure generally relates to systems and methods for acquiring seismic data. In one exemplary embodiment, a method for acquiring seismic data is described in which recorder instruments are deployed to the seafloor and utilized for recording pressure wave and shear wave data. An acoustic array, displaced from the seafloor, is also provided for sending acoustic signals to the instruments on the seafloor. The orientation of the instruments on the seafloor is determined via acoustic communication between the acoustic array and the instruments. Related systems and methods for acquiring seismic data are also described. | 02-26-2009 |
20090147619 | In-Sea Power Generation for Marine Seismic Operations - A method for conducting seismic operations includes the steps of deploying a seismic streamer carrying an electrically powered device from a vessel into water having waves, providing an in-sea generator in electrical connection with the device, producing electricity from the in-sea generator by harvesting mechanical energy from the waves, and providing the produced electricity to the device. | 06-11-2009 |
20090296518 | Method of Marine Seismic Data Acquisition - A method of acquiring marine seismic data using an acoustic source to generate an acoustic signal, a portion of which is reflected at one or more subsurface formation interfaces as a seismic signal, includes: a) sailing a surface vessel along a sinusoidal sail line which lies over an area to be surveyed while towing one or more seismic streamers, each streamer including a plurality of hydrophones to receive the reflected seismic signals, where the streamer follows the sinusoidal sail line while seismic data is acquired. In one embodiment, the method further comprises b) dividing the area to be surveyed using a grid to form a plurality of bins; c) collating the seismic signals using the plurality of bins; and, d) repeating step a) to populate each bin with seismic data, where a range of offsets associated with each event varies between adjacent cross-line and in-line bins. | 12-03-2009 |
20090316523 | ROTARY SUBWOOFER MARINE SEISMIC SOURCE - According to a preferred aspect of the instant invention, there is provided herein a system and method for creating low frequency seismic waves. In brief, the instant invention uses a rotary propeller-type system that has been mounted in, for example, a barge or other marine vessel as a seismic source. In the preferred arrangement, the instant source will generate a seismic signal that has greater low frequency content (e.g., frequencies that are less than about 10 Hz) than has been possible heretofore | 12-24-2009 |
20100034051 | OCEAN BOTTOM SEISMIC STATION - Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array. | 02-11-2010 |
20100067325 | System and Method for Collecting Seismic Information - A system and method for collecting seismic information is disclosed. In one embodiment, the method includes transmitting a first pressure wave from a first location towards a floor of a body of water, wherein the first location is in close proximity to the floor. The method also includes receiving a first reflected wave at a second point, wherein the first reflected wave comprises a reflection of the first pressure wave by a reflection point beneath the floor. The method also includes receiving a second reflected wave at the second point, wherein the second reflected wave comprises a reflection of a shear wave generated as a result of the first pressure wave striking the floor. | 03-18-2010 |
20100074048 | CONTAINER SYSTEM FOR SEISMIC CABLE AND STATIONS - Container systems used in storage, deployment or retrieval of a seismic cable array comprise a container, at least two coiling elements attached to a bottom side of the container, and storage means for allocating or accommodating, in an ordered arrangement, a number of seismic stations and/or a number of couplers/splices and/or other discontinuities which are being interconnected by sections of the seismic cable. Said storage means is arranged between said coiling elements and are attached to the bottom side of the container. The seismic cable is spooled or wound around said coiling elements. Corresponding methods of storing a seismic cable and deploying/retrieving the seismic cable are based on the use of at least two coiling elements and storage means for allocating or accommodating a number of seismic stations and/or a number of couplers/splices and/or a number of other discontinuities and arranged between said coiling elements. | 03-25-2010 |
20100103770 | Rotational Motion Compensated Seabed Seismic Sensors and Methods of use in Seabed Seismic Data Acquisition - Apparatus and methods for acquiring seismic data using a seabed seismic data cable positioned on a seabed are described, including correcting for the effect of one or more sensor non-linear motions, which improves accuracy of seismic data. One or multiple non-linear movements of the sensor may be corrected for. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b). | 04-29-2010 |
20100110829 | System and Method for Reducing the Effects of Ghosts From the Air-Water Interface in Marine Seismic Exploration - A system mechanically alters the geometry of the surface of the water by breaking the water surface with a mechanical device. The mechanical device may comprise a plurality of propellers, a plurality of aquafoils in the shape of plows, a wire whip, or other mechanical device to reduce the coefficient of reflectivity of the air-water interface. | 05-06-2010 |
20100142316 | USING WAVEFORM INVERSION TO DETERMINE PROPERTIES OF A SUBSURFACE MEDIUM - A technique includes providing seismic data acquired in a seismic survey of a medium. The seismic data includes particle motion data. The technique includes modeling waves propagating through the medium during the survey as a function of at least one property of the medium and the seismic data. The technique includes, based on the modeling, determining the property(ies) of the medium. | 06-10-2010 |
20100157727 | MULTIPLE RECEIVER LINE DEPLOYMENT AND RECOVERY - Embodiments described herein relate to an apparatus and method of transferring seismic equipment to and from a marine vessel and subsurface location. In one embodiment, the method includes deploying at least one remotely operated vehicle from a vessel operating in a first direction, and operating the at least one remotely operated vehicle in a pattern relative to the direction of the vessel to form at least two receiver lines. | 06-24-2010 |
20100172205 | Combined electromagnetic and seismic acquisition system and method - A method for marine geophysical surveying according to one aspect of the invention includes towing at least one geophysical sensor streamer in a body of water. The streamer includes a plurality of spaced apart electromagnetic field receivers disposed at spaced apart locations along the streamer. The streamer also includes a plurality of seismic sensors disposed at spaced apart locations. The seismic sensors each include at least one pressure responsive receiver and at least one particle motion responsive receiver. At selected times, a seismic energy source is actuated in the water. Particle motion and pressure seismic signals, and electromagnetic field signals are detected at the respective receivers. | 07-08-2010 |
20100182870 | UNDERSEAS SEISMIC ACQUISITION - The described invention relates to a method for acquiring seismic data in icy waters comprising positioning a fixed structure or movable vessel ( | 07-22-2010 |
20100188930 | BOTTOM REFERENCED VIBRATORY SOURCES FOR SHALLOW WATER ACQUISITION - The described invention relates to seismic acquisition means for use in shallow water marine environments, comprising: (a) a vessel ( | 07-29-2010 |
20100226203 | SYSTEM AND METHOD FOR UNDERWATER SEISMIC DATA ACQUISITION - A seismic source is provided that uses suitable low frequency acoustic transducers enabling a complex chirp to be used while increasing the effective power level and keeping the peak power down to a fraction of this effective power. The transducers can be driven using a pseudo-random coding of chirps that change frequency in each contiguous burst within the chirp and the interval between chirps varied to provide a pseudo-random duty cycle allowing multiple signals to be present in the water at the same time with a wider spectral coverage. By changing the timing of the drive signal for specific transducers, the direction of the source beam can be altered to steer the beam towards or away from certain objects or areas. | 09-09-2010 |
20100246322 | DETERMINING A POSITION OF A SURVEY RECEIVER IN A BODY OF WATER - To determine a position of a survey receiver used to measure a response of a subterranean structure to a survey signal, positions of the survey receiver as the survey receiver descends in a body of water to a surface are received from an acoustic ranging system. Measurement information associated with movement of the survey receiver is received from at least one sensor. Based on the measurement information from the acoustic ranging system and the at least one sensor, the position of the survey receiver at the surface once the survey receiver has reached the surface is computed. | 09-30-2010 |
20100278009 | Storage and Management System for Seismic Data Acquisition Units - A configuration for the deck of a marine vessel, wherein parallel and perpendicular travel paths, for movement of individual OBS unit storage baskets, are formed along a deck utilizing, in part, the storage baskets themselves. A portion of the deck is divided into a grid defined by a series of low-to-the-deck perpendicular and parallel rails and each square in the grid is configured to hold an OBS unit storage basket. Around the perimeter of the grid is an external containment wall which has a greater height than the rails. Storage baskets seated within the grid are configured to selectively form internal containment walls. Opposing internal and external containment walls define travel paths along which a storage basket can be moved utilizing a low, overhead gantry. A basket need only be lifted a minimal height above the deck in order to be moved along a path. The containment walls and the deck itself constraining uncontrolled swinging of baskets, even in onerous weather or sea conditions. The system is flexible to meet the needs of a desired operation since the internal walls of the grid can be reconfigured as desired in order to free up a particular storage basket or define a particular travel path. | 11-04-2010 |
20110002192 | Jointly Interpolating and Deghosting Seismic Data - A technique includes representing actual measurements of a seismic wavefield as combinations of an upgoing component of the seismic wavefield and ghost operators. Interpolated and deghosted components of the seismic wavefield are jointly determined based at least in part on the actual measurements and the representation. | 01-06-2011 |
20110013481 | METHOD AND APPARATUS FOR DETECTING MARINE DEPOSITS - Noise compensation in controlled source electromagnetics (CSEM) comprises measuring time-varying magnetic gradients of the marine environment subjected to CSEM. From the measured magnetic gradients, oceanographic electric and magnetic field noise is determined and used for noise compensation of CSEM measurements of electric and magnetic fields. Selection of magnetic gradient measurement provides improved measurement of oceanographic magnetic noise as other electromagnetic noise sources produce negligible magnetic gradients in the marine environment. Electric field noise is then predicted from the magnetic measurements. | 01-20-2011 |
20110032794 | Undersea seismic monitoring network - The present invention provides an undersea seismic monitoring network, the monitoring network comprises at least one underwater vehicle and at least two monitoring stations located on the seabed, where each of the monitoring stations comprises at least one sensor for gathering seismic data and a radio modem for transmitting and receiving data to and from the underwater vehicle via a first wireless connection and where a second wireless connection is established between the monitoring stations, wherein the first wireless connection is formed by electromagnetic radiation through the water and the second wireless connection is formed by the propagation of an electromagnetic signal at least partially through the seabed. | 02-10-2011 |
20110149681 | Directionally and depth steerable seismic source array - A steerable seismic energy source includes at least one float. The floatation device includes a device for changing buoyancy thereof. A frame is coupled to the at least one float. At least one seismic energy source is suspended from the frame. At least one steering device is coupled to the floatation device or the frame. The at least one steering device includes at least one control surface and a control surface actuator coupled to the control surface. The actuator is configured to rotate the control surface to generate hydrodynamic lift at least in a vertical direction. | 06-23-2011 |
20110158042 | Randomization of Data Acquisition in Marine Seismic and Electromagnetic Acquisition - The presently disclosed technique includes a method for use in a marine survey comprising randomizing the distribution of receivers and sources during a coil shoot acquisition. The randomizing can be implemented in a number of ways. For example, in one embodiment, randomizing the distribution includes randomizing the positions of the circle centers defining the sail lines. This may be implemented by, for example, distributing the same number of circle centers as would be used in a non-random sampling in a uniform random distribution. In another embodiment, randomizing the distribution includes permitting the streamers in which the receivers are allowed to drift while controlling crossline streamer separation. Other embodiments may combine these approaches or utilize still other approaches. | 06-30-2011 |
20110188343 | Random Transmitter Placement Method For Stationary Seismic Imaging - A method for at least one of imparting seismic energy into formations below the bottom of a body of water and detecting seismic energy therefrom includes releasing a plurality of acoustic transducers into the water. The transducers move to the bottom by gravity. A geodetic position of each of the transducers on the water bottom is determined. At least one of the following is performed: actuating each of the transducers as a transmitter at least once, the actuating of each transducer occurring at a time selected to cause seismic energy to be imparted into the formations in a beam along a selected direction, the selected time related to relative positions of the transducers; and recording signals detected by each of the transducers, the recording including adding a selected time delay to cause response of the transducers to be amplified along a selected direction. | 08-04-2011 |
20110194376 | Free Charge Carrier Diffusion Response Transducer For Sensing Gradients - Devices for sensing gradients are constructed from material whose properties change in response to gradients. One embodiment of the device is a transducer ( | 08-11-2011 |
20110216625 | System for Seismic Exploration A Submerged Subsurface Including Implanted Bases - A system for seismic exploration of a submerged sub-surface comprises a plurality of bases ( | 09-08-2011 |
20110255366 | Electrical power system for towed electromagnetic survey streamers - A marine electromagnetic receiver cable includes a plurality of signal processing modules disposed at spaced apart locations along the receiver cable. A power supply line is connected to each of the signal processing modules and to an electric current source. A current regulation device is connected in the power supply line proximate each signal processing module. The current regulation devices are connected such that an amount of current flowing through the power supply line is substantially constant. At least one electromagnetic receiver is functionally coupled to an input of each signal processing module. | 10-20-2011 |
20120069702 | MARINE SEISMIC SURVEY SYSTEMS AND METHODS USING AUTONOMOUSLY OR REMOTELY OPERATED VEHICLES - Systems and methods for carrying out seismic surveys and/or conducting permanent reservoir monitoring with autonomous or remote-controlled water vehicles, including surface and submersible vehicles, are described. Additional methods carried out by autonomous or remote-controlled water vehicles and associated with seismic surveys further described. | 03-22-2012 |
20120092955 | System and Method for Reducing the Effects of Ghosts From the Air-Water Interface in Marine Seismic Exploration - A system mechanically alters the geometry of the surface of the water by breaking the water surface with a mechanical device. The mechanical device may comprise a plurality of propellers, a plurality of aquafoils in the shape of plows, a wire whip, or other mechanical device to reduce the coefficient of reflectivity of the air-water interface. | 04-19-2012 |
20120147699 | DISTANCE- AND FREQUENCY-SEPARATED SWEPT-FREQUENCY SEISMIC SOURCES - There is provided a method of seismic acquisition that utilizes a bank of restricted-bandwidth swept-frequency sub-band sources as a seismic source. Each seismic source will cover a restricted sub-band of frequencies, with all the sources taken together covering the full frequency range. Adjacent frequency bands may partially overlap, but non-adjacent frequency bands should not. The sources may be divided into two or more groups, with no sources covering adjacent frequency bands being placed in the same group. The sources within a group can then be separated by bandpass filtering or by conventional simultaneous source-separation techniques. The source groups may be operated simultaneously but separated in space, and the individual sources themselves may each operate independently, on a sweep schedule customized for that particular source. | 06-14-2012 |
20130003496 | ROTARY JOINT/SWIVEL DEVICE - A rotary joint or swivel device for ensuring a continuous connection between two items that rotates with respect to each other, for example between an instrumentation unit on a fixed installation and sensor elements in a cable on a rotating cable reel or drum, is provided. The rotary joint or swivel device comprises a minimum of two spools | 01-03-2013 |
20130083622 | UNDERWATER NODE FOR SEISMIC SURVEYS - A method, system and a marine node for recording seismic waves underwater. The node includes a body made of a compressible material that has a density similar to a density of the water; a first sensor located in the body and configured to record pressure waves; and a second sensor located in the body and configured to record three dimensional movements. The body is coupled to the water for passing the seismic waves to the first and second sensors. | 04-04-2013 |
20130083623 | DEPLOYMENT AND RECOVERY OF AUTONOMOUS UNDERWATER VEHICLES FOR SEISMIC SURVEY - A system and method for performing a marine seismic survey of a subsurface. The method includes deploying under water, from a deploying vessel, an autonomous underwater vehicle (AUV); recording with seismic sensors located on the AUV seismic waves generated by an acoustic source array; instructing the AUV to surface at a certain depth relative to the water surface; recovering the AUV by bringing the AUV on a recovery vessel; and transferring recorded seismic data to the recovery vessel. | 04-04-2013 |
20130083624 | AUTONOMOUS UNDERWATER VEHICLE FOR MARINE SEISMIC SURVEYS - An autonomous underwater vehicle (AUV) for recording seismic signals during a marine seismic survey. The AUV includes a body having a flush shape; an intake water element located on the body and configured to take in water; at least one propulsion nozzle located on the body and configured to eject the water from the intake water element for actuating the AUV; at least one guidance nozzle located on the body and configured to eject water to change a traveling direction of the AUV; and a seismic payload located on the body of the AUV and configured to record seismic signals. | 04-04-2013 |
20130100762 | SEISMIC DATA ACQUISITION AND SOURCE-SIDE DERIVATIVES GENERATION AND APPLICATION - The technologies described herein include systems and methods for performing a first seismic survey and performing a second seismic survey after a predetermined amount of time has lapsed between the first seismic survey and the second seismic survey. The shot times and the shot positions of the second seismic survey may be substantially the same as the shot times and the shot positions of the first seismic survey. After performing the seismic surveys, seismic data generated by the first seismic survey may be processed to generate a first image, and seismic data generated by the second seismic survey may be processed to generate a second image. After generating the first and second images, a difference between the first image and the second image may be computed to generate a time lapse difference image. | 04-25-2013 |
20130188448 | MULTI-VESSEL SEISMIC ACQUISITION WITH UNDULATING NAVIGATION LINES - Method for determining a seismic survey configuration of a multi-vessel acquisition system. The method includes a step of receiving number that corresponds to vessels to be used in the multi-vessel acquisition system; a step of receiving a cross-line distance between first and last straight line paths corresponding to first and last vessels, respectively, of the multi-vessel acquisition system; a step of receiving an inline distance between the first and last vessels; a step of selecting shapes of undulating paths for the vessels of the multi-vessel acquisition system; a step of receiving a desired azimuth and/or offset distribution of receivers towed by one or more streamer vessels of the multi-vessel acquisition system relative to source vessels of the multi-vessel acquisition system; and a step of calculating amplitudes (A | 07-25-2013 |
20130258806 | MARINE ACQUISITION USING SUBAQUATIC FLOATING SEISMIC NODES - Methods and systems are presented for generating and performing a seismic data acquisition mission based on an a priori sea current model and a seismic data acquisition operation model and a shooting solution model based on the a priori sea current model. The individual models can be updated based on releasing sample buoys through the survey area both before and during mission execution. | 10-03-2013 |
20130272089 | ELECTROMAGNETICALLY DRIVEN MARINE VIBRATOR - A marine vibrator has a housing that comprises a displacement member, the displacement member having a first position and a second position, the housing and the displacement member together defining an internal volume. A linear electromagnetic motor interacts with the displacement member so as to move the displacement member between a first position and a second position and correspondingly strokes the displacement member to cover a volume. The linear electromagnetic motor comprises magnets and coils that when energized create an electromagnetic force there between, wherein the linear electromagnetic motor comprises a piston and a guide that substantially surrounds the piston. The piston has incorporated therein either the coils or the magnets, and the guide having incorporated therein the other of the coils or the magnets. The piston is in interaction with the displacement member. | 10-17-2013 |
20130301384 | ACQUIRING AZIMUTH RICH SEISMIC DATA IN THE MARINE ENVIRONMENT USING A REGULAR SPARSE PATTERN OF CONTINUOUSLY CURVED SAIL LINES - A method for determining a sail plan for a towed-array marine seismic survey includes: dividing a survey area into a regular grid of tiles; and identifying a subset of the tiles as nodes around which continuously curved sail lines are defined. The nodes define regular pattern further including: a first subpattern of nodes; and a second subpattern of nodes offset from the first subpattern. A method for conducting a towed array marine survey includes: traversing a plurality of continuously curved sail lines across a survey area, each sail line being relative to a node; and acquiring seismic data while traversing the continuously curved sail lines. The set of nodes defining a regular pattern further including: a first subpattern of nodes; and a second subpattern of nodes offset from the first subpattern. | 11-14-2013 |
20130301385 | System and Method for Towed Marine Geophysical Equipment - A system comprises towed marine geophysical equipment, adapted for towing through a body of water; and a surface covering, comprising a textural attribute of shark skin, attached to the marine geophysical equipment. A method comprises towing marine geophysical equipment having a surface covering, comprising a textural attribute of shark skin, attached thereto. | 11-14-2013 |
20130343152 | METHOD FOR DETERMINING AN EQUIPMENT CONSTRAINED ACQUISITION DESIGN - A method for determining an equipment constrained acquisition design. | 12-26-2013 |
20140029378 | RECONSTRUCTING SEISMIC WAVEFIELDS - A technique includes receiving seismic data acquired in a seismic survey in the vicinity of a reflecting interface. The survey has an associated undersampled direction. The technique includes providing second data indicative of discrete samples of incident and reflected components of a continuous seismic wavefield along the undersampled direction and relating the discrete samples to a linear combination of the continuous incident and reflected seismic wavefields using at least one linear filter. Based on the relationship, an unaliased representation of the linear combination of the continuous incident and reflected seismic wavefields is constructed. | 01-30-2014 |
20140036622 | SEISMIC SENSOR NODE WITH SERRATED ANNULAR SKIRT - A seismic sensor node | 02-06-2014 |
20140104981 | SEISMIC CABLE FOR SEISMIC PROSPECTION TOLERANT TO FAILURE ON POWER SUPPLYING AND/OR DATA TRANSMISSION LINES - A seismic cable including sensors, data transmission lines extending the length of the seismic cable for conveying data signals issued from the sensors. Controllers distributed along the seismic cable operate as an interface between the sensors and the data transmission lines. Power supplying lines supply power to the controllers and the sensors. X power supplying lines are alternately connected to one out of X successive controllers. Each controller is adapted for applying on a power supplying line detected as defective the electrical tension provided by another power supplying line. Y data transmission lines are alternately connected to one out of Y successive controllers. Each controller is adapted to redirect towards at least one adjacent controller the data associated with a data transmission line which is determined to be defective. | 04-17-2014 |
20140104982 | OCEAN BOTTOM SEISMIC STATION - Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array. | 04-17-2014 |
20140104983 | MULTIPLE RECEIVER LINE DEPLOYMENT AND RECOVERY - Embodiments described herein relate to an apparatus and method of transferring seismic equipment to and from a marine vessel and subsurface location. In one embodiment, a marine vessel is provided. The marine vessel includes a deck having a plurality of seismic sensor devices stored thereon, two remotely operated vehicles, each comprising a seismic sensor storage compartment, and a seismic sensor transfer device comprising a container for transfer of one or more of the seismic sensor devices from the vessel to the sensor storage compartment of at least one of the two remotely operated vehicles. | 04-17-2014 |
20140146638 | Method for Managing Shots in a Multi-Vessel Seismic System - Method for managing shots in a multi-vessel seismic system, including for each slave shooter vessel: a) computing first theoretical shot times, based on a speed a scheduler shooter vessel and shot points associated to the scheduler shooter vessel, associated next shots of the scheduler shooter vessel; b) computing, based on a speed of the slave shooter vessel and the shot points, second theoretical shot times associated to the next shots; c) computing, based on the first theoretical shot times, interpolated virtual shot times; d) computing, based on the first theoretical shot times, the interpolated virtual shot times and a minimum shot time interval, shooting time windows; e) for each next shot: if the second theoretical shot time is in the shooting time window, selecting as a predicted shot time the second theoretical shot time; otherwise, selecting a border of the shooting time window closest to the second theoretical shot time. | 05-29-2014 |
20140153359 | Marine Siren Seismic Source - A very low frequency marine seismic source has a reservoir of water ( | 06-05-2014 |
20140177387 | MARINE SEISMIC SURVEYS USING CLUSTERS OF AUTONOMOUS UNDERWATER VEHICLES - A seismic survey system records seismic signals during a marine seismic survey. The system includes first and second clusters, each including a set of autonomous underwater vehicles (AUVs); each cluster being associated with a corresponding first or second unmanned surface vehicle (USV); and a central control unit located on a floating platform and configured to control the first and second USVs. The first USV follows its own path and the first cluster follows the first USV independent of the second USV or the second cluster. | 06-26-2014 |
20140185408 | BOTTOM SEISMIC SYSTEM - A sea bottom station for registration of seismic waves with vertical and horizontal components, having a vertical axis, including—a submergible case with a lid and a bottom preferably twice thicker than the lid,—a geophone block, wherein one geophone registers the vertical component, the remaining geophones register the horizontal component and create geophone pairs being pairwise orthogonal-positioned, while the geophones of each such pair are located symmetrically to the vertical axis. The bottom station includes—a power supply unit formed of rechargeable batteries, circumferentially located and pairwise symmetrical relatively to the vertical axis. The bottom station may include a multi-channel registration unit,—a connector socket, a LED sensor,—vacuum and external pressure sensors,—an acoustic system having an electronic board connected to an antenna,—an angle-detector associated with—a compass whose indication direction coincides with a geophone pair's axis, and the compass' center is located on the vertical axis. | 07-03-2014 |
20140192617 | SYSTEM FOR ACQUIRING SEISMIC DATA IN A MARINE ENVIRONMENT, USING SEISMIC STREAMERS COUPLED TO MEANS FOR DETECTING AND/OR LOCATING MARINE MAMMALS - Discloses herein is a system of acquiring seismic date in a marine environment, which includes: seismic streamers towed by a vessel; and means for detecting and/or locating marine mammals, characterised in that said marine mammal detection and/or location means are secured to said seismic streamers. | 07-10-2014 |
20140198607 | SIMULTANEOUS SHOOTING NODAL ACQUISITION SEISMIC SURVEY METHODS - A method of performing a seismic survey including: deploying nodal seismic sensors at positions in a survey region; activating a plurality of seismic sources; and using the nodal seismic sensors to record seismic signals generated in response to the activation of the plurality of signals. | 07-17-2014 |
20140211589 | UNDERWATER NODE FOR SEISMIC SURVEYS AND METHOD - A method, system and a marine node for recording seismic waves underwater. The node includes a first module configured to house a seismic sensor; bottom and top plates attached to the first module; a second module removably attached to the first module and configured to slide between the bottom and top plates, the second module including a first battery and a data storage device; and a third module removably attached to the first module and configured to slide between the bottom and top plates, the third module including a second battery. | 07-31-2014 |
20140219051 | CONFIGURABLE ACQUISITION UNIT - Embodiments of a configurable acquisition unit are disclosed together with applications for configurable acquisition units. In one embodiment, an acquisition unit includes a seismic data collection module that with a first housing. The acquisition unit also includes a second module with a second housing. The first housing is releasably coupled to the second housing, and when the first housing is coupled to the second housing, an outer surface of the first housing abuts an outer surface of the second housing. | 08-07-2014 |
20140233350 | Method and System for Adjusting Vessel Turn Time with Tension Feedback - Disclosed are methods and systems for using tension feedback from steerable deflectors to adjust vessel turn time. In one example, a maximum tension for a second steerable first towed on a first side of the survey vessel may be determined. A radius of a turn of the vessel at a preselected speed may further be selected such that the tension on the first steerable deflector is less than the maximum tension. The vessel may be turned while moving at the preselected speed, wherein the turning of the vessel has the selected radius. Tension may be measured on the first steerable deflector during the step of turning the vessel. | 08-21-2014 |
20140233351 | Method and Device for Estimating a Relative Position Between Towed Acoustic Linear Antennas - A method for estimating a position of a first acoustic linear antenna relative to a second acoustic linear antenna belonging to a network of towed acoustic linear antennas on which are arranged a plurality of nodes. The method includes: setting a first plurality of nodes arranged on the first antenna to act as sender nodes and a second plurality of nodes arranged on the second antenna to act as receiver nodes; forming a first group of sender nodes each sending a same first acoustic signature; for each receiver node: obtaining a propagation duration and establishing a geometrical figure representative of potential positions of a sender node, based on the propagation duration and the first acoustic signature; determining a set of common points between the geometrical figures; estimating the position of the first antenna relative to the second antenna based on the set of common points. | 08-21-2014 |
20140241117 | SYSTEM AND METHOD FOR PREVENTING CAVITATION IN CONTROLLED-FREQUENCY MARINE SEISMIC SOURCE ARRAYS - There is provided herein a method of seismic acquisition that utilizes an arrangement of marine sources where each source is positioned at a water depth shallow enough for the surface ghost notch to fall at a frequency greater than or equal to the maximum radiated frequency of interest. If the marine seismic source has a ratio of signal bandwidth to maximum frequency that is less than one half, then it is possible to deploy it at a greater depth at which ghost notches fall below and above its frequency band but not in it. Further, by placing two or more sources at different depths for the same frequency, any undesired nulls in the radiation pattern caused by the deeper tow can be filled in. | 08-28-2014 |
20140241118 | COMBINED WIDE AND NARROW AZIMUTH SEISMIC DATA ACQUISITION SYSTEM AND METHOD - There is a method for acquiring seismic data over a survey area. The method includes deploying streamer and source vessels to acquire seismic data along a survey line; performing one pass with the streamer and source vessels along the survey line for collecting wide azimuth (WAZ) data; and performing another pass with the streamer and source vessels along the survey line for collecting narrow azimuth (NAZ) data. | 08-28-2014 |
20140247690 | ANTIFOULING PROTECTIVE SKIN SECTION FOR SEISMIC SURVEY EQUIPMENT AND RELATED METHODS - One or more portions of a streamer or other equipment of a seismic survey system (e.g., birds, buoys, deflectors, etc.) are covered with protective removable skin sections. A protective removable skin section includes a flexible sheet and a reversible closure system configured to join edges of the flexible sheet. The protective removable skin section may be mounted onboard of a vessel, when the equipment is deployed. | 09-04-2014 |
20140254310 | Marine Streamer Having Variable Stiffness - Disclosed are methods and systems for performing marine geophysical surveys that utilize a streamer having variable stiffness. An embodiment discloses a sensor streamer comprising: an outer surface; tension members within the outer surface extending along a length of the sensor streamer; spacers disposed within the outer surface along the length of the sensor streamer; a geophysical sensor disposed in an interior of one of the spacers; and an actuator assembly configured to apply tension to the tension members. | 09-11-2014 |
20140254311 | AUTONOMOUS CLEANING DEVICE FOR SEISMIC STREAMERS AND METHOD - A cleaning device for cleaning a marine element towed in water and related methods are provided. The cleaning device includes a body configured to enclose the marine element; at least one wing attached to the body and configured to impart translational and rotational motion to the body when interacting with the water; a switching and locking mechanism configured to change an orientation of the at least one wing between a first orientation and a second orientation when contacting a stopper and also to lock the selected orientation; rotating means attached to an internal surface of the body and configured to contact the marine element, the rotating means having axles that make a fix angle with a longitudinal axis of the body; and a cleaning tool attached to the body and configured to clean the marine element. | 09-11-2014 |
20140254312 | METHOD AND SYSTEM FOR AUGMENTING FREQUENCY RANGE OF CONVENTIONAL MARINE SEISMIC SOURCE WITH LOW-FREQUENCY - A resonant source element is configured to generate seismic waves in water. The resonant source element includes a housing having two openings covered by first and second pistons, wherein the first and second pistons are configured to freely translate relative to the housing to generate the seismic waves; and a high-pressure system configured to discharge inside the housing and to actuate the first and second pistons. The first and second pistons are configured to oscillate after the high-pressure system is fired to generate low-frequency seismic waves. | 09-11-2014 |
20140254313 | METHOD AND SYSTEM FOR AUGMENTING FREQUENCY RANGE OF CONVENTIONAL MARINE SEISMIC SOURCE WITH LOW-FREQUENCY - A resonant source element configured to generate seismic waves. The resonant source element includes a housing; a high-pressure system configured to be discharged inside the housing; and a first conduit attached to an opening of the housing, wherein a distal end of the first conduit freely communicates with an ambient. | 09-11-2014 |
20140254314 | STREAMER DESIGN FOR GEOPHYSICAL PROSPECTING - An apparatus is disclosed that includes a solid-core streamer with particle motion sensors disposed within the solid core. Some embodiments may additionally include one or more pressure sensors that are disposed outside of the solid core. In some embodiments, the apparatus may also include one or more electromagnetic sensors. Also disclosed are various methods of operating an apparatus that includes a streamer with particle motion sensors disposed within the solid core of the streamer. | 09-11-2014 |
20140254315 | POWER SAVINGS MODE FOR OCEAN BOTTOM SEISMIC DATA ACQUISITION SYSTEMS - Embodiments of the invention provide methods, systems, and apparatus for conserving power while conducting an ocean bottom seismic survey. Sensor nodes placed on an ocean floor may be configured to operate in at least an idle mode and an active mode. When a seismic source boat approached the sensor node, the node may adjust its mode of operation from an idle mode to an active mode. After the seismic source boat is no longer near the sensor node, the idle mode may be entered again to conserve power. | 09-11-2014 |
20140269168 | INTERFACING MARINE SURVEY DEVICES USING ACOUSTIC TRANSDUCERS - Techniques are disclosed relating to acoustically interfacing marine survey devices. In one embodiment, a system includes survey equipment, first and second acoustic transducers, and a first device. In this embodiment, the first acoustic transducer is coupled to the survey equipment and configured to perform at least one of receiving survey information and sending control information. In this embodiment, the first device is not directly coupled to the survey equipment. In this embodiment, the second acoustic transducer is coupled to the first device and configured to perform at least one of sending survey information and receiving control information. In one embodiment, the first acoustic transducer is included in or coupled to a streamer cable. | 09-18-2014 |
20140269169 | SYSTEMS AND METHODS FOR RANDOMIZING FIRING TIMES OF SIMULTANEOUS SOURCES IN MARINE SURVEYS - Computational systems and methods for randomizing the order in which multiple sources are fired in simultaneous source acquisition are described. In one aspect, pseudo-randomly shifted time delays are generated for each shot interval of a marine-survey-time line. Each shifted time delay is assigned to one or the sources. The sources within each shot interval are fired based on the shifted time delays. | 09-18-2014 |
20140269170 | Method for Optimizing the Design of Multiple-Source Arrays Used in Marine Seismic Surveys - A method and apparatus for determining marine seismic source configurations which produce a minimum error after the process of combining the wave fields to eliminate the responses of sources including the source ghost operated at multiple depths, without separating these wave fields, is disclosed. In one embodiment, a method includes simulating, on a computer system, the performing of a seismic survey for one or more source configurations. An error term is calculated for each configuration simulated. Based on the calculated error terms, a configuration having the smallest error among those simulated may be determined. | 09-18-2014 |
20140269171 | SEISMIC STREAMER SYSTEM - A method of performing a marine survey is provided. The method may include deploying, into a body of water, a towable streamer including one or more sensors for performing a subterranean survey. The method may also include receiving, from the sensors, information relating to the subterranean survey at a data storage device housed within a portion of the towable streamer. The method may also include storing the information within the data storage device. | 09-18-2014 |
20140269172 | ANTI-FOULING SEISMIC STREAMER - A seismic streamer and associated method are provided. The seismic streamer may include a seismic streamer core having a cylindrical configuration. A melt-processable thermoplastic layer may be coupled with the seismic streamer core, the melt-processable thermoplastic layer being extruded to form a first tube. An elastomeric layer may be coupled with the melt-processable thermoplastic layer, the elastomeric layer being extruded to form a second tube. | 09-18-2014 |
20140269173 | METHODS AND SYSTEMS FOR MARINE SURVEY ACQUISITION - A marine survey acquisition system. The system may include a vessel for towing a marine survey spread. The marine survey spread may include streamers, marine vibrators and a cable. The cable may be coupled to a respective streamer from among the streamers and one of the marine vibrators. The cable may power the respective streamer and the one of the marine vibrators. The one of the marine vibrators may emit energy at a high frequency range. | 09-18-2014 |
20140269174 | Arctic Seismic Surveying Operations - A marine seismic survey is performed in icy waters by initially planning a survey track traversing a survey area. The initial track is planned based on initial ice conditions in the survey area having the icy waters. After preparing the system, a seismic system is deployed into the water from a survey vessel at the survey area. This is typically done in an area relatively free of ice. At least one escort vessel escorts the survey vessel as it traverses the survey track and obtains seismic data. The survey vessel tows the seismic system under the surface of the icy water to avoid the ice. All the while, systems and operators monitor the survey area along the survey track for actual ice conditions. In this way, the escort vessel can handling the actual ice conditions along the survey track so the survey vessel does not need to halt. | 09-18-2014 |
20140269175 | Seismic Acquisition in Marine Environments Using Survey Paths Following a Series of Linked Deviated Paths and Methods of Use - Methods and systems are provided for acquiring seismic data in a marine environment using survey paths following a series of linked curved paths so as to obtain multi-azimuthal data over a sub-surface target. Marine vessels towing multiple seismic streamers may be configured to travel substantially along a series of linked deviated paths or a series of linked curved paths. Sources may be excited to introduce acoustic wave energy in the marine environment and into the subsea region. The acoustic wave energy then reflects and refracts from the subsea region to form reflected and refracted wave energy, which is detected by seismic receivers spaced along the streamers. The detected seismic data is then interpreted to reveal seismic information representative of the surveyed subsea region. Other enhancements include configuring the streamers in a flared configuration, where the lateral spacing increases rearwardly over the length of the seismic streamers. | 09-18-2014 |
20140286125 | SEISMIC ACQUISITION METHOD AND APPARATUS - A system and method for performing a seismic survey. The system includes a first seismic source and a second seismic source configured for generating seismic signals. The first seismic source is configured for generating seismic signals ranging from about 4 Hz to about 120 Hz. The second seismic source is configured for generating seismic signals ranging from about 0 Hz to about 8 Hz. The system includes receivers to receive seismic data in response to seismic signals generated by the seismic sources. | 09-25-2014 |
20140301160 | Controlled Damping Geophone - Vibration transducers, sensors including the vibration transducers, and methods for manufacturing the same. The vibration transducer may include a magnet. The vibration transducer may include a bobbin disposed about the magnet. The vibration transducer may include a first coil disposed about the bobbin. The vibration transducer may include a controllable damping coil disposed about the bobbin. The first coil is movable relative to the magnet. The magnet is polarized with respect to the axis of the vibration transducer. | 10-09-2014 |
20140301161 | MARINE SEISMIC SURVEY AND METHOD USING AUTONOMOUS UNDERWATER VEHICLES AND UNDERWATER BASES - A seismic survey system records seismic signals during a marine seismic survey. The system includes at least two underwater bases and plural autonomous underwater vehicles (AUVs) that carry appropriate seismic sensors. An AUV is housed by an underwater base and it is launched to a final destination from the underwater base. The AUV receives pinger signals from at least two underwater bases for correcting its trajectory toward the final destination. | 10-09-2014 |
20140301162 | ACQUISITION SYSTEM AND METHOD FOR BLENDED SEISMIC DATA - System, medium and method for de-blending seismic data. The method for acquiring blended seismic data associated with a subsurface of the earth includes receiving coordinates of a sail line associated with first and second shot point locations; towing first and second source arrays in water along the sail line; shooting the first and second source arrays with a constant delay parameter so that a seismic trace recorded by a seismic sensor has at least a first uncontaminated portion that includes seismic energy generated substantially only by one of the first and second source arrays and a second portion that includes seismic energy generated by both the first and second source arrays; and recording blended seismic data generated by the first and second source arrays with the seismic sensor. | 10-09-2014 |
20140321236 | METHODS AND UNDERWATER BASES FOR USING AUTONOMOUS UNDERWATER VEHICLE FOR MARINE SEISMIC SURVEYS - An underwater base handles an autonomous underwater vehicle. The underwater base includes a storing part configured to store the AUV; a control part configured to control the storing part; and a support part configured to support the control part and the storing part and to prevent a burial of the underwater base into the ocean bottom. The control part is further configured to guide the AUV while approaching a desired target position on the ocean bottom. | 10-30-2014 |
20140321237 | Methods and Systems for Efficiently Acquiring Towed Streamer Seismic Surveys - Methods and systems for efficiently acquiring towed streamer marine seismic data are described. One method and system comprises positioning a plurality of source-only tow vessels and one or more source-streamer tow vessels to acquire a wide- and/or full-azimuth seismic survey without need for the spread to repeat a path once traversed. Another method and system allows surveying a sub-sea geologic feature using a marine seismic spread, the spread smartly negotiating at least one turn during the surveying, and shooting and recording during the turn. This abstract is provided to comply with the rules requiring an abstract, allowing a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. | 10-30-2014 |
20140328138 | SEISMIC SYSTEM WITH GHOST AND MOTION REJECTION - An underwater seismic system for reducing noise due to ghost reflections or motion through the water from seismic signals. The system includes two motion sensors. One sensor has a first response and is sensitive to platform-motion-induced noise as well as to acoustic waves. The other sensor has a different construction that isolates it from the acoustic waves so that its response is mainly to motion noise. The outputs of the two sensor responses are combined to remove the effects of motion noise. When further combined with a hydrophone signal, noise due to ghost reflections is reduced. | 11-06-2014 |
20140334254 | Pressure-Compensated Sources - Embodiments related to sound sources for marine geophysical surveys. An embodiment provides a sound source, comprising: an outer shell containing a first gas at a first gas pressure; and a compliance chamber in indirect fluid communication with the first gas, the compliance chamber containing a second gas at a second gas pressure, wherein the second gas pressure is lower than the first gas pressure. An embodiment provides a sound source for marine geophysical surveys, comprising: an outer shell; a mass coupled to the outer shell; and an actuator coupled to the outer shell. Additional apparatus and methods are disclosed herein. | 11-13-2014 |
20140334255 | COLLAR SYSTEM AND METHOD FOR RECOVERING A TOW MEMBER IN A MARINE SURVEY SYSTEM - A marine survey system includes a collar configured to be affixed to a tow member, to connect a separation member to the tow member and to release the separation member when a lock-release condition is met. Alternatively or additionally, the marine survey system includes a variable drag force mechanism configured to generate a first drag force pushing the collar downstream before the collar reaches a downstream element beyond which the collar cannot move, and to generate a second drag force after the collar has reached the downstream element. | 11-13-2014 |
20140334256 | APPARATUS FOR MARINE SEISMIC SURVEY - An apparatus for conducting a marine seismic survey is disclosed. The apparatus includes a plurality of sensors configured to measure water pressure, a horizontal derivative of the pressure in two orthogonal directions, vertical particle velocity or acceleration of the water, and a horizontal derivative of the vertical particle velocity or acceleration in two orthogonal directions. | 11-13-2014 |
20140334257 | SIMULTANEOUS MARINE VIBRATORS - Methods and apparatuses for acquiring marine seismic data to generate images or determine properties of an interior section of the Earth using simultaneous marine vibrator sweeps and methods for processing the acquired seismic data. Phase of sweeps produced by the marine vibrator(s) are controlled to provide for removal of crosstalk. The phases between marine vibrator sweeps may be random or controlled to have a predetermined/desired phase difference. The predetermined phases may be determined to minimize the crosstalk between sweeps based on known seismic velocity of the survey area. | 11-13-2014 |
20140340984 | MULTILAYER JACKET FOR MARINE ACOUSTIC ARRAY APPLICATIONS - In various embodiments, a multilayer jacket for a seismic streamer is disclosed. The multilayer jacket comprises an outer layer comprising a water-resistant and wear-resistant material. The multilayer jacket further comprises an inner layer comprising a hydrocarbon impermeable material. | 11-20-2014 |
20140340985 | Gas Spring Compensation Marine Acoustic Vibrator - Embodiments related to restriction of gas flow in a marine acoustic vibrator to compensate for gas spring effects. An embodiment provides a marine acoustic vibrator, comprising: an outer shell; and a variable gas flow restrictor disposed within the outer shell; wherein the marine acoustic vibrator has a resonance frequency selectable based at least in part on the variable gas flow restrictor. | 11-20-2014 |
20140340986 | Apparatus and Method for Collecting Geophysical Information - An apparatus for collecting geophysical information may include a geophysical information station disposed along a seismic communication cable. A bypass circuit responsive to a command signal is in communication with a switching circuit that is operable to route electrical power, commands, data or a combination to bypass the geophysical information station in response to the command signal. An exemplary method for bypassing a geophysical information station in a geophysical information collection system includes sending a command signal to a bypass circuit and activating one or more switching circuits using the bypass circuit to route electrical power, commands, data or a combination to bypass the geophysical information station in response to the command signal. | 11-20-2014 |
20140355379 | METHODS AND SYSTEMS FOR MARINE SURVEY ACQUISITION - Methods and systems for marine survey acquisition are disclosed. In one embodiment, a method is provided that may deploy a marine seismic spread that includes a first seismic source, a second seismic source and a streamer with a receiver. The second source may be disposed at a distance from the first seismic source in an inline direction. The distance may be selected to produce one or more pairs of shot points during a seismic survey. The shot points within a pair may be disposed within a range that is used to calculate a pressure source gradient between the shot points within the pair. The method may shoot the first seismic source and the second seismic source substantially simultaneously. The method may record seismic data associated with shooting the first seismic source and the second seismic source. The method may calculate the pressure source gradient for respective pairs of shot points. | 12-04-2014 |
20140362660 | TOWED SENSOR ARRAY SURFACE STRUCTURE APPARATUS AND METHOD OF USE THEREOF - A surface structure is provided for reducing drag and/or for reducing turbulence on or proximate any element of a streamer cable or towed sensor array. The surface structure comprises a non-uniform surface having ridges, channels, expanding channels, dimples, bumps, backward facing diamonds, a saw tooth pattern, or the like integrated into, adhered to, wrapped, and/or coated onto a surface of the streamer cable. The sharkskin like material, coating, or surface is optionally an array of denticles or a sheet that is also useful for fuel reduction and/or ease of guidance due to lower resistance and noise reduction in towed sensors due to reduction/breakup of localized zones of turbulence. | 12-11-2014 |
20140362661 | UNMANNED VEHICLE-BASED SEISMIC SURVEYING - A technique includes a technique includes providing a plurality of acquisition components for performing a survey of a geologic region of interest, where the plurality of acquisition components comprising receivers and at least one source. The technique includes using at least one marine unmanned vehicle to position at least one of the receivers in the survey; and deploying at least at one of the acquisition components in a well or on land. | 12-11-2014 |
20140369161 | STATIONARY MARINE VIBRATORY SOURCE FOR SEISMIC SURVEYS - A seismic data acquisition system is configured to collect seismic data. The system includes a marine source array configured to be attached to a fixed structure floating at the water surface and including vibratory source elements; and a controller configured to control the vibratory source elements so that a beam formed by the source array is steerable. | 12-18-2014 |
20140369162 | VIBRATOR SOURCE ARRAY BEAM-FORMING AND METHOD - There is a method for finding a best distribution of source elements that form a vibratory source array. The method includes inputting plural constraints for the source elements; generating plural distributions of the source elements that fulfill the plural constraints; calculating for each distribution a performance index characterizing the source array; and selecting the best distribution from the plural distributions based on a value of the performance index. | 12-18-2014 |
20150009779 | METHOD AND DEVICE FOR MARINE SEISMIC ACQUISITION - Method and system for improving offset/azimuth distribution. The system includes plural streamers towed by a streamer vessel; a central source towed by the streamer vessel; first and second front sources located in front of the plural streamers along a traveling direction of the streamer vessel; and first and second large offset front sources located in front of the first and second front sources along the traveling direction. The offset distance between the first and second large offset front sources, along a cross-line direction, is larger than an offset distance between the first and second front sources. | 01-08-2015 |
20150016217 | Methods and Systems for Streamer Anti-Twist - Disclosed are methods and systems for enabling anti-twist functionality in marine geophysical streamers. An embodiment discloses a method comprising: towing a streamer behind a survey vessel in a body of water, wherein the streamer comprises rotation sensors and streamer rotation devices; receiving data from at least one rotation sensor indicative of streamer twist; and rotating a portion of the streamer with at least one streamer rotation device to reduce the streamer twist based, at least in part on the data. | 01-15-2015 |
20150049584 | OCEAN BOTTOM SEISMOMETER PACKAGE - A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached. | 02-19-2015 |
20150055435 | SEISMIC CABLE WITH ADJUSTABLE BUOYANCY - A method and apparatus for a seismic cable is described. In one embodiment, a method for performing a seismic survey in a water column is described. The method comprises providing a length of flexible cable from a cable storage device disposed on a vessel to a cable handling device adjacent the cable storage device. The flexible cable comprises a specific gravity that is greater than a specific gravity of water in the water column. The method further comprises routing the flexible cable to pass adjacent a workstation disposed on the vessel, deploying a free end of the flexible cable into the water column, attaching at least one of a plurality of seismic sensor units to the cable as the cable passes the workstation, and controlling the motion of the vessel and the rotational speed of the cable handling device to allow the flexible cable to rest on the bottom of the water column. | 02-26-2015 |
20150063061 | Piezoelectric Bender With Additional Constructive Resonance - Embodiments related to a piezoelectric bender that comprises a spring and mass element to provide additional constructive resonance. An embodiment provides an apparatus comprising: a base plate; a piezoelectric body coupled to the base plate; a spring coupled to the base plate; and a mass element coupled to the spring, wherein the base plate, the piezoelectric body, the spring, and the mass element are operable to produce at least two resonance frequencies in the apparatus | 03-05-2015 |
20150063062 | PIEZOELECTRIC ACCELEROMETER - An accelerometer. At least some of the example embodiments include an accelerometer having a first piezoelectric element having a first polarization, the first piezoelectric element defining an upper surface and a second piezoelectric element having a second polarization, the second piezoelectric element defines a lower surface parallel to the upper surface of the first piezoelectric element; the first polarization being aligned with the second polarization. The accelerometer further includes a first mounting plate that defines a first aperture, the first and second piezoelectric elements extending through the first aperture such that the first mounting plate transects the first and second piezoelectric elements. The piezoelectric elements define a first cantilever portion on a first side of the first mounting plate, and the piezoelectric elements define a second cantilever portion on a second side of the first mounting plate opposite the first side. | 03-05-2015 |
20150085605 | Low Frequency Marine Acoustic Vibrator - Embodiments relate to marine acoustic vibrators that incorporate one or more piston plates that act on the surrounding water to produce acoustic energy. An example marine acoustic vibratory may comprise: a containment housing; a piston plate; a fixture coupled to the containment housing; a spring element coupled to the piston plate and the fixture; and a driver coupled to the piston plate and the fixture and configured to move the piston plate back and forth. | 03-26-2015 |
20150085606 | Piston-Type Marine Vibrators Comprising a Compliance Chamber - Disclosed are embodiments of a marine vibrator and methods of using. Embodiments of the marine vibrator may comprise a containment housing; a piston plate, wherein an internal volume of the marine vibrator is at least partially defined by the containment housing and the piston plate, the internal volume containing a first gas at a first gas pressure; a fixture coupled to the containment housing; a mechanical spring element coupled to the piston plate and the fixture; a driver coupled to the piston plate and the fixture, wherein the driver is configured to move the piston plate back and forth; and a compliance chamber in contact with the first gas, wherein the compliance chamber comprises a second gas at a second gas pressure. | 03-26-2015 |
20150085607 | Piston Integrated Variable Mass Load - Embodiments relate to relate to marine vibrators that incorporate one or more piston plates that act on the surrounding water to produce acoustic energy. An example marine vibrator may comprise: a containment housing; a piston plate; a fixture coupled to the containment housing; a mechanical spring element coupled to the piston plate and the fixture; a driver disposed in the marine vibrator, wherein the driver is coupled to the piston plate and the fixture; and a container coupled to the piston plate, wherein the container is configured to hold a variable mass load; wherein the marine vibrator has a resonance frequency selectable based at least in part on the variable mass load. | 03-26-2015 |
20150085608 | Air-Spring Compensation in a Piston-Type Marine Vibrator - Embodiments relate to the restriction of gas flow in a piston-type marine vibrator to compensate for air-spring effects. An embodiment provides marine vibrator comprising: a containment housing; a piston plate; a fixture coupled to the containment housing; a mechanical spring element coupled to the piston plate and to the fixture; a driver coupled to the piston plate and to the fixture; and a variable gas flow restrictor disposed in an interior volume of the marine vibrator, wherein the marine vibrator has a resonance frequency selectable based at least in part on the variable gas flow restrictor. | 03-26-2015 |
20150092517 | SYSTEM AND METHOD FOR PERFORMING SEISMIC SURVEYS WITH A CONTROLLED SOURCE USING MAXIMUM-POWER SWEEPS - The output spectrum of a controllable swept-frequency acoustic source at a given frequency can be controlled by making the rate of change of frequency equal to the desired output power spectrum divided by the squared envelope amplitude of the source output signal, both measured at the time after the start of its frequency sweep at which the sweep frequency passes through the given frequency. The system and method can also be used to correct for propagation effects outside the source by dividing the desired spectrum by the propagation effect. The method can further be used either to obtain an output spectrum of a desired shape from a source operating at maximum output or to design a sweep of a minimum feasible duration that will result in an output spectrum of a specified shape and with a specified amplitude. | 04-02-2015 |
20150098302 | Seismic Sensor - A seismic sensor cable system is provided. The seismic sensor cable system may include a cable, a first sensor configured to measure motion of the cable, wherein measurement of motion by the first sensor substantially excludes particle motion associated with seismic waves, and a second sensor configured to measure particle motion associated with the seismic waves. | 04-09-2015 |
20150109883 | WIRELESS SUBSEA SEISMIC SENSOR AND DATA COLLECTION METHODS - A wireless subsea seismic sensor capable of independent location and operation in arrays, and methods of data collection from arrays of such sensors. | 04-23-2015 |
20150117146 | SOLID STREAMER LONGITUDINAL BODY APPARATUS AND METHOD OF USE THEREOF - Streamers used in mapping strata beneath a marine body are described, such as in a flexible neutrally buoyant towed array. A streamer cable is described using polyurea, within a sleeve, where the polyurea demonstrates durability in the presence of extreme hydrodynamic forces at depths in the marine body. The sleeve optionally uses longitudinal directed, inward pointing ribs to distribute forces and to minimize expansion of micro-cracks. The polyurea is optionally made neutrally buoyant through the controlled dosage of hollow, flexible, and/or glass microspheres into the polyurea at time of polymerization. A stress relieving connector is optionally used to longitudinally join a first and second streamer section and/or to connect a streamer section to a streamer stabilizer. | 04-30-2015 |
20150117147 | Reconfigurable Seismic Sensor Cable - Embodiments relate to a sensor cable that may be reconfigurable to have various combinations of seismic sensors. An apparatus may comprise a sensor cable and seismic sensors distributed throughout a volume of the sensor cable and along all three axes of the sensor cable, wherein the seismic sensors are assigned to sampling groups that are reconfigurable and not hardwired. | 04-30-2015 |
20150293241 | SEISMIC DATA ACQUISITION - A method for seismic data acquisition can include near-continuously recording seismic data received from a number of seismic receivers and triggering a plurality of source elements, based upon time and not based upon position, at a predefined sequence of times relative to a start of a near-continuous recording. | 10-15-2015 |
20150301206 | UNDERWATER OBSERVATION APPARATUS - An underwater observation apparatus includes an observation apparatus body, a weight structure, a coupling device, and a fusion cutting device. The observation apparatus body is configured to house at least a power source, a communication circuit for a communication device, and a signal processing device. The coupling device couples the observation apparatus body with the weight structure via a remote-controlled release structure capable of releasing the observation apparatus body from the weight structure. The underwater observation apparatus also includes a power feeding coil located inside of a glass sphere to generate magnetic flux, and a power receiving coil located outside of the glass sphere. The power receiving coil generates an induced voltage when interlinked by the magnetic flux generated by the power feeding coil. The power receiving coil is configured to supply drive power to the fusion cutting device. | 10-22-2015 |
20150301207 | Sensor Assembly - A multiple axis sensor assembly includes an enclosure and encapsulated microelectromechanical system (MEMS) sensors. The encapsulated sensors are disposed inside the enclosure and are mounted in different orientations, which correspond to different axes of the sensor assembly. A controller of the sensor assembly is disposed in the enclosure and electrically coupled to the MEMS sensors. | 10-22-2015 |
20150301210 | METHODS AND SYSTEMS TO SEPARATE WAVEFIELDS USING PRESSURE WAVEFIELD DATA - This disclosure is directed to wavefield separation methods and systems. In one aspect, methods and systems compute an approximate vertical particle velocity wavefield based on a measured pressure wavefield and knowledge of free-surface when the pressure wavefield was measured. The measured pressure wavefield is used to compute an approximate frozen free-surface profile. The approximate frozen free-surface profile and the measured pressure wavefield are used to compute an approximate vertical particle velocity wavefield. The approximate vertical particle velocity wavefield and measured pressure wavefield may be used to compute separate up-going and down-going pressure, or vertical particle velocity, wavefields. | 10-22-2015 |
20150309198 | METHOD FOR MANAGING A MASTER VESSEL CHANGE IN A MULTI-VESSEL SEISMIC SYSTEM - A method is provided for managing a master vessel change in a multi-vessel seismic system. The system includes a master vessel M and at least one slave vessel. The method includes, during at least a part of a multi-vessel operation: selecting a new master vessel M′ among the at least one slave vessel, triggered by at least one predetermined event; and transmitting, to the at least one slave vessel, at least one piece of information related to a master vessel change from the master vessel M, called old master vessel, to the new master vessel M′. | 10-29-2015 |
20150316667 | MEMS-BASED ROTATION SENSOR FOR SEISMIC APPLICATIONS AND SENSOR UNITS HAVING SAME - The present disclosure is directed to a MEMS-based rotation sensor for use in seismic data acquisition and sensor units having same. The MEMS-based rotation sensor includes a substrate, an anchor disposed on the substrate and a proof mass coupled to the anchor via a plurality of flexural springs. The proof mass has a first electrode coupled to and extending therefrom. A second electrode is fixed to the substrate, and one of the first and second electrodes is configured to receive an actuation signal, and another of the first and second electrodes is configured to generate an electrical signal having an amplitude corresponding with a degree of angular movement of the first electrode relative to the second electrode. The MEMS-based rotation sensor further includes closed loop circuitry configured to receive the electrical signal and provide the actuation signal. Related methods for using the MEMS-based rotation sensor in seismic data acquisition are also described. | 11-05-2015 |
20150323693 | POWER SAVINGS MODE FOR OCEAN BOTTOM SEISMIC DATA ACQUISITION SYSTEMS - Embodiments of the invention provide methods, systems, and apparatus for conserving power while conducting an ocean bottom seismic survey. Sensor nodes placed on an ocean floor may be configured to operate in at least an idle mode and an active mode. Each node may adjust its mode of operation from idle mode to active mode. | 11-12-2015 |
20150331125 | METHOD FOR CALCULATING A SEISMIC SURVEY - Non-constant spatial parameters and/or temporal parameters are assigned respectively to at least one input shot sequence and shot time predictions commuted from a shot sequence, giving flexibility for how and where to shoot during a multi-source survey. | 11-19-2015 |
20150331126 | OCEAN BOTTOM SYSTEM - A seismic data collection system is disclosed. The system may include at least a first housing and a second housing. The first housing may be configured to detachably couple to the second housing. The system mays also include various components such as one or more seismic sensors, a clock, or memory. Each of the components may be arranged in one of the first housing or second housing. | 11-19-2015 |
20150346366 | SEISMIC ACQUISITION SYSTEM COMPRISING AT LEAST ONE CONNECTING MODULE TO WHICH IS CONNECTED AN AUXILIARY EQUIPMENT, CORRESPONDING CONNECTING MODULE AND DATA MANAGEMENT SYSTEM - A seismic data acquisition system includes at least one marine seismic streamer towed by a vessel. The at least one seismic streamer includes a seismic telemetry cable, extending along the at least one seismic streamer and adapted to communicate seismic data with the vessel, and connecting modules to which is connected an auxiliary equipment. Each connecting module is connected to the seismic telemetry cable, enabling the auxiliary equipment to communicate auxiliary data with the vessel, via the connecting module and the seismic telemetry cable. | 12-03-2015 |
20150362606 | NODE LOCKS FOR MARINE DEPLOYMENT OF AUTONOMOUS SEISMIC NODES - Embodiments, including apparatuses, systems and methods, for attaching autonomous seismic nodes to a deployment cable. In an embodiment, an apparatus includes a seismic node having a direct attachment mechanism configured to directly attach the seismic node to a deployment line, the direct attachment mechanism being configurable between an open and/or unlocked position and a closed and/or locked position to release and retain the deployment line. | 12-17-2015 |
20150362607 | Flexible Printed Circuits in Marine Geophysical Streamers - Disclosed are flexible printed circuits incorporated into marine geophysical streamers. An embodiment discloses an apparatus comprising: a streamer; and a flexible printed circuit located in the streamer. Another embodiment discloses an apparatus comprising: a jacket; a strength member extending along a length of the jacket and disposed inside the jacket; geophysical sensors disposed inside the jacket; spacers disposed at spaced apart locations along the jacket; and a flexible printed circuit assembly extending along a length of the jacket. Another embodiment discloses a method comprising: towing at least one streamer in a body of water, wherein the at least one streamer comprises a flexible printed circuit. | 12-17-2015 |
20160003959 | Offset Footprint Analysis for Selecting Candidate Lines for Seismic Survey - An analysis is proved to determine a candidate line for at least one vessel to traverse in a 3D seismic survey to achieve desired coverage either along a planned line or a new infill line. The analysis can also be used in a 4-D survey to determine the coverage of a candidate line relative to the baseline survey previously conducted. The analysis determines a coverage footprint of the common midpoint lines, at given offsets, so the user or automated system can select a candidate line to achieve the best coverage. | 01-07-2016 |
20160018547 | CONTROLLED SPACED STREAMER ACQUISITION - A seismic measurement system and a method of obtaining seismic measurements are described. The seismic measurement system includes a cable and a plurality of sensors disposed at a first interval along the cable. The plurality of sensors receives reflections resulting from a seismic source and each of the plurality of sensors receives the reflection corresponding with a particular subsurface location. The system also includes a controller to turn on a first set of the plurality of sensors and turn off a second set of the plurality of sensors based on an area of interest. | 01-21-2016 |
20160025882 | Marine Seismic Surveying with Towed Components Below Water's Surface - A skeg mounts from the stern of a towing vessel and extends below the waterline. A channel in the skeg protects cables for steamers and a source (e.g., air gun array) of a seismic system deployed from the vessel. Tow points on the skeg lie below the water's surface and connect to towlines to support the steamers and the source. A floatation device supports the source and tows below the water's surface to avoid ice floes or other issues encountered at the water's surface. Seismic streamers have head floats supporting the streamers. Each of the floats has adjustable buoyancy preconfigured to counterbalance the weight in water of the towed component that the float supports. Acoustic signals from a transceiver at the vessel find locations of the towed components. A towed fish at a lower level than the towed components also uses acoustic signals with a transceiver to further refine the locations of the towed components. | 01-28-2016 |
20160025883 | SUBMERGED HUB FOR OCEAN BOTTOM SEISMIC DATA ACQUISITION - Embodiments of the invention provide methods, systems, and apparatus for collecting seismic data in marine environments. An ocean bottom cable comprising a plurality of sensor nodes for collecting seismic data may be coupled to a submerged hub. The submerged hub may provide seismic data storage, power, clock, and other support for operating the sensor nodes. By providing a submerged hub, the ocean bottom cable may continue collecting seismic data in harsh environments such as the arctic, where the sea surface may be frozen. | 01-28-2016 |
20160033660 | INTERNAL BEND RESTRICTOR FOR OPTO/ELECTRICAL ARMORED CABLES - Embodiments of the invention provide methods, systems, and apparatus for collecting seismic data in a marine environment. An ocean bottom cable (OBC) comprising a plurality of sensor nodes for collecting seismic data may be deployed to and retrieved from an ocean bottom during seismic operations using a winch. Such deployment and retrieval operations may exert substantial stress on the OBC at an interface between the sensor nodes and cable segments of the OBC. A reinforcement sleeve is provided to reduce the mechanical stress at such interfaces. | 02-04-2016 |
20160077227 | MAGNETO-HYDRODYNAMIC SEISMIC SOURCE AND A METHOD OF MARINE SEISMIC SURVEYING - A magneto-hydrodynamic seismic source includes a casing having a central longitudinal axis; a fluid flow channel, and a plurality of electromagnets arranged along the channel for generating a uniform magnetic field at right angles to the central longitudinal axis of the channel, a first electrode positioned on a first side of the fluid flow channel, the first electrode being positioned opposite a second electrode that is positioned on a second opposing side of the fluid flow channel, and a controllable power source in electrical communication with the first electrode and the second electrode for generating a continuously varying electric field between the first electrode and second electrodes to generate a continuously varying inflow of seawater into the first end of the fluid flow channel with a corresponding continuously varying outflow of seawater in the form of a seismic signal being produced from the second end of the fluid flow channel. | 03-17-2016 |
20160097872 | Floodable Optical Apparatus, Methods and Systems - According to one example, a floodable sensor station is coupled to an optical cable. The optical cable may be floodable. The floodable sensor station may connect floodable optical cables as part of a permanent reservoir monitoring system. The floodable optical cable may house a plurality of floodable optical fiber conduits. The floodable sensor station may be pressure-balanced with its surrounding environment in high-pressure marine depths of 1500 meters or more. | 04-07-2016 |
20160102729 | APPARATUS AND METHOD FOR VIBRATION MITIGATION THROUGH SEQUENTIAL IMPEDANCE OPTIMIZATION - Method and apparatus for mitigating vibrations in a device towed in water. The apparatus includes one or more tuned elastic sections having a complex spring rate and adapted to attenuate vibrations in a specified frequency range; and a head end coupler adapted to couple the apparatus for vibration mitigation to a component of an electro-mechanical cable or a tow assembly. One of the one or more tuned elastic sections is coupled to the head end coupler with a high impedance material interface. | 04-14-2016 |
20160109602 | METHODS AND APPARATUS FOR HANDLING OF SENSOR CAPSULES - A method and apparatus for handling of sensor capsules and their inner components during deployment and retrieval of a seismic cable into the sea by a vessel where the seismic cable includes seismic node casings to contain the sensor capsules when the seismic cable is in the sea. The method includes the following steps: withdrawing a sensor capsule from a sensor capsule storage; withdrawing a battery unit from a battery unit storage; withdrawing a control unit from a docking station; combining the control unit and battery unit into a control/battery unit; inserting the control/battery unit into the sensor capsule and closing the sensor capsule; and loading the sensor capsule into a seismic node casing. | 04-21-2016 |
20160124104 | APPARATUS AND METHOD FOR 3D SEISMIC EXPLORATION FOR USE IN A SMALL SHIP - An apparatus and method for 3D seismic exploration for use in a small ship. The apparatus includes a seismic source towed by the small ship from a rear side thereof, a pair of support rods connected to the rear side and horizontally arranged in two rows behind the seismic source in the direction extending from a sailing direction of the ship, and a plurality of streamers arranged between the support rods in the sailing direction of the ship. | 05-05-2016 |
20160124105 | TOUCH DOWN MONITORING OF AN OCEAN BOTTOM SEISMIC NODE - Apparatuses, systems, and methods for guiding and/or positioning a plurality of seismic nodes on or near the seabed by an autonomous underwater vehicle (AUV) or a remotely operated vehicle (ROV). In one embodiment, an underwater vehicle is configured to monitor the deployment of cable connected to a plurality of seismic nodes, including the touchdown monitoring, positioning, and guiding of deployed autonomous seismic nodes or ocean bottom cable. The underwater vehicle may comprise a propulsion system configured to steer and propel the vehicle in a body of water, a tracking system configured to automatically track the cable and/or attached seismic nodes, and a guidance system configured to communicate with a surface vessel node data in real time or near real time for active guidance and/or positioning of the deployment cable. | 05-05-2016 |
20160131778 | Cable Head Marine Seismic Source - Method for obtaining zero offset or near zero offset data in a marine seismic streamer survey. An acoustic transmitter ( | 05-12-2016 |
20160131785 | METHOD AND SYSTEM FOR MARINE SEISMIC ACQUISITION - A seismic acquisition system includes a streamer spread including at least one streamer, the streamer spread having first and second spread areas characterized by at least one acquisition parameter, the first spread area including streamer sections having a first composition of seismic receivers, and the second spread area including streamer sections having a second composition of seismic receivers. The first composition of seismic receivers has a first value for the at least one acquisition parameter and the second composition of seismic receivers has a second value for the at least one acquisition parameter. | 05-12-2016 |
20160161618 | LOW-FREQUENCY MAGNETIC RELUCTANCE MARINE SEISMIC SOURCE - This disclosure is related to marine seismic sources, for example marine seismic sources known in the art as benders. Some embodiments of this disclosure use magnetic reluctance forces to produce seismic energy. For example, pole pieces may be attached to one or more plates of a marine seismic source, and a wire coil may induce an attractive force between the pole pieces to cause deformation of the plates to produce seismic energy. Such marine seismic sources may be components of a marine seismic survey system, and may be used in a method of marine seismic surveying. Methods of making marine seismic sources are also disclosed. | 06-09-2016 |
20160170060 | Monitoring System, Components, Methods, and Applications | 06-16-2016 |
20160170061 | MULTI-VESSEL SEISMIC ACQUISITION SYSTEM AND METHOD | 06-16-2016 |
20160170062 | MARINE SURVEYING | 06-16-2016 |
20160187515 | SENSOR FOR DETECTING PRESSURE WAVES IN A LIQUID - An optical pressure sensor device ( | 06-30-2016 |
20160187516 | SEISMIC ACQUISITION METHOD AND APPARATUS - A technique for use in geophysical surveying acquires seismic data at low seismic frequencies to generate better starting models for subsurface attributes rather than enhancing the bandwidth of airguns for broadband imaging as in conventional practice. | 06-30-2016 |
20160187517 | SEISMIC ACQUISITION METHOD AND APPARATUS - A technique for use in geophysical surveying includes imparting a plurality of humming seismic signals and a plurality of swept seismic signals into a geological formation. The technique also includes receiving returned seismic energy of the plurality of humming seismic signals and the plurality of swept seismic signals after interacting with the geological formation and recording the returned seismic energy. | 06-30-2016 |
20160195627 | DELIVERY AND RECOVERY APPARATUS, METHOD, AND APPLICATIONS | 07-07-2016 |
20160202380 | OCEAN SENSOR SYSTEM | 07-14-2016 |
20170235005 | METHOD AND NODE DEPLOYER FOR SEISMIC SURVEYS | 08-17-2017 |
20190146113 | MARINE VESSEL FOR SEISMIC SOURCES | 05-16-2019 |