Class / Patent application number | Description | Number of patent applications / Date published |
365185280 | Tunnel programming | 69 |
20080198670 | Reduced power programming of non-volatile cells - Methods for minimizing current consumption in a memory array during programming of non-volatile memory cells, such as NROM cells, in the array include: programming a cell without having a direct current flowing from a positive supply to ground through the array, programming a plurality of cells with programming pulses without discharging a global bit line carrying a programming voltage between programming pulses, and programming a cell with transient currents. | 08-21-2008 |
20080212375 | METHOD OF PROGRAMMING AND ERASING A P-CHANNEL BE-SONOS NAND FLASH MEMORY - A programming method for a p-channel memory cell, the memory cell includes a source, a drain and a gate. The gate is applies with a first voltage, which results in Fowler-Nordheim (−FN) hole injection, thereby causing the memory cell to be in a programmed state. | 09-04-2008 |
20080239827 | METHODS OF FORMING AND OPERATING NAND MEMORY WITH SIDE-TUNNELING - A string of nonvolatile memory cells are formed with control gates extending between floating gates, control gates and floating gates separated by tunnel dielectric layers. Electron tunneling between control gates and floating gates is used for programming. A process for forming a memory array forms odd numbered floating gates from a first layer and even numbered floating gates from a second layer. | 10-02-2008 |
20080259691 | Two-Bits Per Cell Not-AND-Gate (NAND) Nitride Trap Memory - A non-volatile memory array includes a semiconductor substrate having a main surface, a first source/drain region and a second source/drain region. The second source/drain region is spaced apart from the first source/drain region. A well region is disposed in a portion of the semiconductor substrate between the first source/drain region and the second source/drain region. A plurality of memory cells are disposed on the main surface above the well region. Each memory cell includes a first oxide layer formed on the main surface of the substrate, a charge storage layer disposed above the first oxide layer relative to the main surface of the semiconductor substrate and a second oxide layer disposed above the charge storage layer relative to the main surface of the semiconductor substrate. A plurality of wordlines are disposed above the second oxide layer relative to the main surface of the semiconductor substrate. | 10-23-2008 |
20080266981 | NONVOLATILE MEMORY DEVICES AND METHODS OF FORMING THE SAME - A nonvolatile memory device includes first and second impurity diffusion regions formed in a semiconductor substrate, and a memory cell formed on a channel region of a semiconductor substrate between the first and second impurity diffusion regions. The memory cell includes a stacked gate structure formed on the channel region, and first and second select gates formed on the channel regions and opposite sidewalls of the stacked gate structure. Since the first and second select gates are spacer-shaped to be self-aligned on opposite sidewalls of the stacked gate structure, a size of a memory cell is reduced to enhance an integration density of a semiconductor device. | 10-30-2008 |
20080273399 | SINGLE-POLY NON-VOLATILE MEMORY - A single-poly non-volatile memory includes a storing node, a control node and a floating gate. While a programming operation is executed, a bit line is provided with a low voltage and a control line is provided with a high voltage so that a coupling voltage occurs in the floating gate. The voltage difference between the floating gate and the storing node is able to send electrons into the floating gate, but the voltage difference between the floating gate and the control node is not enough to expel electrons from the floating gate. While an erasing operation is executed, a bit line is provided with a high voltage and a control line is provided with a low voltage so that a coupling voltage occurs on the floating gate. The voltage difference between the floating gate and the storing node is able to expel electrons from the floating gate, but the voltage difference between the floating gate and the control node is not enough to send electrons into the floating gate. | 11-06-2008 |
20080279013 | Multi-level non-volatile memory cell with high-VT enhanced BTBT device - The present disclosure provides a Non-Volatile Memory (NVM) cell and programming method thereof. The cell can denote at least two logic levels. The cell has a read-transistor with a floating gate, and Band-To-Band-Tunneling device (BTBT device) sharing the floating gate with the read-transistor. The BTBT device is configured as an injection device for injecting a first charge onto the floating gate when the BTBT device is biased with a first gate bias voltage such that the BTBT device is in accumulation, to set at least one of the logic levels. A first electrode is coupled to bias the BTBT device with a first bias voltage that is higher than the first threshold voltage. The first bias voltage is controlled such that the BTBT device is in accumulation during a write operation. The injected amount of charge on the floating gate is determined by the first bias voltage. | 11-13-2008 |
20080298135 | METAL OXIDE SEMICONDUCTOR DEVICE AND METHOD FOR OPERATING AN ARRAY STRUCTURE COMPRISING THE SAME DEVICES - The present invention discloses a metal oxide semiconductor (MOS) device and a method for operating an array structure comprising the same devices. The MOS device of the present invention comprises a device layer; an ion-implanted layer formed on the device layer and providing the source, the drain and the channel; and a gate structure formed on the ion-implanted layer. Via applying a bias voltage to the gate, the carrier density in the channel region is different from that in the source region or the drain region; thereby, the MOS device of the present invention can undertake programming, erasing and reading activities. The present invention can simplify the MOS device fabrication process, reduce the operating voltage, and promote the integration density of a 2-dimensional or 3-dimensional MOS device array. | 12-04-2008 |
20090003082 | Method of making memory cell with voltage modulated sidewall poly resistor - A method of making a two terminal nonvolatile memory cell includes forming a first electrode, forming a charge storage medium, forming a resistive element, and forming a second electrode. The charge storage medium and the resistive element are connected in parallel between the first and the second electrodes, and a presence or absence of charge being stored in the charge storage medium affects a resistivity of the resistive element. | 01-01-2009 |
20090003083 | Memory cell with voltage modulated sidewall poly resistor - A two terminal nonvolatile memory cell includes a first electrode, a second electrode, a charge storage medium, and a resistive element. The charge storage medium and the resistive element are connected in parallel between the first and the second electrodes. A presence or absence of charge being stored in the charge storage medium affects a resistivity of the resistive element. | 01-01-2009 |
20090034341 | Non-volatile memory devices and programming methods thereof including moving electrons through pad oxide layers between charge trap layers - Non-volatile memory devices and methods of programming a non-volatile memory device in which electrons are moved between charge trap layers through a pad oxide layer are provided. The non-volatile memory devices include a charge trap layer on a semiconductor substrate and storing electrons, a pad oxide layer on the first charge trap layer, and a second trap layer on the pad oxide layer and storing electrons. In a programming mode in which data is written, the stored electrons are moved between a first position of the first charge trap layer and a first position of the second charge trap layer through the pad oxide layer or between a second position of the first charge trap layer and a second position of the second charge trap layer through the pad oxide layer. | 02-05-2009 |
20090059676 | HIGH-k CAPPED BLOCKING DIELECTRIC BANDGAP ENGINEERED SONOS AND MONOS - A blocking dielectric engineered, charge trapping memory cell includes a charge trapping element that is separated from a gate by a blocking dielectric comprising a buffer layer in contact with the charge trapping element, such as silicon dioxide which can be made with high-quality, and a second capping layer in contact with said one of the gate and the channel. The capping layer has a dielectric constant that is higher than that of the first layer, and preferably comprises a high-κ material. The second layer also has a conduction band offset that is relatively high. A bandgap engineered tunneling layer between the channel and the charge trapping element is provided which, in combination with the multilayer blocking dielectric described herein, provides for high-speed erase operations by hole tunneling. In an alternative, a single layer tunneling layer is used. | 03-05-2009 |
20090059677 | SEMICONDUCTOR DEVICE - In a data program/erase device of a nonvolatile memory cell, data are re-written by means of an FN tunnel current of an entire channel surface. In a buried n-well of a semiconductor substrate in a flash memory formation region, p wells are placed in the form isolated from each other. In each of the p wells, a capacitor portion, a capacitor portion for programming/erasing data and an MIS•FET for reading data are placed. In the capacitor portion for programming/erasing data, rewriting (programming and erasing) of data is performed by means of an FN tunnel current of an entire channel surface. | 03-05-2009 |
20090067256 | Thin gate stack structure for non-volatile memory cells and methods for forming the same - Embodiments are described for reducing the programming voltage of a memory cell in a memory device. The memory cell includes a channel region extending between first and second diffusion regions formed in a substrate. A tunnel dielectric material is formed over the channel region. A storage medium is formed over the tunnel dielectric material to store electrical charge. The storage medium is disposed between a first interface material and a second interface material, each interface material provides a smoother interface between the storage medium and surrounding dielectric materials. A charge blocking material is formed over the storage medium, followed by a control gate material. | 03-12-2009 |
20090086548 | FLASH MEMORY - A flash memory applied in NAND and/or NOR flash memory has a silicon-oxide-nitride-oxide-silicon cell structure, uses channel-hot-electron injection as a write mechanism thereof to have a localized trapping characteristic, and uses hot-hole injection as an erase mechanism thereof. The flash memory uses an oxide-nitride-oxide structure to replace a floating gate, and thereby solves the problem of an entire leakage caused by a local leakage of the floating gate. The flash memory may be miniaturized without the problem of data mutual interference, and may be easily integrated into the CMOS process to largely reduce the manufacturing cost thereof. Meanwhile, the flash memory also enables faster program time and erase time. | 04-02-2009 |
20090086549 | METHOD FOR DRIVING A NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A method for driving a nonvolatile semiconductor memory device is provided. The nonvolatile semiconductor memory device has source/drain diffusion layers spaced from each other in a surface portion of a semiconductor substrate, a laminated insulating film formed on a channel between the source/drain diffusion layers and including a charge storage layer, and a gate electrode formed on the laminated insulating film, the nonvolatile semiconductor memory device changing its data memory state by injection of charges into the charge storage layer. The method includes, before injecting charges to change the data memory state into the charge storage layer: injecting charges having a polarity identical to that of the charges to be injected; and further injecting charges having a polarity opposite to that of the injected charges. | 04-02-2009 |
20090109762 | METHOD FOR PROGRAMMING NON-VOLATILE MEMORY - A method for programming non-volatile memory utilizes substrate hot carrier effect to conduct programming operations. A forward bias voltage is applied between an N-type well region and a P-type well region so as to inject electrons in the N-type well region into the P-type well region. After that, the electrons are accelerated by a depletion region established by a voltage applied to a source region and a drain region, and a vertical electrical field established between a control gate and the P-type well region further forces the electrons to be injected into a charge storage layer. Since the present invention adopts the substrate hot carrier effect to inject carriers into the charge storage layer, the required program operation voltage is low, which benefits to save power consumption and enhance the reliability of the device. | 04-30-2009 |
20090116294 | METHOD OF PROGRAMMING CELL IN MEMORY AND MEMORY APPARATUS UTILIZING THE METHOD - A method of programming a first cell in a memory, wherein the first cell has a first S/D region and shares a second S/D region with a second cell that has a third S/D region opposite to the second S/D region. The channels of the first and the second cells are turned on, a first voltage is applied to the first S/D region, a second voltage is applied to the second S/D region and a third voltage is applied to the third S/D region. The second voltage is between the first voltage and the third voltage, and the first to third voltages make carriers flow from the third S/D region to the first S/ID region and cause hot carriers in the channel of the first cell to be injected into the charge storage layer of the first cell. | 05-07-2009 |
20090116295 | METHOD OF OPERATING INTEGRATED CIRCUIT EMBEDDED WITH NON-VOLATILE ONE-TIME - PROGRAMMABLE AND MULTIPLE-TIME PROGRAMMABLE MEMORY - A programmable non-volatile device is operated using a floating gate that functions as a FET gate that overlaps a portion of a source/drain region. This allows a programming voltage for the device to be imparted to the floating gate through capacitive coupling, thus changing the state of the device. The invention can be used in environments such as data encryption, reference trimming, manufacturing ID, security ID, and many other applications. | 05-07-2009 |
20090141562 | NON-VOLATILE MEMORY DEVICE, METHODS OF FABRICATING AND OPERATING THE SAME - A non-volatile memory device includes a floating gate formed on a substrate with a gate insulation layer interposed therebetween, a tunnel insulation layer formed on the floating gate, a select gate electrode inducing charge introduction through the gate insulation layer, and a control gate electrode inducing charge tunneling occurring through the tunnel insulation layer. The select gate electrode is insulated from the control gate electrode. According to the non-volatile memory device, a select gate electrode and a control gate electrode are formed on a floating gate, and thus a voltage is applied to the respective gate electrodes to write and erase data. | 06-04-2009 |
20090141563 | Method for Operating a Non-Volatile Charge-Trapping Memory Device and Method for Determining Programming/Erase Conditions - A method for determining programming/erase conditions and a method for operating a charge-trapping semiconductor device are disclosed. Programming and erase conditions are determined such that a first net charge distribution variation profile, upon going from programmed to erased state, is substantially the opposite of a second net charge distribution variation profile, upon going from erased to programmed state. | 06-04-2009 |
20090154253 | SEMICONDUCTOR DEVICE - Provided is a nonvolatile memory with less element deterioration and good data retaining properties. In a nonvolatile memory formed by the manufacturing steps of a complementary type MISFET without adding thereto another additional step, erasing of data is carried out by applying 9V to an n type well, 9V to a p type semiconductor region, and −9V to another p type semiconductor region and setting the source and drain of data writing and erasing MISFETs and data reading MISFETs at open potential to emit electrons from a gate electrode to a p well by FN tunneling. At this time, by applying a negative voltage to the p well having a capacitive element formed thereover and applying a positive voltage to the p well having the MISFETs formed thereover, a potential difference necessary for data erasing operation can be secured at a voltage low enough not to cause gate breakage. | 06-18-2009 |
20090175089 | Retention in NVM with top or bottom injection - Retention of charges in a nonvolatile memory (NVM) cell having a nitride-based injector (such as SiN, SIRN, SiON) for facilitating injection of holes into a charge-storage layer (for NROM, nitride) of a charge-storage stack (for NROM, ONO) may be improved by providing an insulating layer (for NROM, oxide) between the charge-storage layer and the injector has a thickness of at least 3 nm. Top and bottom injectors are disclosed. Methods of operating NVM cells are disclosed. The NVM cell may be NROM, SONOS, or other oxide-nitride technology NVM cells such as SANOS, MANOS, TANOS. | 07-09-2009 |
20090201743 | MULTIWALLED CARBON NANOTUBE MEMORY DEVICE - A carbon nanotube based memory device comprises a set of three concentric carbon nanotubes having different diameters. The diameters of the three concentric carbon nanotubes are selected such that an inner carbon nanotube is semiconducting, and intershell electron transport occurs between adjacent carbon nanotubes. Source and drain contacts are made to the inner carbon nanotube, and a gate contact is made to the outer carbon nanotube. The carbon nanotube based memory device is programmed by storing electrons or holes in the middle carbon nanotube through intershell electron transport. Changes in conductance of the inner carbon nanotube due to the charge in the middle shell are detected to determine the charge state of the middle carbon nanotube. Thus, the carbon nanotube based memory device stores information in the middle carbon nanotube in the form of electrical charge. | 08-13-2009 |
20090238008 | Non-Volatile Memory Cell With BTBT Programming - A Non-Volatile Memory (NVM) cell and programming method in which the cell can denote at least two logic levels (e.g., 0 and 1) and includes a read-transistor with a floating gate and a Band-To-Band-Tunneling device (BTBT device) sharing the floating gate with the read-transistor. The BTBT device is configured as an injection device for injecting a first charge onto the floating gate when the BTBT device is biased so that it is in accumulation, to set at least one of the logic levels. | 09-24-2009 |
20090251972 | NONVOLATILE MEMORY ARRAYS WITH CHARGE TRAPPING DIELECTRIC AND WITH NON-DIELECTRIC NANODOTS - Charge-trapping dielectric ( | 10-08-2009 |
20090262583 | FLOATING GATE MEMORY DEVICE WITH INTERPOLY CHARGE TRAPPING STRUCTURE - A charge trapping floating gate is described with asymmetric tunneling barriers. The memory cell includes a source region and a drain region separated by a channel region. A first tunneling barrier structure is disposed above the channel region. A floating gate is disposed above the first tunneling barrier structure covering the channel region. A second tunneling barrier is disposed above the floating gate. A dielectric charge trapping structure disposed above the second tunneling barrier and a blocking dielectric structure is disposed above the charge trapping structure. A top conductive layer disposed above the top dielectric structure acts as a gate. The second tunneling barrier is a more efficient conductor of tunneling current, under bias conditions applied for programming and erasing the memory cell, than the first tunneling barrier structure. | 10-22-2009 |
20090285030 | MULTI-BIT NONVOLATILE MEMORY DEVICES AND METHODS OF OPERATING THE SAME - A memory device may include a channel including at least one carbon nanotube. A source and a drain may be arranged at opposing ends of the channel and may contact different parts of the channel. A first storage node may be formed under the channel, and a second storage node may be formed on the channel. A first gate electrode may be formed under the first storage node and a second gate electrode may be formed on the second storage node. | 11-19-2009 |
20100008153 | METHOD FOR OPERATING NONVOLATITLE MEMORY ARRAY - A method for programming a mixed nonvolatile memory array having a plurality of mixed memory cells, wherein each mixed memory cell includes a depletion mode memory cell and an enhanced mode memory cell. The method comprises steps of programming the enhanced mode memory cell in a way of channel hot carrier and programming the depletion mode memory cell in a way of band-to-band tunneling hot carrier. | 01-14-2010 |
20100014358 | NONVOLATILE MEMORY CELL, NONVOLATILE MEMORY DEVICE, AND METHOD OF PROGRAMMING THE NONVOLATILE MEMORY DEVICE - A method of programming a nonvolatile memory device. The method may include pre-programming one memory cell among a plurality of memory cells by storing data in a first data storage layer using a first program voltage applied to one word line corresponding to the one memory cell among the plurality of memory cells; and while pre-programming other memory cells among the plurality of memory cells, background-programming the pre-programmed memory cell by moving the stored data to a second data storage layer using a second program voltage that is higher than the first program voltage applied to the word line of the pre-programmed memory cell. | 01-21-2010 |
20100014359 | OPERATING METHOD OF NON-VOLATILE MEMORY - An operating method of a non-volatile memory adapted for a non-volatile memory disposed on an SOI substrate including a first conductive type silicon body layer is provided. The non-volatile memory includes a gate, a charge storage structure, a second conductive type drain region, and a second conductive type source region. In operating such a non-volatile memory, voltages are applied to the gate, the second conductive type drain region, the second conductive type source region and the first conductive type silicon body layer beneath the gate, to inject electrons or holes in to the charge storage structure or evacuate the electrons from the charge storage structure by a method selected from a group consisting of channel hot carrier injection, source side injection, band-to-band tunnelling hot carrier injection and Fowler-Nordheim (F-N) tunnelling. | 01-21-2010 |
20100034028 | METHOD FOR DRIVING NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - In a nonvolatile semiconductor memory device having n (n is an integer of two or more) electrode films stacked and having charge storage layers provided above and below each of the electrode films, when data “0” is written by injecting electrons into the charge storage layer on a source line side of a memory cell of the number k (k is an integer of 1 to (n−1)) as counted from an end on a bit line side in a selected semiconductor pillar, positive program potential is given to the electrode film of the number 1 to k as counted from the bit line side, and 0 V is given to the electrode film of the number (k+1) to n, therewith positive potential is given to the bit line and 0 V is given to the source line. | 02-11-2010 |
20100039867 | Electrically Isolated Gated Diode Nonvolatile Memory - A gated diode nonvolatile memory cell with a charge storage structure includes a diode structure with an additional gate terminal. Adjacent memory devices are electrically isolated. Example embodiments include the individual memory cell, an array of such memory cells, methods of operating the memory cell or array of memory cells, and methods of manufacturing the same. | 02-18-2010 |
20100039868 | Low voltage, low power single poly EEPROM - An Electrically Erasable Programmable Read Only Memory (EEPROM) memory cell (FIGS. | 02-18-2010 |
20100061154 | Non-Volatile Dual Memory Die For Data Storage Devices - OTP Data storage die and device consisting of novel OTP (One-Time-Programming) NVM (Non-Volatile-Memory) die is disclosed. The OTP Data storage device can be used in typical host applications with standard interface protocols and file system. The novel OTP memory is a dual memory with both RAM (random access memory) capability and NAND Flash like interface. These features enable to achieve efficient management capabilities and dense array for the OTP data storage device. | 03-11-2010 |
20100080068 | MEMORY CELL, AND METHOD FOR STORING DATA - The invention relates, among other things, to a memory cell for storing at least one piece of bit data. Said memory cell comprises at least two electrical terminals and a semiconductor structure with a band curve (EL) that has at least one potential well. The charged state of the potential well with charge carries can be increased by applying a supply voltage (Us=Uspeis) to the two terminals, can be reduced by applying a discharge voltage (Us=Usperr), and can be maintained by applying a maintaining voltage (Us=Ubei), the respective charged state of the potential well defining the piece of bit data of the memory cell. According to the invention, the semiconductor structure has a space charge region (Wn) while the potential well is formed by a semiconductor heterostructure. The semiconductor heterostructure and the space charge region are spatially arranged relative to one another in such a way that the semiconductor heterostructure is located within the space charge region when the maintaining voltage is applied, at the edge of or outside the space charge region when the supply voltage is applied, and within the space charge region when the discharge voltage is applied. | 04-01-2010 |
20100091577 | MEMORY CELL STORAGE NODE LENGTH - Methods, devices, and systems for a memory cell are provided. One embodiment includes a memory cell with a storage node separated from a body region by a first dielectric, wherein the body region includes a channel separating a source and a drain region, and wherein a length of the storage node is less than a length of the channel. The embodiment further includes a memory cell with a gate separated from the storage node by a second dielectric, wherein a length of the gate is greater than a length of the storage node. | 04-15-2010 |
20100128536 | MEMORY CELL, A MEMORY ARRAY AND A METHOD OF PROGRAMMING A MEMORY CELL - A method of programming a memory cell ( | 05-27-2010 |
20100135086 | METHOD OF OPERATING NON-VOLATILE MEMORY CELL AND MEMORY DEVICE UTILIZING THE METHOD - A method of operating a non-volatile memory cell is described, including pre-erasing the cell through double-side biased (DSB) injection of a first type of carrier and programming the cell through Fowler-Nordheim (FN) tunneling of a second type of carrier. | 06-03-2010 |
20100149878 | FLOTOX TYPE EEPROM - A FLOTOX EEPROM of the invention includes: a plurality of floating gates | 06-17-2010 |
20100149879 | FLASH MEMORY ARRAY OF FLOATING GATE-BASED NON-VOLATILE MEMORY CELLS - A flash memory array comprises a plurality of memory cells organized in a matrix of rows and columns. Each of the memory cells includes a floating gate memory transistor having a source region and a drain region, and a coupling capacitor electrically connected to the memory transistor. A plurality of word lines are each electrically connected to the capacitor in each of the memory cells in a respective row. A first set of bit lines are each electrically connected to the drain region of the memory transistor in each of the memory cells in a respective column. A plurality of high voltage access transistors are each electrically connected to a bit line in the first set of bit lines. A second set of bit lines are each electrically connected to the source region of the memory transistor in each of the memory cells in a respective column. Various combinations of voltages can be applied to the word lines and the first and second sets of bit lines in operations to erase, program, inhibit, or read the logic state stored by the memory transistor in one or more of the memory cells. | 06-17-2010 |
20100177569 | SINGLE POLY EEPROM ALLOWING CONTINUOUS ADJUSTMENT OF ITS THRESHOLD VOLTAGE - A single-poly EEPROM memory device comprises a control gate isolated within a well of a first conductivity type in a semiconductor body of a second conductivity type, first and second tunneling regions isolated from one another within respective wells of the first conductivity type in the semiconductor body, a read transistor isolated within a well of the first conductivity type, and a floating gate overlying a portion of the control gate, the read transistor, and the first and second tunneling regions. The memory device is configured to be electrically programmed by changing a charge on the floating gate that changes the device threshold voltage. In one embodiment, the memory device is configured to be electrically programmed by applying a first potential between the first and second tunneling regions, and a second potential to the control gate, the second potential having a value less than the first potential. | 07-15-2010 |
20100188905 | Spin Device - According to an embodiment of the present invention, a spin device includes an intermediate semiconductor region arranged between a first terminal and a second terminal, wherein the first terminal is adapted to provide a current having a first degree of spin polarization to the intermediate semiconductor region, and wherein the second terminal is adapted to output the current having a second degree of spin polarization. The spin device further includes a spin selective scattering structure abutting the intermediate semiconductor region, the spin selective scattering structure being adapted such that the first degree of spin polarization is altered to be the second degree, wherein the spin selective scattering structure comprises a control electrode being electrically insulated from the intermediate semiconductor region, and wherein the control electrode is adapted to apply an electrical field perpendicular to a direction of the current through the intermediate semiconductor region to control a magnitude of the current. | 07-29-2010 |
20100226182 | METHODS OF FORMING AND OPERATING NAND MEMORY WITH SIDE-TUNNELING - A string of nonvolatile memory cells are formed with control gates extending between floating gates, control gates and floating gates separated by tunnel dielectric layers. Electron tunneling between control gates and floating gates is used for programming. A process for forming a memory array forms odd numbered floating gates from a first layer and even numbered floating gates from a second layer. | 09-09-2010 |
20100265774 | METHOD FOR DETERMINING NATIVE THRESHOLD VOLTAGE OF NONVOLATILE MEMORY - A method for determining native threshold voltage of nonvolatile memory includes following steps. A memory cell including a control gate, a charge storage layer, a source region, and a drain region is provided. A programming operation is performed on the memory cell by using F-N tunneling effect to obtain a programming curve of time versus threshold voltage. In the programming operation, a positive voltage is applied to the control gate. An erase operation is performed on the memory cell by using F-N tunneling effect to obtain an erasure curve of time versus threshold voltage. In the erase operation, a negative voltage is applied to the control gate. The absolute values of the positive voltage and the negative voltage are the same. The native threshold voltage of memory cell is determined from the cross point of the programming curve and the erasure curve. | 10-21-2010 |
20100309729 | NONVOLATILE MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - A nonvolatile memory device and method of manufacturing the same are provided. In the nonvolatile memory device, a blocking insulation layer is provided between a trap insulation layer and a gate electrode. A fixed charge layer spaced apart from the gate electrode is provided in the blocking insulation layer. Accordingly, the reliability of the nonvolatile memory device is improved. | 12-09-2010 |
20110051526 | METHOD FOR PROGRAMMING A MEMORY STRUCTURE - A memory structure includes a first memory cell and a second memory cell located at an identical bit line and adjacent to the first memory cell. Each memory cell includes a substrate, a source, a drain, a charge storage device, and a gate. A method for programming the memory structure includes respectively providing a first gate biasing voltage and a second gate biasing voltage to the gates of the first memory cell and the second memory cell, boosting an absolute value of a channel voltage of the first memory cell to generate electron and hole pairs at the drain of the second memory cell through gate-induced drain leakage or band-to-band tunneling, and injecting the hole of the generated electron and hole pairs into the charge storage device of the first memory cell to program the first memory cell. | 03-03-2011 |
20110069559 | METHODS OF FORMING AND OPERATING BACK-SIDE TRAP NON-VOLATILE MEMORY CELLS - Methods of forming and operating a back-side trap non-volatile memory cell. Method of forming a back-side trap non-volatile memory cell include forming a trapping material, forming two or more sub-layers of dielectric material on the trapping material, wherein a conduction band offset of each sub-layer of dielectric material is less than the conduction band offset of the material upon which it is formed, and forming a channel region on the two or more sub-layers of dielectric material. Methods of operating a back-side trap non-volatile memory cell include programming the memory cell via direct tunneling of carriers through an asymmetric band-gap tunnel insulator layer having two or more sub-layers formed beneath a channel region and having layers of material of increasing conduction band offset, and trapping the carriers in a trapping layer formed under the tunnel insulator layer. | 03-24-2011 |
20110096609 | Novel punch-through free program scheme for nt-string flash design - A nonvolatile memory array has nonvolatile memory cells arranged in rows and columns where each column has a bit line and source line associated with and in parallel with the nonvolatile memory cells. In programming the nonvolatile memory cell, approximately equal program voltage levels are applied to a drain and a source of a selected charge retaining transistor such that the difference in the voltage between the drain and the source of the selected charge retaining transistor is less than a drain to source breakdown voltage of the selected charge retaining transistor to prevent drain-to-source punch through. In programming or erasing the nonvolatile memory cell a control gate and a bulk program voltage level is applied to a control gate and bulk such that the magnitude of the control gate and bulk program voltage levels is less than a breakdown voltage level of peripheral circuitry. | 04-28-2011 |
20110103155 | OPERATION METHOD OF MEMORY DEVICE - One embodiment of the present invention provides an operation method of a memory device. The memory device includes a source, a drain, and a channel region between the source and the drain, a gate dielectric with a charge storage layer on the channel region, and a gate on the gate dielectric, wherein the source, the drain and the channel region are located in a substrate. The operation method includes the following steps: applying a reverse bias between the gate and the drain of the memory device to generate band-to-band hot holes in the substrate near the drain; injecting the band-to-band hot holes to a drain side of the charge storage layer; and performing a program/erase operation upon the memory device. The band-to-band hot holes in the drain side of the charge storage layer are not completely vanished by the program/erase operation. | 05-05-2011 |
20110194356 | METHODS OF FORMING AND OPERATING SEMICONDUCTOR DEVICE - Provided are a semiconductor device and a methods of forming and operating the semiconductor device. The semiconductor device may include active pillars extending from a semiconductor substrate and disposed two dimensionally disposed on the semiconductor substrate, upper interconnections connecting the active pillars along one direction, lower interconnections crossing the upper interconnections and disposed between the active pillars, word lines crossing the upper interconnections and disposed between the active pillars, and data storage patterns disposed between the word lines and the active pillars. | 08-11-2011 |
20110199834 | METHOD FOR DRIVING A NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A method for driving a nonvolatile semiconductor memory device is provided. The nonvolatile semiconductor memory device has source/drain diffusion layers spaced from each other in a surface portion of a semiconductor substrate, a laminated insulating film formed on a channel between the source/drain diffusion layers and including a charge storage layer, and a gate electrode formed on the laminated insulating film, the nonvolatile semiconductor memory device changing its data memory state by injection of charges into the charge storage layer. The method includes, before injecting charges to change the data memory state into the charge storage layer: injecting charges having a polarity identical to that of the charges to be injected; and further injecting charges having a polarity opposite to that of the injected charges. | 08-18-2011 |
20110255348 | Non-Volatile Memory Cell with BTBT Programming - A Non-Volatile Memory (NVM) cell and programming method in which the cell can denote at least two logic levels (e.g., 0 and 1) and includes a read-transistor with a floating gate and a Band-To-Band-Tunneling device (BTBT device) sharing the floating gate with the read transistor. | 10-20-2011 |
20110255349 | METHOD OF OPERATING NON-VOLATILE MEMORY CELL - A method of operating a memory cell for 3D array of this invention is described as follows. Carriers of a first type are injected into a charge storage layer of the memory cell by applying a double-side biased (DSB) voltage to double sides of the memory cell. Carriers of a second type are injected into the charge storage layer by applying FN voltages. | 10-20-2011 |
20110286283 | 3D TWO-BIT-PER-CELL NAND FLASH MEMORY - A 3D memory device is described which includes bottom and top memory cubes having respective arrays of vertical NAND string structures. A common source plane comprising a layer of conductive material is between the top and bottom memory cubes. The source plane is supplied a bias voltage such as ground, and is selectively coupled to an end of the vertical NAND string structures of the bottom and top memory cubes. Memory cells in a particular memory cube are read using current through the particular vertical NAND string between the source plane and a corresponding bit line coupled to another end of the particular vertical NAND string. | 11-24-2011 |
20110292738 | NAND-BASED 2T2b NOR FLASH ARRAY WITH A DIODE CONNECTION TO CELL'S SOURCE NODE FOR SIZE REDUCTION USING THE LEAST NUMBER OF METAL LAYERS - A NAND-based NOR flash memory array has a matrix of NAND-based NOR flash cells arranged in rows and columns. Every two adjacent NAND-based NOR flash cells in a column share a common source node which is connected to a common source line through a diode. The source line may be made of a metal layer and is in contact directly with the source node or through an ohmic contact to form a Schottky barrier diode. The source line may also be made of a polysilicon or metal layer and connected to the source node through a pillar-structured polysilicon diode and a conduction layer. The diode may also be formed in the source node by enclosing a P/N+ junction diode in a heavily N+ doped region of the source node. | 12-01-2011 |
20110317492 | METHOD OF USING A NONVOLATILE MEMORY CELL - An electronic device can include a nonvolatile memory cell. In a particular embodiment, during an erase pulse, all unselected lines are at substantially the same voltage, and a row or segment of a row, such as a word, is erased during the erase pulse. In another embodiment, selected control gate and erase lines are at substantially the same voltage during a programming pulse. In a further embodiment, charge carriers tunnel through a dielectric layer of a component during a program pulse, and charge carriers tunnel through a different dielectric layer of a different component during an erase pulse. | 12-29-2011 |
20120099380 | PFET Nonvolatile Memory - A nonvolatile memory cell is constructed using a floating-gate pFET readout transistor having its source tied to a power source (Vdd) and its drain providing a current, which can be sensed to determine the state of the cell. The gate of the pFET readout transistor provides for charge storage, which can be used to represent information such as binary bits. A control capacitor coupled between a first voltage source and the floating gate and a tunneling capacitor between a second voltage source and the floating gate are fabricated so that the control capacitor has much more capacitance than the tunneling capacitor. Manipulation of the voltages applied to the first voltage source and second voltage source controls an electric field across the capacitor structure and pFET dielectrics and thus Fowler-Nordheim tunneling of electrons on and off the floating gate, controlling the charge on the floating gate and the information stored thereon. | 04-26-2012 |
20120281484 | NON-VOLATILE MEMORY DEVICE AND MOSFET USING GRAPHENE GATE ELECTRODE - Disclosed herein is a method of remarkably improving the memory characteristics of a non-volatile memory device and the device reliability of the MOSFET using graphene which is a novel material that has a high work function and does not cause the deterioration of a lower insulating film. | 11-08-2012 |
20120307568 | TECHNIQUES FOR PROVIDING A SEMICONDUCTOR MEMORY DEVICE - Techniques for providing a semiconductor memory device are disclosed. In one particular embodiment, the techniques may be realized as a semiconductor memory device including a plurality of memory cells arranged in an array of rows and columns. Each memory cell may include a first region coupled to a source line, a second region coupled to a bit line, and a body region capacitively coupled to at least one word line via a tunneling insulating layer and disposed between the first region and the second region. | 12-06-2012 |
20120314507 | REDUCED VOLTAGE NONVOLATILE FLASH MEMORY - Subject matter disclosed herein relates to a memory device, and more particularly to flash memory. | 12-13-2012 |
20120314508 | CONTROL CIRCUITRY FOR MEMORY CELLS - Control circuitry for memory cells is described. In an embodiment, a breakdown detection circuit is described which is arranged to detect abnormally high currents indicative of a defective cell during programming of a memory cell through monitoring the impedance level at a terminal in the breakdown detection circuit. The breakdown detection circuit is connected between the device being programmed and ground and comprises three transistors, at least one of which is capable of withstanding the programming voltage in case of breakdown. Other embodiments describe a flag bit cell design, a memory array and methods of reading and writing from/to that array, and circuitry for biasing a memory word-line for both read and write operations. The embodiments may be used separately or in a combination. | 12-13-2012 |
20130294172 | NON-VOLATILE MEMORY (NVM) AND METHOD FOR MANUFACTURING THEREOF - A nonvolatile memory and a method of manufacturing a nonvolatile memory are disclosed. A nonvolatile memory according to an exemplary embodiment may include a deep well formed on a substrate, a first well formed within the deep well, a second well formed separately from the first well within the deep well, a first metal-oxide-semiconductor field-effect transistor (MOSFET) formed on the first well, and a second MOSFET formed on the second well. According to a method of manufacturing a nonvolatile memory according to an exemplary embodiment, a well region of a control MOSFET of a memory cell may be shared with a control MOSFET of an adjacent memory cell, or a well region of a tunneling MOSFET of a memory cell may be shared with a tunneling MOSFET of an adjacent memory cell, thereby reducing an area of the memory cells. Further, the nonvolatile memory according to the exemplary embodiment may constantly maintain a voltage of a shared well region in the tunneling MOSFET and apply a different voltage to a source/drain from that of an adjacent cell, thereby recording data only in the selected memory cell or deleting recorded data from the selected memory cell while sharing the well region. | 11-07-2013 |
20140092689 | METHOD FOR PROGRAMMING NON-VOLATILE MEMORY CELL, NON-VOLATILE MEMORY ARRAY AND NON-VOLATILE MEMORY APPARATUS - A method for programming a non-volatile memory cell is described. The memory cell includes a substrate, a gate over the substrate, a charge-trapping structure at least between the substrate and the gate, and first and second S/D regions in the substrate beside the gate. The method includes performing a channel-initiated secondary electron (CHISEL) injection process to inject electrons to the charge-trapping structure. | 04-03-2014 |
20140169104 | NONVOLATILE FLASH MEMORY STRUCTURES INCLUDING FULLERENE MOLECULES AND METHODS FOR MANUFACTURING THE SAME - Embodiments of tunneling barriers and methods for same can embed molecules exhibiting a monodispersion characteristic into a dielectric layer (e.g., between first and second layers forming a dielectric layer). In one embodiment, by embedding C | 06-19-2014 |
20150085585 | NVM DEVICE USING FN TUNNELING WITH PARALLEL POWERED SOURCE AND DRAIN - A nonvolatile memory (“NVM”) bitcell includes a capacitor, a transistor, and a tunneling device. The capacitor, transistor, and tunneling device are each electrically coupled to different active regions and metal contacts. The three devices are coupled by a floating gate that traverses the three active regions. The tunneling device is used to program and erase the device, allowing for faster page erasure, and thus allows for rapid testing and verification of functionality. The transistor is used to read the logical state of the floating gate. The capacitor and floating gate are capacitively coupled together, removing the need for a separate selection device to perform read, write, and/or erase operations. | 03-26-2015 |
20160086676 | METHOD AND SYSTEM FOR IMPROVING THE RADIATION TOLERANCE OF FLOATING GATE MEMORIES - A method of improving radiation tolerance of floating gate memories is provided herein. Floating gate memories can include a floating gate transistor or a block of floating gate transistors. A floating gate transistor can include a semiconductor region, a source region, a drain region, a floating gate region, a tunnel oxide region, an oxide-nitride-oxide region, and a control gate region. A floating gate transistor or block of floating gate transistors can be written to multiple times in order to accumulate charge on one or more floating gate regions in accordance with an embodiment of the invention. When exposed to radiation, a floating gate region can retain its charge above a certain voltage threshold. A block of floating gate transistors can communicate with an external device where the external device can read a state of the block of floating gate transistors in accordance with an embodiment of the invention. | 03-24-2016 |
20160118124 | Direct-Transfer Marching Memory And A Computer System Using The Same - A direct-transfer marching memory includes an array of memory units, each of the memory units having a sequence of bit-level cells so as to store information of byte size or word size, the information of byte size or word size is transferred synchronously, step by step, along a direction orthogonal to a direction of the sequence of bit-level cells, each of the bit-level cells encompassing an electron-storage region configured to accumulate cell-electrons. The cell-electrons accumulated in an electron-storage region in a subject memory unit is directly transferred to an adjacent electron-storage region, which is assigned in the next memory unit adjacent to the subject memory unit, the transfer of the cell-electrons is directly controlled by control signals, without using a combinational function of a logic gate circuit. | 04-28-2016 |
20160155511 | NONVOLATILE MEMORY DEVICE AND OPERATING METHOD THEREOF | 06-02-2016 |