Class / Patent application number | Description | Number of patent applications / Date published |
365189040 | Simultaneous operations (e.g., read/write) | 33 |
20080259692 | Semiconductor Memory Device for Simultaneously Performing Read Access and Write Access - Disclosed herein is a semiconductor memory device which can simultaneously perform a read access and a write access independently. The semiconductor memory device according to the present invention can access a plurality of data through the global sense amplifying unit and the global bit line, and enables the read controller and the write controller to independently control the global bit line and the bit line sense amplifying unit to be connected to each other to thereby perform the read access and the write access simultaneously. | 10-23-2008 |
20090010076 | SEMICONDUCTOR DEVICE AND CONTROLLING METHOD FOR THE SAME - A semiconductor device has a plurality of bit lines BL provided in a memory cell area | 01-08-2009 |
20090103374 | MEMORY MODULES AND MEMORY SYSTEMS HAVING THE SAME - A memory module includes a plurality of data ports configured to receive/transmit associated data and a plurality of memory devices. The plurality of memory devices include a first set of the memory devices in at least one rank, each memory device of the first set being coupled to each of the associated data ports, and a second set of the memory devices in at least one other rank, each memory device of the second set being configured to receive/transmit the associated data for the memory device through at least each associated memory device of the first set. | 04-23-2009 |
20090103375 | SRAM Cell Using Separate Read and Write Circuitry - The present invention provides circuitry for writing to and reading from an SRAM cell core ( | 04-23-2009 |
20090116298 | APPARATUS FOR IMPLEMENTING SRAM CELL WRITE PERFORMANCE EVALUATION - A SRAM cell write performance evaluation circuit includes a SRAM core where each wordline is connected to only one bit column. A ring oscillator circuit is used to generate wordline pulses. A state machine controls operations for the SRAM cell write performance evaluation circuit including the ring oscillator circuit and the SRAM core. A control signal is applied to the state machine to select a first write operation, where the circuit simultaneously writes all the cells to a known state with wide wordlines to ensure all cells are written. Then a second write operation is selected, and all the wordlines are launched simultaneously to write the cells to the opposite state. From these write operations, a required wordline pulse width to write the cell is identified. | 05-07-2009 |
20090161442 | Data Processing System - A data processing system comprising a memory array having a plurality of memory cells ( | 06-25-2009 |
20100157691 | Dual Port PLD Embedded Memory Block to Support Read-Before-Write in One Clock Cycle - A method for a read-before-write functionality for a memory within a programmable logic device (PLD) is provided. The method begins when a read operation and a write operation are initiated through two different ports of a memory simultaneously to access the same address in the memory. In order to prevent the write operation from proceeding prior to the read operation, a read-before-write control logic is provided to the control block of the port that supports the write operation. Thus, the write operation is paused until the control block of the port that supports the write operation receives a signal from a read sense amplifier indicating that the read operation is complete. The read sense amplifier is capable of detecting the completion of a read operation by monitoring the voltage difference of the read bitline. When this voltage difference reaches a threshold value, the read sense amplifier triggers a write wordline signal. The enabling of the write wordline signal causes, the data to be written to the memory. | 06-24-2010 |
20100246277 | METHOD OF MAINTAINING THE STATE OF SEMICONDUCTOR MEMORY HAVING ELECTRICALLY FLOATING BODY TRANSISTOR - Methods of maintaining a state of a memory cell without interrupting access to the memory cell are provided, including applying a back bias to the cell to offset charge leakage out of a floating body of the cell, wherein a charge level of the floating body indicates a state of the memory cell; and accessing the cell. | 09-30-2010 |
20110007575 | SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises a plurality of memory cells each including a holding circuit for holding memory data, and a read-only output circuit for outputting a signal corresponding to the data held by the holding circuit. The read-only output circuit has a read drive transistor controlled in accordance with a signal held by the holding circuit. A gate length of the read drive transistor is longer than a gate length of a transistor included in the holding circuit. Alternatively, the read-only output circuit has a read access transistor controlled in accordance with a read word select signal, and a gate length of the read access transistor is longer than a gate length of a transistor included in the holding circuit. | 01-13-2011 |
20110051528 | Dynamic Semiconductor Memory With Improved Refresh Mechanism - Various embodiments for implementing refresh mechanisms in dynamic semiconductor memories that allow simultaneous read/write and refresh operations. In one embodiment, the invention provides a synchronous multi-bank dynamic memory circuit that employs a flag to indicate a refresh mode of operation wherein refresh operation can occur in the same bank at the same time as normal access for read/write operation. In a specific embodiment, to resolve conflicts between addresses, an address comparator compares the address for normal access to the address for refresh operation. In case of a match between the two addresses, the invention cancels the refresh operation at that array and allows the normal access to proceed. | 03-03-2011 |
20110134706 | SEMICONDUCTOR MEMORY DEVICE - A multiple-port semiconductor memory device capable of achieving a smaller circuit area is provided. A power supply line supplying an operation voltage of a memory cell is formed in an identical metal interconnection layer where word lines are formed and it is provided adjacent to and between corresponding first word line and second word line. Then, for example, when the same memory cell row is accessed, a voltage level of the power supply line is raised by a coupling capacitance of the word lines. Thus, even in identical-row-access, static noise margin in identical-row-access can be maintained to be as great as that in different-row-access. Therefore, for example, even when a size or the like of a driver transistor is not made larger, deterioration of static noise margin can be suppressed and a circuit area can be made smaller. | 06-09-2011 |
20110158004 | Semiconductor device capable of detecting defect of column selection line - To include a comparison circuit that generates comparison results by comparing plural pieces of data simultaneously read via data lines with expected values, an AND gate that activates a first determination signal in response to a fact that at least one of the comparison results indicates a mismatch, and an OR gate that activates a second determination signal in response to a fact that all the comparison results indicate a mismatch. With this arrangement, when a detection test of a defective address is performed in a wafer state, a defect of a column selection line can be detected. | 06-30-2011 |
20110228612 | SEMICONDUCTOR MEMORY AND SEMICONDUCTOR MEMORY TEST METHOD - According to the embodiments, a read circuit is connected to the other end of the bit line for reading out data from read data storing memory cells and test data storing memory cells via the bit line, and a read control circuit makes data to be read out from the test data storing memory cells when testing the bit line and makes data to be read out from the read data storing memory cells when reading out the read data. | 09-22-2011 |
20110228613 | DEVICE AND METHOD FOR ACHIEVING SRAM OUTPUT CHARACTERISTICS FROM DRAMS - A method is provided for achieving SRAM output characteristics from DRAMs, in which a plurality of DRAMs are arranged connected in parallel to a controller in such a way as to be able to obtain SRAM output characteristics using the DRAMs, comprising a process in which data is output to an external device when a control signal for data reading has been input from the external device, by sequentially repeating a step in which the controller sends a data output state control signal to one DRAM and sends a refresh standby state control signal to the other DRAMs, the data is read and sent to the external device from the DRAM in the output state, and a refresh standby state control signal is sent to the DRAM which was in the output state while an output state control signal is sent to another DRAM and data is read out from the DRAM in the output state, and a step in which the controller sends a control signal for changing the output state to the refresh standby state. | 09-22-2011 |
20110228614 | Memory System Topologies Including A Buffer Device And An Integrated Circuit Memory Device - Systems, among other embodiments, include topologies (data and/or control/address information) between an integrated circuit buffer device (that may be coupled to a master, such as a memory controller) and a plurality of integrated circuit memory devices. For example, data may be provided between the plurality of integrated circuit memory devices and the integrated circuit buffer device using separate segmented (or point-to-point link) signal paths in response to control/address information provided from the integrated circuit buffer device to the plurality of integrated circuit buffer devices using a single fly-by (or bus) signal path. An integrated circuit buffer device enables configurable effective memory organization of the plurality of integrated circuit memory devices. The memory organization represented by the integrated circuit buffer device to a memory controller may be different than the actual memory organization behind or coupled to the integrated circuit buffer device. The buffer device segments and merges the data transferred between the memory controller that expects a particular memory organization and actual memory organization. | 09-22-2011 |
20110310676 | Memory Sensing With Secondary Buffer - A high-density dynamic memory device with compact sense amplifier circuit is described. The memory device achieves high density through the use of a compact sense amplifier circuit that employs a single transistor to sense stored dynamic data. Functionality of the device is enabled by an architecture and method of operation that support a compact sense amplifier circuit. Enabling techniques include sequential sensing of memory columns, a two-pass write operation, a two-step refresh operation, a reference scheme that uses reference data stored in regular memory cells, and the application of digital signal processing to determine sensed data and cancel crosstalk noise. | 12-22-2011 |
20120014188 | METHOD OF MAINTAINING THE STATE OF SEMICONDUCTOR MEMORY HAVING ELECTRICALLY FLOATING BODY TRANSISTOR - Methods of maintaining a state of a memory cell without interrupting access to the memory cell are provided, including applying a back bias to the cell to offset charge leakage out of a floating body of the cell, wherein a charge level of the floating body indicates a state of the memory cell; and accessing the cell. | 01-19-2012 |
20120020169 | TWO-PORT SRAM WRITE TRACKING SCHEME - A Static Random Access Memory (SRAM) includes at least two memory cells sharing a read bit line (RBL) and a write bit line (WBL). Each memory cell is coupled to a respective read word line (RWL) and a respective write word line (WWL). A write tracking control circuit is coupled to the memory cells for determining a write time of the memory cells. The write tracking control circuit is capable of receiving an input voltage and providing an output voltage. The respective RWL and the respective WWL of each memory cell are asserted during a write tracking operation. | 01-26-2012 |
20120039132 | MEMORY DEVICE, SYSTEMS AND DEVICES INCLUDING A MEMORY DEVICE, METHODS OF OPERATING A MEMORY DEVICE, AND/OR METHODS OF OPERATING SYSTEMS AND DEVICES INCLUDING A MEMORY DEVICE - In one embodiment, a memory device includes a plurality of unit cell arrays. Each unit cell array includes an array of memory cells arranged in a plurality of columns, and each column is associated with a bit line. The memory device further includes a program control circuit configured to program cells in the plurality of unit cell arrays based on program bits associated with the plurality of unit cell arrays. For example, the program control unit is configured to simultaneously program one memory cell in each unit cell array having at least one associated program bit. | 02-16-2012 |
20120063241 | Semiconductor device and control method thereof - A semiconductor device has a hierarchical bit line structure and comprises first and second local bit lines transmitting first and second signals of first and second memory cells corresponding to a selected word line, and first and second global bit lines electrically connected to the first and second local bit lines through first and second switches, first and second sense amplifiers connected to the first and second global bit lines, and a control circuit. During a first period after the first and second memory cells are simultaneously accessed, the control circuit controls the first switch to conduction state so that the first sense amplifier amplifies the first signal and controls the second switch to non conduction state. During a second period after sensing of the first sense amplifier finishes, the control circuit controls the second switch to conduction state so that the second sense amplifier amplifies the second signal. | 03-15-2012 |
20120099385 | NONVOLATILE SEMICONDUCTOR STORAGE DEVICE AND DATA WRITE METHOD FOR THE SAME - A nonvolatile semiconductor storage device includes an identification code generating circuit, a simultaneous write bit count calculation circuit, a write range calculation circuit, and a program pulse generating circuit. The identification code generating circuit generates an identification code to be assigned to every one of bits to be written, and the simultaneous write bit count calculation circuit calculates the number of bits to be written simultaneously, the number being equalized based on the generated identification code, within a range that does not exceed a maximum simultaneously writable bit number. The write range calculation circuit calculates a write range, based on the calculated number of bits to be written simultaneously, and the program pulse generating circuit generates a program pulse based on write data and on the generated identification code and the calculated write range. | 04-26-2012 |
20120127805 | MEMORY ELEMENTS HAVING SHARED SELECTION SIGNALS - Apparatus are provided for memory elements and related computing modules. An exemplary memory element includes a first array of one or more memory cells, a second array of one or more memory cells, write selection circuitry associated with the first array, and read selection circuitry associated with the second array. The write selection circuitry and the read selection circuitry are configured to be activated concurrently. | 05-24-2012 |
20120230122 | Memory device and method of controlling a write operation within a memory device - A memory device and method are provided incorporating a technique for controlling a write operation within the memory device. The memory device has an array of memory cells, each memory cell supporting writing and simultaneous reading of that memory cell. Write circuitry is arranged, during a write operation, to provide write data to a number of addressed memory cells within the array, whilst word line select circuitry is responsive to the start of the write operation to assert a write word line signal that enables those addressed memory cells to store the write data. Comparing circuitry is arranged, during the write operation, to compare the write data with data currently stored in the addressed memory cells. On detecting that the write data matches the data currently stored in the addressed memory cells, the comparing circuitry asserts a control signal to the word line select circuitry to cause the word line select circuitry to de-assert the write word line signal. As a result, the pulse width of the asserted write word line signal is dependent on time taken by the addressed memory cells to store the write data, thereby leading to a significant reduction in the size of the pulse width when compared with known prior art techniques. | 09-13-2012 |
20120230123 | Method of Maintaining the State of Semiconductor Memory Having Electrically Floating Body Transistor - Methods of maintaining a state of a memory cell without interrupting access to the memory cell are provided, including applying a back bias to the cell to offset charge leakage out of a floating body of the cell, wherein a charge level of the floating body indicates a state of the memory cell; and accessing the cell. | 09-13-2012 |
20120327722 | Method and System for a Serial Peripheral Interface - An integrated circuit includes a serial peripheral interface memory device. In an embodiment, the memory device includes a clock signal, a plurality of pins, and a configuration register. In an embodiment, the configuration register includes a wait cycle count. The method includes transmitting a read address to the memory device using a first input/output pin and a second input/output pin concurrently. In an embodiment, the read address includes at least a first address bit and a second address bit, the first address bit being transmitted using the first input/output pin, and the second address bit being transmitted using the second input/output pin. The method includes accessing the memory device for data associated with the address and waiting a predetermined number clock cycles associated with the wait cycle count. The method includes transferring the data from the memory device using the first input/output pin and the second input/output pin concurrently. | 12-27-2012 |
20130121086 | Memory Configured to Provide Simultaneous Read/Write Access to Multiple Banks - A memory includes at least first and second banks of single-port memory elements, a first local controller adapted to send read and write instructions to the first memory bank, and a second local controller adapted to send read and write instructions to the second memory bank. A global controller is configured to receive first and second memory addresses and a first indication of an operation to be performed at the first memory addresses and a second indication of an operation to be performed at the second memory address and to instruct the first local controller to perform the first indicated operation at the first memory address and to instruct the second local controller to perform the second indicated operation at the second memory address at the same time. | 05-16-2013 |
20130265831 | SEMICONDUCTOR DEVICE HAVING PLURAL DATA INPUT/OUTPUT TERMINALS - Disclosed herein is a device that includes a plurality of first terminals; a first circuit including a plurality of first nodes; a buffer circuit including a plurality of second nodes connected to the first terminals through a plurality of first interconnection lines, respectively, and a plurality of third nodes connected to the first nodes of the first circuit through a plurality of second interconnection lines, respectively; and a second circuit configured to perform at least one of first and second operations. The first operation is such that a plurality of first signals, that appear respectively on the first interconnection lines, are outputted in series, and the second operation is such that a plurality of second signals, that are supplied in series, are transferred respectively to the first interconnection lines. | 10-10-2013 |
20140016416 | SEMICONDUCTOR MEMORY DEVICE AND METHOD OF TESTING THE SAME - Provided is a semiconductor memory device in which a plurality of first and second data lines coupled to a memory cell array are alternately arranged. The semiconductor memory device includes a first write driving circuit configured to load a plurality of first write data transmitted through a plurality of third data lines into the plurality of first data lines in response to a first write enable signal; a second write driving circuit configured to load a plurality of second write data transmitted through a plurality of fourth data lines into the plurality of second data lines in response to a second write enable signal; and a column control circuit configured to activate at least one of the first and second write enable signals during a given period, in response to a plurality of data width option modes, during a parallel test mode. | 01-16-2014 |
20140126301 | MEMORY DEVICE AND TEST METHOD THEREOF - A method for testing a memory device includes entering a test mode in which multiple memory banks operate in a same manner, allowing a row corresponding to a row address in the multiple memory banks to be activated, latching a bank address and the row address corresponding to the multiple memory banks, writing same data in a column selected by a column address in the multiple memory banks, reading the data written in the writing of the data from the multiple memory banks, checking whether the data read from the multiple memory banks in the reading of the data are equal to each other, and matching the memory bank address and the row address with each other and programming the matched address to a nonvolatile memory when the data read from the multiple memory banks are different from each other. | 05-08-2014 |
20140126302 | MEMORY DEVICE AND TEST METHOD THEREOF - A method for testing a memory device includes entering a test mode in which multiple memory banks operate in a same manner, allowing a row corresponding to a row address in the multiple memory banks to be activated, latching a bank address and the row address corresponding to the multiple memory banks, writing same data in a column selected by a column address in the multiple memory banks, reading the data written in the writing of the data from the multiple memory banks, checking whether the data read from the multiple memory banks in the reading of the data are equal to each other, and programming the row address to locations designated by the bank address latched in the latching in a nonvolatile memory when the data read from the multiple memory banks are different from each other. | 05-08-2014 |
20140177346 | APPARATUS TO SUPPRESS CONCURRENT READ AND WRITE WORD LINE ACCESS OF THE SAME MEMORY ELEMENT IN A MEMORY ARRAY - A memory array includes a number of word lines, with each word line coupled to a word line driver for memory write operations and a word line driver for memory read operations. A decode stage includes write logic for each word line and read logic for each word line. A word line driver stage includes a write word line driver and a read word line driver. The write logic for at least one world line is configured to enable the write word line driver for a memory write operation of the word line while prohibiting the read word line logic from enabling the read word line driver for a memory read operation of the word line. | 06-26-2014 |
20150029795 | SELECTIVE DUAL CYCLE WRITE OPERATION FOR A SELF-TIMED MEMORY - A write is performed to a first cell of a memory at a first row and column during a first memory access cycle. A memory access operation is made to a second cell at a second row and column during an immediately following second memory access cycle. If the memory access is a read from the second cell and the second row is the same as the first row, or if the memory access is a write to the second cell and the second row is the same as the first row and the second column is different than the first column, then a simultaneous operation is performed during the second memory access cycle. The simultaneous operation is an access of the second cell (for read or write) and a re-write of data from the first memory access cycle write operation back to the first cell. | 01-29-2015 |
20150063040 | THREE DIMENSIONAL CROSS-ACCESS DUAL-PORT BIT CELL DESIGN - A semiconductor memory comprises a dual-port memory array having a plurality of cross-access dual-port bit cells arranged in a plurality of rows and a plurality of columns, wherein each of the plurality of cross-access dual-port bit cells has two cross-access ports for read and write of one or more bits of data to the cross-access dual port bit cell. The semiconductor memory further comprises a pair of word lines associated with at least one of the plurality of rows of the dual-port memory array, wherein the pair of word lines is configured to carry a pair of row selection signals for enabling one or more read and write operations on one or more cross-access dual-port bit cells in the row. The semiconductor memory further comprises a pair of column selection lines associated with at least one of the plurality of columns of the dual port memory array, wherein the pair of column selection lines is configured to carry a pair of column selection signals for enabling the cross-access dual-port bit cells in the column during the read and write operations. | 03-05-2015 |