Entries |
Document | Title | Date |
20080198663 | FLASH MEMORY DEVICE AND PROGRAM METHOD THEREOF - A flash memory device which comprises a memory cell array having memory cells arranged in rows and columns; a word line voltage generator circuit configured to generate a program voltage, a dielectric breakdown prevention voltage, and a pass voltage at a program operation; and a row selector circuit that receives the program voltage, the dielectric breakdown prevention voltage, and the pass voltage and selecting one of the rows in response to a row address. The dielectric breakdown prevention voltage is lower than the program voltage and higher than the pass voltage; and the row selector circuit drives the selected row with the program voltage, drives at least one row just adjacent to, or neighboring, the selected row with the dielectric breakdown prevention voltage and drives remaining rows with the pass voltage. | 08-21-2008 |
20080205161 | FLASH MEMORY DEVICE UTILIZING MULTI-PAGE PROGRAM METHOD - A flash memory device is configured to store multi-bit data on one cell utilizing fewer program operations. The flash memory device includes a memory cell, a sense amplifier and a write driver circuit. The sense amplifier is connected to a word line and a bit line. The sense amplifier and write driver circuit store data bits to be programmed on the memory cell. The sense amplifier and write driver circuit drives the bit line through a program voltage during a program execution period when at least one bit from among the data bits to be programmed is a program data bit, and performs a verify read operation when a program verify code representing a verify read period corresponds to a state of the data bits to be programmed. | 08-28-2008 |
20080205162 | Non-Volatile Memory Device and Driving Method Thereof - This patent relates to a non-volatile memory device and a driving method thereof The non-volatile memory device includes a source select line in which a floating gate and a control gate are electrically connected to each other, a drain select line in which a floating gate and a control gate are electrically isolated from each other, and a plurality of word lines formed between the source select line and the drain select line. | 08-28-2008 |
20080205163 | NONVOLATILE MEMORY DEVICE AND DRIVING METHOD THEREOF - Provided are a nonvolatile memory device and a driving method thereof. In the method of driving a nonvolatile memory device, a structural shape and position of a memory cell to be driven is determined, and then the memory cell is driven with an optimized operating condition according to a distribution of the memory cell using a determination result. | 08-28-2008 |
20080232173 | NON-VOLATILE MEMORY HAVING A ROW DRIVING CIRCUIT WITH SHARED LEVEL SHIFT CIRCUITS - Non-volatile memory includes a row driving circuit with shared level shift circuits, so as to minimize the chip area of the non-volatile memory. The row driving circuit includes a plurality of word line driving circuits, a plurality of level shift high circuits, and a plurality of level shift low circuits. The plurality of word line driving circuits share the plurality of level shift high circuits and the plurality of level shift low circuits. Each word line driving circuit includes a plurality of driving units, a level shift high circuit, and a level shift low circuit. The plurality of driving units share the level shift high circuit and the level shift low circuit of the word line driving circuit. | 09-25-2008 |
20080253196 | METHOD AND APPARATUS FOR CHARGING LARGE CAPACITANCES - A method and apparatus for charging large capacitances of a circuit, such as an integrated circuit, without imparting noise on an operating voltage. A comparator compares a reference voltage to a voltage representing the voltage on the capacitance and a multiplexer routes one of an external voltage or an operating voltage derived from said external voltage to charge the capacitance depending on the output of the comparator. | 10-16-2008 |
20080266975 | NON-VOLATILE STORAGE WITH REDUCED POWER CONSUMPTION DURING READ OPERATIONS - A non-volatile storage device in which power consumption is reduced by providing reduced read pass voltages on unselected word lines during a read operation. A programming status of one or more unselected word lines which are after a selected word line on which storage elements are being read is checked to determine whether the unselected word lines contain programmed storage elements. When an unprogrammed word line is identified, reduced read pass voltages are provided on that word line and other word lines which are after that word line in a programming order. The programming status can be determined by a flag stored in the word line, for instance, or by reading the word line at the lowest read state. The unselected word lines which are checked can be predetermined in a set of word lines, or determined adaptively based on a position of the selected word line. | 10-30-2008 |
20080266976 | NAND MEMORY DEVICE AND PROGRAMMING METHODS - A NAND Flash memory device is described that can reduce circuitry noise during program operations. The memory includes bit lines that can be electrically coupled together to charge share their respective voltage potentials prior to performing a discharge operation on the bit lines. | 10-30-2008 |
20080273396 | Nonvolatile semiconductor memory device - A sub-decoder element provided corresponding to each word line is constructed by the same conductive type MOS transistors. The sub-decoder elements are arranged in a plurality of columns such that the layout of active regions for forming the sub-decoder elements is inverted in a Y direction and displaced by one sub-decoder element in an X direction. The arrangement of the sub-decoder elements is adjusted such that high voltage is not applied to both of gate electrodes adjacent in the Y direction. A well voltage of a well region for forming the sub-decoder element group is set to a voltage level such that a source to substrate of the transistor of the sub-decoder element is set into a deep reversed-bias state. In a nonvolatile semiconductor memory device, the leakage by a parasitic MOS in a sub-decoder circuit or word line driving circuit to which a positive or negative high voltage is supplied, can be suppressed. | 11-06-2008 |
20080291740 | SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell array, word lines each of which connects the control gates of the memory cells on the same row together in the memory cell array, a row decoder which selects a word line, and applies a voltage to the selected word line, and a voltage generator which generates a boosted voltage, and outputs the boosted voltage as the voltage, the voltage generator includes a comparator which compares a first voltage with a second voltage, and outputs a comparison result signal, a constant current circuit which generates a first control signal in accordance with the comparison result signal, a first delay circuit which generates a second control signal by delaying the comparison result signal, and a charge pump circuit which generates the boosted voltage in response to the first and second control signals. | 11-27-2008 |
20080291741 | BIT LINE DECODER ARCHITECTURE FOR NOR-TYPE MEMORY ARRAY - A bit line decoder for sensing states of memory cells of a memory array includes control devices and a control module. The control devices selectively communicate with bit lines. The control devices are arranged in a multi-level configuration having a plurality of levels, each level having a plurality of the control devices. The control module selects from the bit lines a first bit line and a second bit line associated with a memory cell located in the memory array when determining a state of the memory cell. The control module generates first control signals that deselect one or more of the control devices at each level. When one or more control devices at each level are deselected, a first group of the bit lines including the first bit line is charged to a first potential, and a second group of the bit lines including the second bit line is charged to a second potential. | 11-27-2008 |
20080316834 | BIAS CIRCUITS AND METHODS FOR ENHANCED RELIABILITY OF FLASH MEMORY DEVICE - A non-volatile semiconductor memory device includes: cell strings connected to respective bit lines; each of the cell strings having a string select transistor connected to a string select line, a ground select transistor connected to a ground select line, and memory cells connected to corresponding word lines and connected in series between the string select transistor and the ground select transistor; a first voltage drop circuit configured to reduce an applied read voltage during a read operation; a second voltage drop circuit configured to reduce the applied read voltage; a string select line driver circuit configured to drive the string select line with the reduced voltage provided by the first voltage drop circuit; and a ground select line driver circuit configured to drive a ground select line with the reduced voltage provided by the second voltage drop circuit. | 12-25-2008 |
20090010072 | SEMICONDUCTOR DEVICE - A semiconductor device includes a plurality of nonvolatile memory cells ( | 01-08-2009 |
20090010073 | Non-Volatile Memory System Including Spare Array and Method of Erasing a Block in the Same - Methods of operating non-volatile memory devices can compensate for threshold voltage disturbances caused by overhead data programming during block erase operations. These methods include erasing a spare array of nonvolatile memory cells and a corresponding main array of nonvolatile memory cells that shares word lines with the spare array. This erasing operation is followed by writing updated overhead data (e.g., an erase count) into the spare array and then performing a soft program operation. This soft program operation is performed on at least a first portion of the main array to thereby narrow a threshold voltage distribution of erased memory cells within the first portion of the main array. The soft program operation is then followed by an operation to verify an erased status of at least the first portion of the main array and an operation to communicate that the main and spare arrays of nonvolatile memory cells have been properly erased to a memory controller. | 01-08-2009 |
20090027972 | WORDLINE DRIVER FOR A NON-VOLATILE MEMORY DEVICE, A NON-VOLATILE MEMORY DEVICE AND METHOD - A wordline driver, for a non-volatile memory device, comprises a wordline driver output, a first power source, adapted to provide an erase level voltage for erasing portions of the non-volatile memory device, a second power source, adapted to provide read and program level voltages for reading and programming portions of the non-volatile memory device and first switching means, including an isolation transistor, adapted to connect the wordline driver output to a one of the first and second power sources dependent upon an operating mode of the wordline driver. The wordline driver further comprises a programmable switch controller for providing a variable control signal to a control electrode of the isolation transistor. The programmable switch controller is arranged to set the variable control signal to a value dependent upon the operating parameters of the non-volatile memory device and such that the endurance of the isolation transistor is maximised. | 01-29-2009 |
20090046516 | DATA WRITING METHOD FOR FLASH MEMORIES - A data writing method for flash memories suitable for a flash memory using a switching unit to control a bit line thereof is disclosed. The data writing method for flash memories includes applying a square wave signal to a word line of the flash memory and applying a descent wave signal to the switching unit for the bit line of the flash memory to receive a fixed drain voltage. | 02-19-2009 |
20090052257 | NONVOLATILE SEMICONDUCTOR MEMORIES FOR PREVENTING READ DISTURBANCE AND READING METHODS THEREOF - A method of reading a flash memory device can include driving a selected word line by applying a selection voltage thereto and driving unselected word lines by applying a first voltage thereto, driving the unselected word lines and first and second selection lines by applying a second voltage that is higher than the first voltage thereto, and reading data from a memory cell that is coupled to the selected word line. | 02-26-2009 |
20090073773 | MEMORY CIRCUIT, DRIVE CIRCUIT FOR A MEMORY AND METHOD FOR WRITING WRITE DATA INTO A MEMORY - A first and second non-volatile memory transistor each have a floating gate electrode and a gate terminal. A first switch is connected between a first drain terminal and a bit line for reading out information, and a second switch is connected between a second drain terminal and the bit line. The first and second switch are designed to selectively couple the first or second drain terminal to the bit line during readout. A drive circuit is designed to write data into one of the transistors and to apply equal signals to the gate terminals of the first and second transistors based on the data, to apply a programming signal at a source terminal of the transistor to be written to and to drive a source terminal of a transistor not to be written to such that a state stored in the transistor not to be written to is not changed. | 03-19-2009 |
20090080265 | MULTIPLE BIT LINE VOLTAGES BASED ON DISTANCE - An array of non-volatile storage elements includes a first group of non-volatile storage elements connected to a selected word line, a second group of non-volatile storage elements connected to the selected word line, a first group of bit lines in communication with the first group of non-volatile storage elements, a second group of bit lines in communication with the second group of non-volatile storage elements, a first set of sense modules located at a first location and connected to the first group of bit lines, and a second set of sense modules located at a second location and connected to the second group of bit lines. The first set of sense modules applies a first bit line voltage based on the bit line distance between the first set of sense modules and the first group of non-volatile storage elements. The second set of sense modules applies a second bit line voltage based on the bit line distance between the second set of sense modules and the second group of non-volatile storage elements. | 03-26-2009 |
20090116292 | SEMICONDUCTOR MEMORY DEVICE WHICH INCLUDES MEMORY CELL HAVING CHARGE ACCUMULATION LAYER AND CONTROL GATE - A semiconductor memory device includes a memory cell unit, word lines, a driver circuit, and a voltage generator. The memory cell unit includes a plurality of memory cells connected in series. Each of the memory cells includes a charge accumulation layer and a control gate. The word lines are connected to the control gate. The driver circuit selects one of the word lines and applies voltages to a selected word line and unselected word lines. The voltage generator includes first and second charge pump circuits and outputs a voltage generated by the first and second charge pump circuits to the driver circuit. The first charge pump circuit is exclusively used to generate a voltage for a first word line. The first word line is one of the unselected word lines located adjacent to the selected word line. | 05-07-2009 |
20090116293 | Memory and method for charging a word line thereof - A memory and method for charging a word line thereof are disclosed. The memory includes a first word line driver, a first word line and a first switch. The first word line driver is connected to a first operational voltage for receiving a first control signal. The first word line comprises a start terminal connected to an output terminal of the first word line driver. The first switch is connected to a second operational voltage and an end terminal of the first word line. The second operational voltage is not smaller than the first operational voltage. When the first word line driver is controlled by the first control signal to start charging up the first word line, the first switch is simultaneously turned on to provide another charging path for the first word line until the first word line is charged to the first operational voltage. | 05-07-2009 |
20090135658 | Flash memory device and read method thereof - A flash memory device includes a memory block including word lines arranged between a first selection line and a second selection line, the word lines being divided into a first group and a second group, a control logic configured to determine an activation order of the first and second selection lines and determine first and second read voltages to be supplied to unselected word lines, the control logic determining the activation order according to whether a selected word line belongs to the first group or the second group, and a row selection circuit configured to, during a read operation, drive the unselected word lines with the first and second read voltages, and activate the first and second selection lines, according to the control logic. | 05-28-2009 |
20090161439 | Nonvolatile Semiconductor Memory Device - According to an aspect of the present invention, it is provided: a nonvolatile semiconductor memory device comprising: a plurality of bit lines arranged in a first direction; a plurality of source lines arranged in the first direction, the plurality of source lines being parallel to the plurality of bit lines, the plurality of source lines being distinct from the plurality of bit lines; a plurality of memory gate lines arranged in a second direction perpendicular to the first direction; a plurality of memory cells arranged in a matrix, each of the plurality of memory cells including a p type MIS nonvolatile transistor having a first terminal, a second terminal, a channel between the first terminal and the second terminal, a gate insulation film formed on the channel, a gate electrode connected to one corresponding memory gate line of the plurality of memory gate lines, and a carrier storage layer formed between the gate insulation film and the gate electrode, the first terminal being connected to one corresponding bit line of the plurality of bit lines and the second terminal being connected to one corresponding source line of the plurality of source lines. | 06-25-2009 |
20090175088 | METHOD AND ARCHITECTURE FOR FAST FLASH MEMORY PROGRAMMING - Embodiments of the present invention disclose a method of utilizing a flash memory array to decrease programming time while maintaining sufficient read speeds. An array of cells is programmed and read in pages that are oriented in the column direction, parallel to the bit lines in the array. An erased cell in the present invention is a cell in the “off” state. According to the present invention a cell is programmed by lowering the threshold voltage of the cell, thereby turning the cell “on.” An array of cells is programmed read in a sector-by-sector method, wherein a sector consists of units situated diagonally adjacent to each other, and a unit consists of multiple parallel column-oriented pages. | 07-09-2009 |
20090219762 | SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device comprises memory cells which includes a selection transistor and a memory transistor; selection gate lines coupled to a gate of the selection transistor; control gate lines coupled to the control gate of the memory transistor; source lines coupled to a source of the memory transistor; bit lines coupled to the selection transistor; a selection gate line driver circuit; a control gate line driver circuit; and a source line driver circuit, wherein the selection gate line driver circuit comprises a first transistor including a first gate insulation film and drives the selection gate line with a first driving voltage, and the control gate line driver circuit and the source line driver circuit comprise a second transistor including second gate insulation films and drive the control gate line and the source line with a boost voltage higher than the first driving voltage. | 09-03-2009 |
20090244981 | NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND ITS WRITING METHOD - It is made possible to provide a non-volatile semiconductor memory device capable of improving the writing efficiency and its writing method. Predetermined voltages are respectively applied to a drain region and a control gate, and then the voltage applied to the control gate is opened. | 10-01-2009 |
20090244982 | MEMORY BLOCK REALLOCATION IN A FLASH MEMORY DEVICE - A non-volatile memory device has the pages of a certain memory block reallocated to other blocks in order to increase decrease disturb and increase reliability. Each of the reallocation blocks that contain the reallocated pages from the desired memory block are coupled to a wordline driver. These wordline drivers have a subset of the global wordlines as inputs. The desired wordline driver is selected by an appropriate select signal from a block decoder and an indication on an appropriate global wordline. This causes the wordline driver to generate a local wordline to the desired block with the reallocated page to be accessed. | 10-01-2009 |
20090244983 | FLASH MEMORY DEVICE AND PROGRAM METHOD THEREOF - A nonvolatile memory device that includes first and second storage areas, and a control logic configured to control the first and second storage areas, wherein when a program operation of the first storage area is passed before a program operation of the second storage area is passed, the control logic completes the program operation of the first storage area and continues the program operation of the second storage area is provided. | 10-01-2009 |
20090273983 | NONVOLATILE MEMORY DEVICE AND PROGRAMMING METHOD - Disclosed is a programming method for a nonvolatile memory device. The method includes; charging word-line signal lines to a pass voltage during a pass voltage charge operation, simultaneously executing an initial precharge operation for strings including program-inhibited cells during the pass voltage charge operation, and applying the pass voltage to word lines from the word-line signal lines in response to a block-selection enabling signal | 11-05-2009 |
20090296490 | NON-VOLATILE MEMORY DEVICE, COMPUTING SYSTEM AND WORDLINE DRIVING METHOD - A nonvolatile memory device including a memory cell; a word line coupled to the memory cell; a drive line; a switch coupled between the word line and the drive line, and configured to electrically connect the word line and the drive line; and a voltage generator coupled to the drive line and configured to charge the drive line to a precharge voltage. The precharge voltage is higher than a bias voltage applied to the word line during a corresponding operation on the memory cell. | 12-03-2009 |
20100008152 | SEMICONDUCTOR DEVICE INCLUDING DRIVING TRANSISTORS - A semiconductor device includes a driving active region defined in a substrate and at least three driving transistors disposed at the driving active region. The driving transistors share one common source/drain, and each of the driving transistors includes individual source/drains being independent from each other. The common source/drain and the individual source/drains are disposed in the driving active region. | 01-14-2010 |
20100020617 | NONVOLATILE SEMICONDUCTOR DEVICE AND MEMORY SYSTEM INCLUDING THE SAME - A nonvolatile semiconductor memory device including a vertical array structure comprised of bit lines and source lines arranged in the same direction as the bit lines, each source lines corresponding to the bit lines and memory cell strings vertically formed between each pair of the bit lines and source lines. Multiple strings of memory cells can be stacked in the vertical direction, and adjacent memory cell strings may share bit line or source line. | 01-28-2010 |
20100020618 | NON-VOLATILE MEMORY DEVICE AND MEMORY SYSTEM - A nonvolatile memory device includes a plurality of memory cells connected to a wordline and arranged in a row direction, bitlines connected to the plurality of memory cells, respectively, and a bitline bias circuit configured to separately control bias voltages provided to the bitlines according to positions of the memory cells along the row direction. | 01-28-2010 |
20100039865 | NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF MAKING THE SAME - A non-volatile semiconductor memory device according to the present invention includes a substrate; a first word-line provided above the substrate surface, the first word-line having a plate shape in an area where a memory cell is formed; a second word-line provided above the first word-line surface, the second word-line having a plate shape; a plurality of metal wirings connecting the first and second word-lines with a driver circuit; and a plurality of contacts connecting the first and second word-lines with the metal wirings. The contact of the first word-line is formed in a first word-line contact area. The contact of the second word-line is formed in a second word-line contact area. The first word-line contact area is provided on a surface of the first word-line that is drawn to the second word-line contact area. | 02-18-2010 |
20100080066 | MEMORY, MEMORY OPERATING METHOD, AND MEMORY SYSTEM - A memory includes a plurality of memory cells each of which includes a memory transistor and a selection transistor; a control gate line; a selection gate line; a source line; a bit line; a first driver that sets the control gate line and the selection gate line at a first voltage in a program operation; a second driver that sets the source line at a second voltage in the program operation, and sets the source line at a third voltage higher than the second voltage while the control gate line and the selection gate line are set at the first voltage; and a third driver that sets the bit line at a fourth voltage after the source line is set at the second voltage, the bit line being coupled to a memory cell being programmed. | 04-01-2010 |
20100118611 | DELAYED ACTIVATION OF SELECTED WORDLINES IN MEMORY - Apparatus, systems, and methods may operate to receive an external read command at a control circuit coupled to a memory array. Individual wordline activation may be delayed according to a delay period determined by a read level voltage magnitude associated with a plurality of memory cells included in the array. | 05-13-2010 |
20100128535 | SEMICONDUCTOR MEMORY AND METHOD AND SYSTEM FOR ACTUATING SEMICONDUCTOR MEMORY - A semiconductor memory includes a memory cell having a cell transistor and a selection transistor, a control gate line coupled to a gate electrode of the cell transistor, a selection gate line coupled to a gate electrode of the selection transistor, a selection gate driver configured to apply a voltage to the selection gate line, a switch circuit configured to couple the control gate line to the selection gate line, and a level converting unit coupled to the control gate line and a voltage line and configured to convert a voltage of the control gate line into a voltage of the voltage line. | 05-27-2010 |
20100135084 | WORDLINE VOLTAGE TRANSFER APPARATUS, SYSTEMS, AND METHODS - The apparatus and systems described herein may comprise a plurality of memory cells coupled to a local wordline, and a wordline drive circuit that includes a regulator coupled to a plurality of pass transistors and a string driver. The regulator may comprise a regulator transistor having a threshold voltage that is substantially the same as the threshold voltage of the string driver during memory cell program operations. In some embodiments, the regulator may comprise a cascode-connected pair of transistors. Methods of manufacturing and operating the apparatus and systems are also described. | 06-03-2010 |
20100149877 | FLASH MEMORY DEVICE AND READ METHOD - A flash memory device includes a word line decoder configured to receive a row address, and decode a selected word line and a neighboring non-selected word line corresponding to the row address during a read operation, and a word line driver configured to receive data identifying the selected word line and the neighboring non-selected word line from the word line decoder, and applying a read voltage to the selected word line, a first voltage to non-selected word lines other than the neighboring non-selected word line, and a second voltage to the neighboring non-selected word line. | 06-17-2010 |
20100157688 | PUSH-PULL MEMORY CELL CONFIGURED FOR SIMULTANEOUS PROGRAMMING OF N-CHANNEL AND P-CHANNEL NON-VOLATILE TRANSISTORS - A method of for programming a push-pull memory cell to simultaneously program a p-channel non-volatile transistor and an n-channel non-volatile transistor includes driving to 0 v wordlines for any row in which programming of memory cells is to be inhibited; driving to a positive voltage wordlines any row in which programming of memory cells is to be performed; driving to a positive voltage the bitlines for any column in which programming of memory cells is to be inhibited; driving to a negative voltage the bitlines for any column in which programming of memory cells is to be performed; driving to one of 0 v and a negative voltage a center wordline for any row in which programming of memory cells is to be inhibited; and driving to one of 0 v and a positive voltage the center wordline for any row in which programming of memory cells is to be performed. | 06-24-2010 |
20100157689 | SEMICONDUCTOR DEVICE - A semiconductor device includes a plurality of nonvolatile memory cells ( | 06-24-2010 |
20100202215 | Methods for Programming Nonvolatile Memory Devices - Provided is a method for programming a nonvolatile memory device. The nonvolatile memory device includes a local word line to divide a memory cell string into a first area including a selected word line and a second area not including the selected word line. In the method, word lines of the first area are driven by a first pass voltage and word lines of the second area driven by a second pass voltage higher than the first pass voltage. A cell transistor corresponding to the local word line is turned off after the first pass voltage and the second pass voltage are applied. The selected word line is driven by a program voltage after the cell transistor is turned off. | 08-12-2010 |
20100214851 | System and Method for Bit-Line Control - In one embodiment, a bit-line driver is disclosed. The driver has a first driver having a source terminal coupled to a high-voltage supply bus and a drain terminal coupled to the bit-line, and a second driver having a source terminal coupled to a high-voltage return bus and a drain terminal coupled to the bit line. The driver also has a first pre-driver coupled to a gate terminal of the first driver and a second pre-driver coupled to a gate terminal of the second driver. The first and second drivers use a first type of transistor, and the first and second pre-drivers use a second type of transistor. The first type of transistor is rated at a higher voltage than the second type of transistor. | 08-26-2010 |
20100220530 | CIRCUITS, SYSTEMS AND METHODS FOR DRIVING HIGH AND LOW VOLTAGES ON BIT LINES IN NON-VOLATILE MEMORY - An integrated circuit bit line driver system includes a plurality of bit line drivers coupled to respective bit lines of an array of non-volatile memory cells. Each of the bit line drivers includes a bias transistor through which an input signal is coupled to the respective bit line. The bit line driver system includes a bias voltage circuit that generates a bias voltage that is coupled to the respective gates of the bias transistors. The bias voltage circuit initially accelerates the charging of the transistor gates, and subsequently completes charging the gates at a slower rate. The bias voltage is generated using a diode-coupled transistor having electrical characteristics the match those of the bias transistors so that the bias voltage varies with process or temperature variations of the integrated circuit in the same manner as the threshold voltage of the bias transistors vary with process or temperature variations. | 09-02-2010 |
20100232232 | SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - This invention is to reduce the number of memory gate drivers, while lessening the number of times of disturb occurrence in a memory array configuration that implements writing in small byte units. A memory array comprises a plurality of sub-arrays, MG transfers, SL drivers, and CG drivers. Each sub-array includes a plurality of memory gate lines, control gate lines, source lines, and bit lines. Memory cells are arranged in positions of intersections of these lines. The control gate lines, CG drivers, source lines, and SL drivers are common to the sub-arrays, whereas the memory gate lines and MG buffer circuits are provided for each sub-array. Thereby, the units in which data is written are decreased and adverse effects of disturb are reduced without increasing the circuit size of the memory array. | 09-16-2010 |
20100232233 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device in which a negative-threshold cell read operation is performed by biasing a source line and well line to a positive voltage includes a first drive circuit that sets at least unselected word line in a floating state at a negative-threshold cell read time. | 09-16-2010 |
20100296345 | SEMICONDUCTOR MEMORY DEVICE WHICH INCLUDES MEMORY CELL HAVING CHARGE ACCUMULATION LAYER AND CONTROL GATE - A semiconductor memory device includes memory cells, a source line, a word line, a bit line, and a driver circuit. The memory cells are formed on a semiconductor layer and have a charge accumulation layer and a control gate on the charge accumulation layer. The word line is connected to gate of the memory cell. The bit line is electrically connected to a drain of the memory cell. The source line is electrically connected to a source of the memory cell. The driver circuit varies potential of the semiconductor layer in conjunction with potential of the source line. | 11-25-2010 |
20100315881 | NON-VOLATILE MEMORY DEVICE AND METHOD OF READING DATA IN A NON-VOLATILE MEMORY DEVICE - A non-volatile memory device includes a row decoder and a memory cell array. The row decoder generates a read voltage, and first, second and third drive voltages. The memory cell array includes a selected word line receiving the read voltage, a first neighboring word line of the selected word line receiving the second word line drive voltage, a second neighboring word line of the selected word line receiving the third word line drive voltage, and a non-neighboring word line of the selected word line receiving the first word line drive voltage. | 12-16-2010 |
20100322011 | SEMICONDUCTOR MEMORY DEVICE WITH MEMORY CELLS HAVING CHARGE ACCUMULATION LAYER - According to one embodiment, a semiconductor memory device includes memory cells, a memory cell array, a word line, a bit line, a source line, a row decoder, a sense amplifier, and a first MOS transistor. The word line is connected to gates of the memory cells. The bit line is electrically connected to drains of the memory cells. The source line is electrically connected to sources of the memory cells. The row decoder selects the word line. The sense amplifier senses and amplifies data read onto the bit line in a read operation. The first MOS transistor is capable of connecting a well region where the memory cells are formed with the source line and is arranged between the row decoder or the sense amplifier and the memory cell array. | 12-23-2010 |
20110058426 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A sub-decoder element provided corresponding to each word line is constructed by the same conductive type MOS transistors. The sub-decoder elements are arranged in a plurality of columns such that the layout of active regions for forming the sub-decoder elements is inverted in a Y direction and displaced by one sub-decoder element in an X direction. The arrangement of the sub-decoder elements is adjusted such that high voltage is not applied to both of gate electrodes adjacent in the Y direction. A well voltage of a well region for forming the sub-decoder element group is set to a voltage level such that a source to substrate of the transistor of the sub-decoder element is set into a deep reversed-bias state. In a nonvolatile semiconductor memory device, the leakage by a parasitic MOS in a sub-decoder circuit or word line driving circuit to which a positive or negative high voltage is supplied, can be suppressed. | 03-10-2011 |
20110063921 | Circuit Arrangement with a Column Latch and Method for Operating a Column Latch - In one embodiment, a circuit arrangement with a column latch has a first terminal (A | 03-17-2011 |
20110069558 | LOCAL WORD LINE DRIVER OF A MEMORY - A memory includes a local word line driver for a memory array having a first word line and a second word line. The local word line driver includes a first selection transistor, a second selection transistor, and a middle transistor disposed between the first and second selection transistors. The first word line couples to the first selection transistor and the middle transistor, and the second word line couples to the middle transistor and the second selection transistor. | 03-24-2011 |
20110090743 | Sub Volt Flash Memory System - Various circuits include MOS transistors that have a bulk voltage terminal for receiving a bulk voltage that is different from a supply voltage and ground. The bulk voltage may be selectively set so that some MOS transistors have a bulk voltage set to the supply voltage or ground and other MOS transistors have a bulk voltage that is different. The bulk voltage may be set to forward or reverse bias pn junctions in the MOS transistor. The various circuits include comparators, operational amplifiers, sensing circuits, decoding circuits and the other circuits. The circuits may be included in a memory system. | 04-21-2011 |
20110103153 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR DRIVING SAME - According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases. | 05-05-2011 |
20110103154 | LOCAL SELF-BOOSTING METHOD OF FLASH MEMORY DEVICE AND PROGRAM METHOD USING THE SAME - Provided is a local self-boosting method of a flash memory device including at least one string having memory cells respectively connected to wordlines. The local self-boosting method includes forming a potential well at a channel of the string and forming potential walls at the potential well to be disposed at both sides of a channel of a selected one of the memory cells. The channel of the selected memory cell is locally limited by the potential walls and boosted when a program voltage is applied to the selected memory cell. | 05-05-2011 |
20110110163 | WORD LINE DRIVERS IN NON-VOLATILE MEMORY DEVICE AND METHOD HAVING A SHARED POWER BANK AND PROCESSOR-BASED SYSTEMS USING SAME - A word line driver system that utilizes a voltage selection circuit to supply one of several voltages to an output node coupled to a plurality of word line control circuits. Each word line control circuit is coupled to a respective word line in an array of non-volatile memory cells. The voltage selection circuit may include selectable low pass filters for filtering the supplied voltage supplied to the word lines in the array of memory cells without significantly increasing the overall die-size of the device. | 05-12-2011 |
20110116321 | SEMICONDUCTOR DEVICE FOR PREVENTING ERRONEOUS WRITE TO MEMORY CELL IN SWITCHING OPERATIONAL MODE BETWEEN NORMAL MODE AND STANDBY MODE - When an operational mode is shifted to a standby mode, a first transistor is brought into a conduction state by a control signal, and a word line is thereby clamped to a ground voltage. Further, a second transistor is brought into a non-conduction state, and supply of an internal power supply voltage to a word line driver is shut off. Subsequently, the supply of the internal power supply voltage is halted for saving electrical power. When the operational mode returns to a normal mode, the supply of the internal power supply voltage is started, and subsequently, the first transistor is brought into the non-conduction state by the control signal, and the second transistor is thereby brought into the conduction state. | 05-19-2011 |
20110128792 | SEMICONDUCTOR STORAGE DEVICE AND BOOSTING CIRCUIT - A boosting circuit includes first to fourth rectification elements, first to fourth MOS transistors, first to fourth capacitors, and a switch circuit. The switch circuit has a low level terminal connected to a first connection node between the first end of the third rectification element and the first end of the fourth rectification element, and a high level terminal connected to a second connection node between a second end of the third MOS transistor and a second end of the fourth MOS transistor. The switch circuit conducts changeover between a voltage at the low level terminal and a voltage at the high level terminal to output a resultant voltage to the output terminal. | 06-02-2011 |
20110141820 | SEMICONDUCTOR MEMORY DEVICE INCLUDING STACKED GATE HAVING CHARGE ACCUMULATION LAYER AND CONTROL GATE AND METHOD OF WRITING DATA TO SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes memory cells, word lines, a driver circuit, and a control circuit. The driver circuit repeats a programming operation of selecting any one of the word lines, of applying a first voltage to selected one of the word lines, and of applying a second voltage to unselected one of the word lines, to write data to selected one of the memory cells connected to the selected one of the word lines. The control circuit, while the driver circuit is repeating the programming operation, steps up the first voltage and keeps the second voltage constant until the first voltage reaches a first threshold. The control circuit steps up the second voltage after the first voltage has reached the first threshold. | 06-16-2011 |
20110141821 | NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE AND METHOD OF MANUFACTURING THE SAME - A non-volatile semiconductor storage device includes: a substrate; a control circuit layer provided on the substrate; a support layer provided on the control circuit layer; and a memory cell array layer provided on the support layer. The memory cell array layer includes: a first lamination part having first insulation layers and first conductive layers alternately laminated therein; and a second lamination part provided on either the top or bottom surface of the respective first lamination part and laminated so as to form a second conductive layer between second insulation layers. The control circuit layer includes at least any one of: a row decoder driving word lines provided in the memory cell array layer, and a sense amplifier sensing and amplifying a signal from bit lines provided in the memory cell array layer. | 06-16-2011 |
20110176370 | NONVOLATILE SEMICONDUCTOR MEMORY - A nonvolatile semiconductor memory comprises a memory cell array in which a plurality of memory cell transistors capable of storing data according to a threshold voltage; a row decoder having a plurality of transfer MOS transistors connected at first ends to a plurality of word lines which are respectively connected to control gate electrodes of the plurality of memory cell transistors; and a word line driver which selects supplied voltages and supplies the selected voltages to second ends of the plurality of transfer MOS transistors. The nonvolatile semiconductor memory further comprises a voltage generation circuit which supplies voltages to the word line driver; and a control circuit which controls operation of the row decoder, the word line driver and the voltage generation circuit. | 07-21-2011 |
20110199833 | NON-VOLATILE MEMORY DEVICES, OPERATING METHODS THEREOF AND MEMORY SYSTEMS INCLUDING THE SAME - Nonvolatile memory devices, operating methods thereof, and memory systems including the same. A nonvolatile memory device may include a memory cell array and a word line driver. The memory cell array may include a plurality of memory cells. The word line driver may be configured to apply word line voltages to a plurality of word lines connected to the plurality of memory cells, respectively. Magnitudes of the word line voltages may be determined according to locations of the plurality of word lines. | 08-18-2011 |
20110205808 | SEMICONDUCTOR MEMORY AND SYSTEM - A semiconductor memory includes a plurality of nonvolatile memory cells arranged in a matrix and coupled to control gate lines, selection gate lines, bit lines, and source lines, and includes a source line control unit. The source line control unit, at a time of program operation, sets one of the source lines coupled to a row of the memory cells including a program memory cell to a high level voltage, and sets at least one of the remaining source lines coupled to a row of a non-program memory cells to be higher than a low level voltage of the selection gate lines and to be lower than the high level voltage of an unselection bit line. Thereby, a leak current lowering a voltage of the source lines at the time of program operation can be blocked off, and a program operation time may be shortened. | 08-25-2011 |
20110216603 | Non-Volatile Memory Device, Erasing Method Thereof, And Memory System Including The Same - Provided is an erasing method of a nonvolatile memory device. The erasing method applies a word line erase voltage to a plurality of word lines connected to the memory cells respectively, applies a specific voltage to a ground selection line connected to the ground selection transistor, applies an erase voltage to a substrate in which the memory string formed during the step applying the specific voltage to the ground selection line, and floats the ground selection line in response to a voltage change of the substrate. | 09-08-2011 |
20110228611 | System and Method for Bit-Line Control - In one embodiment, a bit-line driver has a first driver having a source terminal coupled to a high-voltage supply bus and a drain terminal coupled to the bit-line, and a second driver having a source terminal coupled to a high-voltage return bus and a drain terminal coupled to the bit line. The bit-line driver also has a first pre-driver coupled to a gate terminal of the first driver and a second pre-driver coupled to a gate terminal of the second driver. The first and second drivers use a first type of transistor, and the first and second pre-drivers use a second type of transistor. The first type of transistor is rated at a higher voltage than the second type of transistor. | 09-22-2011 |
20110242904 | Read Only Memory and Operating Method Thereof - A read only memory (ROM) and an operating method thereof are provided. The read only memory includes: a control circuit, powered by a first power source for outputting a control signal within a first voltage range; a voltage shifter, for expanding the amplitude of the control signal to a second voltage range; a word line driver, powered by a second power source with a voltage which is higher than that of the first power source, for driving one of a plurality of word lines of a read only memory cell array according to the control signal which is expanded to be within the second voltage range; and an input/output circuit, for connecting the plurality of bit lines to read out messages. | 10-06-2011 |
20110255346 | SUB VOLT FLASH MEMORY SYSTEM - Various circuits include MOS transistors that have a bulk voltage terminal for receiving a bulk voltage that is different from a supply voltage and ground. The bulk voltage may be selectively set so that some MOS transistors have a bulk voltage set to the supply voltage or ground and other MOS transistors have a bulk voltage that is different. The bulk voltage may be set to forward or reverse bias pn junctions in the MOS transistor. The various circuits include comparators, operational amplifiers, sensing circuits, decoding circuits and the other circuits. The circuits may be included in a memory system. | 10-20-2011 |
20110310674 | System and Method for Bit-Line Control - In one embodiment, a bit-line driver is disclosed. The driver has a first driver having a source terminal coupled to a high-voltage supply bus and a drain terminal coupled to the bit-line, and a second driver having a source terminal coupled to a high-voltage return bus and a drain terminal coupled to the bit line. The driver also has a first pre-driver coupled to a gate terminal of the first driver and a second pre-driver coupled to a gate terminal of the second driver. The first and second drivers use a first type of transistor, and the first and second pre-drivers use a second type of transistor. The first type of transistor is rated at a higher voltage than the second type of transistor. | 12-22-2011 |
20120014185 | CIRCUITS, SYSTEMS AND METHODS FOR DRIVING HIGH AND LOW VOLTAGES ON BIT LINES IN NON-VOLATILE MEMORY - An integrated circuit bit line driver system includes a plurality of bit line drivers coupled to respective bit lines of an array of non-volatile memory cells. Each of the bit line drivers includes a bias transistor through which an input signal is coupled to the respective bit line. The bit line driver system includes a bias voltage circuit that generates a bias voltage that is coupled to the respective gates of the bias transistors. The bias voltage circuit initially accelerates the charging of the transistor gates, and subsequently completes charging the gates at a slower rate. The bias voltage is generated using a diode-coupled transistor having electrical characteristics the match those of the bias transistors so that the bias voltage varies with process or temperature variations of the integrated circuit in the same manner as the threshold voltage of the bias transistors vary with process or temperature variations. | 01-19-2012 |
20120026800 | SEMICONDUCTOR APPARATUS AND METHOD FOR TRANSFERRING CONTROL VOLTAGE - A semiconductor apparatus includes a control voltage transfer unit configured to transfer a control voltage transmitted through first transmission lines, to second transmission lines in response to a select signal transmitted through a select signal transmission line; a select signal driving unit configured to drive the select signal to the select signal transmission line; and a voltage boosting control unit configured to float the select signal transmission line when a voltage level of the select signal transmission line increase to or above a target level. | 02-02-2012 |
20120044772 | NON-VOLATILE MEMORY DEVICE, SYSTEM, AND CELL ARRAY - A non-volatile memory cell array, comprising sector selection transistors controlled by a voltage applied to sector selection lines, first through fourth memory cells connected in series to the sector selection transistors, a first common source line connected between the first memory cell and the second memory cell, and a second common source line connected between the third memory cell and the fourth memory cell and separated from the first common source line. A first voltage is applied to the first common source line, and a second voltage different from the first voltage is applied to the second common source line. | 02-23-2012 |
20120063235 | Memory Devices For Reducing Boosting Charge Leakage And Systems Including The Same - A three-dimensional (3D) non-volatile memory includes a memory cell array and a merge driver configured to apply a merge voltage at the same level to a common source line and a bulk in the memory cell array. | 03-15-2012 |
20120069678 | NONVOLATILE SEMICONDUCTOR STORAGE DEVICE AND METHOD FOR DRIVING THE SAME - A storage device according to one embodiment includes memory cells which are connected in series in a first direction and are arranged in a matrix by the arranged series connections, and word lines which connect control gates of the memory cells in a second direction perpendicular to the first direction, in which a first interval and a second interval wider than that are alternately repeated for intervals in the second direction between the memory cells. The storage device according to the embodiment comprises a drive unit for writing data in a first cell, then writing data in a second cell which is connected to the same word line as the first cell and is spaced at the first interval in the second direction, then reading the data in the second cell, and reading the data in the first cell with correction based on the read value of the second cell. | 03-22-2012 |
20120069679 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR DRIVING SAME - According to one embodiment, a nonvolatile semiconductor memory device includes a memory string including a plurality of memory cells and, a driving unit. In sequentially reading data stored in the memory cells by applying a first signal to the memory cells, a second signal is applied to a second cell. The driving unit applies a third signal to the gate electrodes of all the memory cells prior to the sequential reading. The third signal has a voltage smaller than the second signal and time duration equal to or more than that of a sum of time duration during which the first signal is applied to all the memory cells. In a period prior to the third signal application, the driving unit performs at least one of applying a fourth signal to the gate electrodes and matching a potential of the gate electrodes with that of the semiconductor layer. | 03-22-2012 |
20120069680 | NAND WITH BACK BIASED OPERATION - Methods of programming, reading and erasing memory cells are disclosed. In at least one embodiment, program, sense, and erase operations in a memory are performed with back biased operation, such as to improve high voltage device isolation and cutoff in string drivers and bit line drivers, and no nodes of the circuitry are biased at zero volts | 03-22-2012 |
20120075934 | ACCESS LINE MANAGEMENT IN A MEMORY DEVICE - Memory devices and methods are disclosed, such as devices configured to store a number of access line biasing patterns to be applied during a memory device operation performed on a particular row of memory cells in the memory device. Memory devices are further configured to support modification of the stored bias patterns, providing flexibility in biasing access lines through changes to the bias patterns stored in the memory device. Methods and devices further facilitate performing memory device operations under multiple biasing conditions to evaluate and characterize the memory device by adjustment of the stored bias patterns without requiring an associated hardware change to the memory device. | 03-29-2012 |
20120170377 | LOCAL WORD LINE DRIVER AND FLASH MEMORY ARRAY DEVICE THEREOF - In a local word line driver of an NOR flash memory and its flash memory array device, the local word line driver is provided for driving a local word line in a sector of a memory array, and the local word line driver has two transistors including a first transistor and a second transistors, and the first and second transistors are NMOS transistors, and thus achieving the effects of reducing the area occupied by circuits on the local word line driver and the die size, and saving the area for the use by memory units. | 07-05-2012 |
20120195127 | NON-VOLATILE SEMICONDUCTOR MEMORY - A non-volatile semiconductor memory includes a plurality of memory cells and a driver for selectively driving the memory cells. The driver includes a first drive portion and a second drive portion. The first drive portion is provided for applying a source voltage higher than a power source voltage to a source region of the memory cell. The second drive portion is provided for applying a specific low voltage to a drain region of the memory cell for writing data having a first logic level, so that a writing current flows in the memory cell. Further, the second drive portion is provided for applying a specific high voltage higher than the power source voltage as a writing prohibition voltage to a drain region of the memory cell for writing data having a second logic level, so that the writing current is prevented from flowing in the memory cell. | 08-02-2012 |
20120218828 | Methods for Programming Nonvolatile Memory Devices - Provided is a method for programming a nonvolatile memory device. The nonvolatile memory device includes a local word line to divide a memory cell string into a first area including a selected word line and a second area not including the selected word line. In the method, word lines of the first area are driven by a first pass voltage and word lines of the second area driven by a second pass voltage higher than the first pass voltage. A cell transistor corresponding to the local word line is turned off after the first pass voltage and the second pass voltage are applied. The selected word line is driven by a program voltage after the cell transistor is turned off. | 08-30-2012 |
20120243334 | FLASH MEMORY DEVICE AND PROGRAMMING METHOD THEREOF - A flash memory device including a memory array, a row decoder and M page buffers is provided, wherein M is a positive integer. The memory array includes a plurality of memory cells and is electrically connected to a plurality of word lines and a plurality of bit lines. The row decoder drives a specific word line among the word lines during an enabling period. The M page buffers divide the enabling period into N sub-periods, wherein N is an integer greater than 2. Furthermore, the i | 09-27-2012 |
20120275234 | NONVOLATILE MEMORY DEVICES, MEMORY SYSTEMS AND COMPUTING SYSTEMS - A nonvolatile memory device configured to apply a wordline erase voltage to a plurality of wordlines connected to a plurality of memory cells, apply an erase voltage to a substrate where a memory cell string is formed while applying a specific voltage to at least one ground selection line connected to at least one ground selection transistor, and float the at least one ground selection line when a target voltage of the substrate reaches a target voltage. | 11-01-2012 |
20120281481 | THERMALLY ASSISTED DIELECTRIC CHARGE TRAPPING FLASH - A memory device includes an array of dielectric charge trapping structures memory cells including word lines and bit lines. Control circuitry is coupled to the array arranged to control read, program and erase operations. A controller is arranged with supporting circuitry thermally annealing charge trapping structures in the memory cells in the array. Word line drivers and word line termination circuits can be used to induce current flow on the word lines to induce heat for the annealing. The thermal annealing can be applied interleaved with normal operations for recover from cycling damage. Also, the thermally annealing can be applied during mission functions like erase, to improve performance of the function. | 11-08-2012 |
20120281482 | WORD LINE DRIVERS IN NON-VOLATILE MEMORY DEVICE AND METHOD HAVING A SHARED POWER BANK AND PROCESSOR-BASED SYSTEMS USING SAME - A word line driver system that utilizes a voltage selection circuit to supply one of several voltages to an output node coupled to a plurality of word line control circuits. Each word line control circuit is coupled to a respective word line in an array of non-volatile memory cells. The voltage selection circuit may include selectable low pass filters for filtering the supplied voltage supplied to the word lines in the array of memory cells without significantly increasing the overall die-size of the device. | 11-08-2012 |
20120314505 | ROW DECODER AND NON-VOLATILE MEMORY DEVICE - A non-volatile memory device and a row decoder, the non-volatile memory device including: a memory cell array comprising a plurality of memory cells and each memory cell includes a first cell transistor and a second cell transistor; and a row decoder comprising a first driver and a second driver for generating first and second control signals. The first cell transistor is connected to the row decoder to receive the first control signal and the second cell transistor is connected to the row decoder to receive the second control signal. The first driver includes a first NMOS transistor and a first PMOS transistor formed adjacent to the first NMOS transistor. The second driver includes a second NMOS transistor and a second PMOS transistor formed adjacent to the second NMOS transistor. The first and second NMOS transistors are disposed between the first PMOS transistor and the second PMOS transistor. | 12-13-2012 |
20120327719 | THERMALLY ASSISTED FLASH MEMORY WITH SEGMENTED WORD LINES - A memory includes an array of memory cells including rows and columns including segmented word lines along the rows. The segments of the segmented word lines include local word lines. First and second switches are coupled to corresponding first and second ends of local word lines. The memory includes circuitry coupled to the first and second switches to connect bias voltages to the local word lines to induce current flow for thermal anneal. The circuitry includes pairs of global word lines along corresponding rows. The pairs of global word lines include first global word lines coupled to the first switches in the local word lines along the corresponding rows, and second global word lines coupled to the second switches in the local word lines along the corresponding rows. The memory includes bit lines along corresponding columns. Bit lines can comprise local bit lines coupled to global bit lines. | 12-27-2012 |
20130003462 | CONTROL SYSTEM FOR MEMORY DEVICE - A nonvolatile memory device includes a discharge circuit configured to selectively connect circuit nodes to discharge terminals through corresponding discharge paths, and an accumulation device for accumulating electric charge. A driving circuit is for driving the discharge circuit in such a way to connect at least a part of such circuit nodes to the discharge terminals if the value of the external supply voltage falls below a corresponding threshold. A supply circuit is for supplying the driving circuit with an intermediate supply voltage. Each one of the intermediate supply voltages is the corresponding external supply voltage when the value of the external supply voltage is higher than the corresponding threshold, or it is an internal voltage locally generated by the supply circuit by exploiting the electric charge stored by the accumulation device when the value of the external supply voltage is lower than the corresponding threshold. | 01-03-2013 |
20130003463 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - Bit lines connected to each nonvolatile memory cell are selected by corresponding selective transistors. A first drive circuit for driving the gate of one of the selective transistors receives a voltage selected by a first voltage switch, and a second drive circuit for driving the gate of the other selective transistor receives a voltage selected by a second voltage switch. A transistor constituting the first drive circuit is different in structure from a transistor constituting the second drive circuit. | 01-03-2013 |
20130003464 | CIRCUITS, SYSTEMS, AND METHODS FOR DRIVING HIGH AND LOW VOLTAGES ON BIT LINES IN NON-VOLATILE MEMORY - An integrated circuit bit line driver system includes a plurality of bit line drivers coupled to respective bit lines of an array of non-volatile memory cells. Each of the bit line drivers includes a bias transistor through which an input signal is coupled to the respective bit line. The bit line driver system includes a bias voltage circuit that generates a bias voltage that is coupled to the respective gates of the bias transistors. The bias voltage circuit initially accelerates the charging of the transistor gates, and subsequently completes charging the gates at a slower rate. The bias voltage is generated using a diode-coupled transistor having electrical characteristics the match those of the bias transistors so that the bias voltage varies with process or temperature variations of the integrated circuit in the same manner as the threshold voltage of the bias transistors vary with process or temperature variations. | 01-03-2013 |
20130077411 | Dynamic Switching Approach to Reduce Area and Power Consumption of High Voltage Charge Pumps - A charge pump system uses a dynamic switching approach, where the pump connections are independent of the load for each output. One large pump is designed to be shared between all of the outputs for use during the ramp up during recovery, with each output level also have one designated pump to maintain its level when under regulation. Each small pump is designed with capability that can maintain its output at its regulation level. Each of these pumps can be tailored to the corresponding output level, such as the number of stages being higher in the pump to supply the higher output level. The large pump unit is constructed to be ample to provide sufficient drive to be able to assist in the ramp up phase for all of the outputs and has as many switches needed to connect the pump with all the needed outputs. | 03-28-2013 |
20130077412 | ROW DRIVER CIRCUIT FOR NAND MEMORIES INCLUDING A DECOUPLING INVERTER - Devices and circuits for row driver architectures that can improve an existing row driver circuit including a boosting capacitor and a level shifter circuit. For example, the improvement can include a decoupling inverter that decouples the level shifter from the boosting capacitor, which can reduce the time for the row driver to turn on and drive appropriate voltages to the matrix array. | 03-28-2013 |
20130077413 | SEMICONDUCTOR MEMORY DEVICE - A flash memory | 03-28-2013 |
20130107634 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE | 05-02-2013 |
20130128673 | SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes memory cells storing data based on respective threshold voltages, having a positive threshold voltage in a data erased state, and includes respective control electrodes. Word lines are selectively electrically connected to the control electrodes of the memory cells, and charged to a potential before writing data to the memory cells. A voltage generator outputs a voltage at an output and includes a first path which discharges the output. A connection circuit is selectively electrically connected to the output of the voltage generator and a first word line, and selectively electrically connects the first word line to a first node which supplies a potential. | 05-23-2013 |
20130148435 | NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, there is provided a non-volatile semiconductor storage device including a non-volatile memory, a monitoring section, a determining section, and a notification processing section. The non-volatile memory includes a plurality of memory cells driven by word lines and a voltage generating section that generates a read voltage to be applied to the word lines. The monitoring section monitors a change in a threshold distribution of the plurality of memory cells upon performing a read processing to read data from the plurality of memory cells by applying the read voltage to the word lines. The determining section determines a degree of deterioration of the non-volatile memory in accordance with a monitoring result by the monitoring section. The notification processing section notifies a life of the non-volatile memory in accordance with a determining result by the determining section. | 06-13-2013 |
20130163345 | SEMICONDUCTOR MEMORY DEVICE AND METHOD OF OPERATING THE SAME - A method of operating a semiconductor memory device includes an operation of applying a first voltage to selected bit lines, a second voltage to unselected bit lines and a common source line, and turning on drain and source selection transistors, an operation of applying a program voltage to a selected word line and a switch voltage to a switch word line, and applying a first pass voltage to first unselected word lines disposed between the switch word line and a common source line and between the selected word line and a bit line, and elevating the switch voltage to generate hot electrons and inject the hot electrons to a selected memory cell of the selected word line to program the selected cell. | 06-27-2013 |
20130208545 | SEMICONDUCTOR MEMORY APPARATUS, PROGRAM METHOD THEREOF, AND DATA PROCESSING SYSTEM USING THE SAME - A semiconductor memory apparatus includes: a memory cell area including a plurality of memory cells each coupled between a word line and a bit line; and a controller configured to set a word line voltage and a bit line voltage at the same time, in response to a program command. | 08-15-2013 |
20130223157 | Memory Device And Semiconductor Device - One of objects is to provide a nonvolatile memory device in which the occurrence of a defect in data writing is suppressed and whose area can be suppressed, or a semiconductor device including the nonvolatile memory device. A first memory portion including a nonvolatile memory element and a second memory portion (data buffer) for temporarily storing data in verifying operation in which whether the data is correctly written into the first memory portion is verified are provided. Further, the second memory portion includes a memory element and an insulated gate field effect transistor for controlling the holding of charge in the memory element; the off-state current or the leakage current of the transistor is extremely low. | 08-29-2013 |
20130301361 | ROW DRIVER ARCHITECTURE - Devices and circuits for row driver in a memory device. The proposed row driver circuit architectures may reduce size of the row driver circuitry and enhance the row driver circuit's reliability. Specifically, the proposed embodiments of the row driver may reduce the required sizing of the boosting capacitor or alternatively eliminate the boosting capacitor entirely. Further, the embodiments of the row driver may reduce the risk of charge-leakage on K-nodes, enhancing the row driver's reliability in driving the x-path of the memory array. | 11-14-2013 |
20130301362 | PULSE-BASED MEMORY READ-OUT - A pulse-based memory read-out device, including: a pulse generator at a first end of a bit line and a detector at a second end of the bit line. The pulse generator is configured to send an electrical pulse along the bit line from the first end of the bit line. The detector is configured to: detect the electrical pulse at the second end; and output a digital signal representing a current state of a selected memory cell in the bit line, wherein the digital signal is based on an amplitude of the electrical pulse at the second end. | 11-14-2013 |
20140029352 | VERTICAL MEMORY WITH BODY CONNECTION - An embodiment of an apparatus includes a substrate, a body semiconductor, a vertical memory access line stack over the body semiconductor, and a body connection to the body semiconductor. | 01-30-2014 |
20140050029 | SPLIT-GATE MEMORY CELLS HAVING SELECT-GATE SIDEWALL METAL SILICIDE REGIONS AND RELATED MANUFACTURING METHODS - Split-gate non-volatile memory (NVM) cells having select-gate sidewall metal silicide regions are disclosed along with related manufacturing methods. Spacer etch processing steps are used to expose sidewall portions of select gates. Metal silicide regions are then formed within these sidewall portions of the select gates. Further, metal silicide regions can also be formed in top portions of the select gates. Further, the select gates can also be formed with one or more notches. By expanding the size of the metal silicide region to include the sidewall portion of the select gate, the select gate wordline (e.g., polysilicon) resistance is reduced for split-gate NVM arrays, the electrical contact to the select gate is improved, and performance of the select-gate NVN cell is improved. | 02-20-2014 |
20140050030 | METHODS AND APPARATUSES INCLUDING A VARIABLE TERMINATION IMPEDANCE RATIO - Methods of changing a centerline voltage of a data signal are described, along with apparatuses to change the centerline voltage. In one such method, portions of a termination circuit coupled to an output pin are selectively activated to change an impedance of the termination circuit to change the centerline voltage of the data signal driven to the output pin. One such apparatus includes pull-up impedances and pull-down impedances that can be activated to change the centerline voltage of the data signal. Additional embodiments are also described. | 02-20-2014 |
20140063974 | NON-VOLATILE MEMORY DEVICE, METHOD FOR CONTROLLING THE SAME, AND DATA PROCESSING SYSTEM USING THE CONTROL METHOD - A non-volatile memory device, a method for controlling the same, and a data processing system using the device and method are disclosed, which relates to a technology for controlling operations of a flash memory device. The non-volatile memory device comprises a cell array configured to comprise a plurality of cells coupled between a word line and a bit line; a drive controller configured to calculate a constant value corresponding to variation in word-line resistance values measured at individual word-line positions, combine the constant value with a word-line address, and set a rising time of the word line; and a voltage provider configured to provide a bias voltage in response to the rising time set in the drive controller. | 03-06-2014 |
20140085989 | SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes memory units each of which includes first and second select transistors and memory cells connected in series between the first and second select transistors. A control circuit applies a first potential difference between a source and a drain of either the first or second select transistor in a first memory unit, thereby programming either the first or second select transistor. The control circuit applies a second potential difference between a source and a drain of either the first or second select transistor in a second memory unit connected in common to the same select gate line as that of the first memory unit, thereby inhibiting either the first or second select transistor from being programmed. | 03-27-2014 |
20140092688 | Non-Volatile Semiconductor Storage Device - In a split gate MONOS memory which carries out rewrite by hot carrier injection, retention characteristics are improved. A select gate electrode of a memory cell is connected to a select gate line, and a memory gate electrode is connected to a memory gate line. A drain region is connected to a bit line, and a source region is connected to a source line. Furthermore, a well line is connected to a p type well region in which the memory cell is formed. When write to the memory cell is to be carried out, write by a source side injection method is carried out while applying a negative voltage to the p type well region via the well line. | 04-03-2014 |
20140104957 | PARTIAL LOCAL SELF BOOSTING FOR NAND - A memory system is programmed with minimal program disturb and reduced junction and channel leakage during self-boosting. Pre-charging bias signals are applied to word lines adjacent to a selected word line before a program signal is applied to the selected word line and a pass signal is applied to the remaining word lines. The pre-charging bias signals apply a pre-charge to the memory cells. The pre-charging bias signals are chosen to improve the isolation of the memory cells on word lines adjacent to the selected word line, improve self boost efficiency and reduce current leakage to prevent or reduce program disturb and/or programming errors especially in the inhibited memory cells on the selected word line. | 04-17-2014 |
20140126296 | FLASH MEMORY DEVICE AND PROGRAMMING METHOD THEREOF - A flash memory device including a memory array, a row decoder and M page buffers is provided, wherein M is an integer greater than 2. The memory array includes a plurality of memory cells and is connected to a plurality of word lines and a plurality of bit lines. The row decoder drives a specific word line among the word lines during an enabling period. Each of the page buffers is connected to N bit lines of the bit lines, and N is an integer equal to or greater than 3. A j | 05-08-2014 |
20140126297 | ACCESS LINE MANAGEMENT IN A MEMORY DEVICE - Memory devices and methods are disclosed, such as devices configured to store a number of access line biasing patterns to be applied during a memory device operation performed on a particular row of memory cells in the memory device. Memory devices are further configured to support modification of the stored bias patterns, providing flexibility in biasing access lines through changes to the bias patterns stored in the memory device. Methods and devices further facilitate performing memory device operations under multiple biasing conditions to evaluate and characterize the memory device by adjustment of the stored bias patterns without requiring an associated hardware change to the memory device. | 05-08-2014 |
20140160857 | Non-Volatile Memory Device, Driving Method of Memory Controller Controlling the Non-Volatile Memory Device and Memory System Including the Memory Controller and the Non-Volatile Memory Device - The present inventive concept provides a driving method of memory controller controlling nonvolatile memory device using variable resistive element. The memory controller may control a plurality of first memory devices and a second memory device. A number of write drivers in the second memory device may be driven when a number of first memory devices among the plurality of first memory devices are used. A different number of write drivers in the second memory device may be driven when a different number of first memory devices among the plurality of first memory devices are used. | 06-12-2014 |
20140185388 | DYNAMIC DRIVE STRENGTH OPTIMIZATION - A system for optimizing drive strength may be utilized for identifying the maximum data transfer rate for different devices and different device configurations. The drive strength may be optimized for input/output (I/O) devices by measuring voltage drops on I/O power supply using different test patterns. The maximum drive strength is identified that satisfies a limit or threshold for the allowed voltage drop level. The test pattern may include a simultaneous toggling of each I/O device. A slew rate for the device may be utilized along with the drive strength for identifying the maximum data transfer rate. | 07-03-2014 |
20140247671 | SEMICONDUCTOR MEMORY DEVICE - According to one embodiment, a semiconductor memory device includes a first sub-array including a plurality of first memory cells; a second sub-array including a plurality of second memory cells; a first bit line electrically connected to a first group of the first memory cells; a second bit line electrically connected to a first group of the second memory cells; a bit line connection unit configured to connect the first bit line and the second bit line; a first sense amplifier configured to receive a first voltage from either of the first bit line and the second bit line in a read operation, and transfer a second voltage either of the first bit line and the second bit line in a write operation; a first source line electrically connected to the first memory cells; a second source line electrically connected to the second memory cells; and a source line driver configured to apply voltages to the first source line and the second source line. | 09-04-2014 |
20140254284 | WORD LINE DRIVER CIRCUIT FOR SELECTING AND DESELECTING WORD LINES - A memory circuit includes word lines coupled to a memory array, including a first set of one or more word lines deselected in an erase operation, and a second set of one or more word lines selected in the erase operation. Control circuitry couples the first set of one or more word lines deselected in the erase operation to a reference voltage, responsive to receiving an erase command for the erase operation. Some examples further include a first transistor that switchably couples a word line to a global word line, and a second transistor that switchably couples the word line to a ground voltage. The control circuitry is coupled to the first transistor and the second transistor, wherein the control circuitry has a plurality of modes including at least an erase operation. In a first mode, the first transistor couples the word line to the global word line, and the second transistor decouples the word line from the ground voltage. In a second mode, the first transistor decouples the word line from the global word line, and the second transistor couples the word line to the ground voltage. | 09-11-2014 |
20140269098 | DYNAMIC PROGRAMMING OF ADVANCED NANOMETER FLASH MEMORY - An improved method and apparatus for programming advanced nanometer flash memory cells is disclosed. | 09-18-2014 |
20140269099 | METHOD FOR DRIVING SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE - To read multilevel data from a memory cell having a transistor using silicon and a transistor using an oxide semiconductor, without switching a signal for reading the multilevel data in accordance with the number of the levels of the multilevel data. The potential of the bit line is precharged, the electrical charge of the bit line is discharged via a transistor for writing data, and the potential of the bit line which is changed by the discharging is read as multilevel data. With such a structure, the potential corresponding to data held in a gate of the transistor can be read by only one-time switching of a signal for reading data. | 09-18-2014 |
20140293708 | NONVOLATILE MEMORY DEVICES AND METHODS OF OPERATING THE SAME - Nonvolatile memory devices including three transistor unit cells are provided. The nonvolatile memory device includes a selection transistor having a first terminal and a second terminal, a first charge trap transistor electrically connected in series to the first terminal of the selection transistor, a second charge trap transistor electrically connected in series to the second terminal of the selection transistor, and a word line electrically connected to gate electrodes of the selection transistor, the first charge trap transistor and the second charge trap transistor. Related methods are also provided. | 10-02-2014 |
20140301146 | MODIFIED LOCAL SEGMENTED SELF-BOOSTING OF MEMORY CELL CHANNELS - A method of programming a memory system by selectively applying a program voltage to a selected wordline connected to a memory transistor to be programmed. A first bias voltage is applied to a first wordline adjacent to the source side of the selected wordline. The first bias voltage is also applied to a second wordline adjacent to the drain side of the selected wordline. A second bias voltage is applied to a third wordline adjacent to the drain side of the second wordline. A third bias voltage is applied to a fourth wordline adjacent to the source side of the first wordline. A pass voltage is also applied to the remaining wordlines that do not have one of a bias voltage and a program voltage applied, the pass voltage a selected voltage level. | 10-09-2014 |
20140313836 | High Speed Signaling Techniques to Improve Performance of Integrated Circuits - Techniques are presented to improve the performance, accuracy and power consumption of on-chip voltage biasing and transmission for highly loaded RC networks (such as wordlines or bitlines in NAND or 3D memory arrays) that are otherwise limited by the physics of RC time constant. When transitioning the near-end voltage of the network, an under-drive or over-drive level is applied, combined with feedback control to estimate when the far-end voltage approaches the desired level. | 10-23-2014 |
20140321213 | BIASING SPLIT GATE MEMORY CELL DURING POWER-OFF MODE - A non-volatile memory (NVM) system has a normal mode, a standby mode and an off mode that uses less power than the standby mode. The NVM system includes an NVM array that includes NVM cells and NVM peripheral circuitry. Each NVM cell includes a control gate. A controller is coupled to the NVM array, applies a voltage to the control gates and power to the peripheral circuitry during the standby mode, and applies an off-mode voltage to the control gates and removes power from the NVM peripheral circuitry during the off mode. | 10-30-2014 |
20140321214 | PROGRAMMING MEMORY CELLS - Methods for programming memory cells. One such method for programming memory cells includes generating an encoded stream using a data stream and programming the memory cells using the encoded stream to represent the data stream. A particular bit position of the encoded stream has a first voltage level when the particular bit position of the data stream has a particular logical state, and the particular bit position of the encoded stream has either a second voltage level or a third voltage level when the particular bit position of the data stream has a logical state other than the particular logical state. | 10-30-2014 |
20140328129 | NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, there is provided a non-volatile semiconductor storage device including a non-volatile memory, a monitoring section, a determining section, and a notification processing section. The non-volatile memory includes a plurality of memory cells driven by word lines and a voltage generating section that generates a read voltage to be applied to the word lines. The monitoring section monitors a change in a threshold distribution of the plurality of memory cells upon performing a read processing to read data from the plurality of memory cells by applying the read voltage to the word lines. The determining section determines a degree of deterioration of the non-volatile memory in accordance with a monitoring result by the monitoring section. The notification processing section notifies a life of the non-volatile memory in accordance with a determining result by the determining section. | 11-06-2014 |
20140355356 | DATA TRANSFER CIRCUIT AND MEMORY INCLUDING THE SAME - A data transfer circuit includes a plurality of first lines, a second line suitable for receiving data from a first line selected among the first lines, a third line suitable for transferring data to the first line selected among the first lines, a plurality of driving units, each suitable for driving the second line based on the data from the corresponding first line in a first operation, and a plurality of connection units, each suitable for coupling the third line to the corresponding first line when the corresponding first line is selected in a second operation. | 12-04-2014 |
20140355357 | METHOD FOR WRITING IN AN EEPROM-TYPE MEMORY INCLUDING A MEMORY CELL REFRESH - The present disclosure relates to a method for writing in an EEPROM memory, the method comprising steps of: storing the bits of a word to be written in first memory units, erasing a word to be modified, formed by first memory cells connected to a word line and first bit lines, reading bits stored in the memory cells of a word line WL, in a first read mode and storing the bits read in second memory units, reading in a second read mode the bits stored in the memory cells of the word line, and programming each memory cell of the word line connected to a memory unit storing a bit in the programmed state of the word to be written, of an erased word or of a word comprising a bit having different states in the first and second read modes. | 12-04-2014 |
20150009764 | OUTPUT CIRCUIT AND SEMICONDUCTOR STORAGE DEVICE - According to one embodiment, there is provided an output circuit including a driver transistor and a pre-driver circuit. The driver transistor is connected to an output terminal. The pre-driver circuit is configured to turn ON/OFF the driver transistor. The pre-driver circuit includes a first transistor, a second transistor, a third transistor. The first transistor is configured to control ON speed of the driver transistor. The second transistor is connected in parallel with the first transistor. The second transistor is configured to control ON speed of the driver transistor. The third transistor is connected in parallel with the first transistor and in series with the second transistor. The third transistor is configured to activate or deactivate the second transistor. | 01-08-2015 |
20150023109 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE - A nonvolatile semiconductor memory device comprises a memory cell array, a staircase voltage generator, and a decode and level shift circuit. The memory cell array comprises a plurality of memory cells and a plurality of bit lines coupled to the plurality of memory cells. The staircase voltage generator generates a staircase voltage having a staircase waveform that varies in at least two steps. The decode and level shift circuit selects one of said plurality of bit lines and applies the staircase voltage as a program voltage to the selected bit line. | 01-22-2015 |
20150071008 | Systems And Methods For Read Disturb Management In Non-Volatile Memory - Non-volatile memory and methods of reading non-volatile memory are provided for managing and reducing read related disturb. Techniques are introduced to reduce read disturb using state-dependent read pass voltages for particular word lines during a read operation. Because of their proximity to a selected word line, adjacent word lines can be biased using state-dependent pass voltages while other unselected word lines are biased using a standard or second set of pass voltages. Generally, each state-dependent pass voltage applied to a word line adjacent to the selected word line is larger than the second set of pass voltages applied to other unselected word lines, although this is not required. Other word lines, may also be biased using state-dependent pass voltages. System-level techniques are provided with or independently of state-dependent pass voltages to further reduce and manage read disturb. Techniques may account for data validity and memory write and erase cycles. | 03-12-2015 |
20150078096 | LEVEL SHIFT CIRCUIT AND SEMICONDUCTOR DEVICE - A level shift circuit includes: a latch circuit (Q | 03-19-2015 |
20150092498 | Non-volatile memory for high rewrite cycles application - A non-volatile memory has an array of non-volatile memory cells. Each of the non-volatile memory cells includes a coupling device formed on a first well, a read device, a floating gate device formed on a second well and coupled to the coupling device, a program device formed on the second well, and an erase device formed on a third well and coupled to the first floating gate device. The read device, the program device, and the erase device are formed on separate wells so as to separate the cycling counts of a read operation, a program operation and an erase operation of the non-volatile memory cell. | 04-02-2015 |
20150092499 | SLEW RATE MODULATION - Apparatus and methods may operate so that arrival times of a data signal at gates of transistors are controlled to switch the transistors at different times to modulate the slew rate of a signal on a node. Additional embodiments are also described. | 04-02-2015 |
20150103602 | SECTOR-BASED REGULATION OF PROGRAM VOLTAGES FOR NON-VOLATILE MEMORY (NVM) SYSTEMS - Methods and systems are disclosed for sector-based regulation of program voltages for non-volatile memory (NVM) systems. The disclosed embodiments regulate program voltages for NVM cells based upon feedback signals generated from sector return voltages that are associated with program voltage drivers that are driving program voltages to NVM cells within selected sectors an NVM array. As such, drops in program voltage levels due to IR (current-resistance) voltage losses in program voltage distribution lines are effectively addressed. This sector-based regulation of the program voltage effectively maintains the desired program voltage at the cells being programmed regardless of the sector being accessed for programming and the number of cells being programmed. Sector return voltages can also be used along with local program voltages to provide two-step feedback regulation for the voltage generation circuitry. Test mode configurations can also be provided using test input and/or output pads. | 04-16-2015 |
20150138893 | HIGH VOLTAGE SWITCH, NONVOLATILE MEMORY DEVICE COMPRISING SAME, AND RELATED METHOD OF OPERATION - A high voltage switch operates in response to a first drive voltage and a second drive voltage higher than the first drive voltage. The high voltage switch comprises a PMOS transistor transmitting the second drive voltage to an output terminal according to a voltage applied to its gate, a first depletion mode transistor providing the second drive voltage to the PMOS transistor according to an output signal fed back from the output terminal, a second depletion mode transistor receiving the second drive voltage through one end and providing a switching voltage to another end according to a switching control signal, and a level shifter providing the switching voltage to a gate of the PMOS transistor according to an enable signal and a reverse enable signal. | 05-21-2015 |
20150310922 | Dynamic Programming Of Advanced Nanometer Flash Memory - An improved method and apparatus for programming advanced nanometer flash memory cells is disclosed. | 10-29-2015 |
20150371711 | CONTROL GATE DRIVER FOR USE WITH SPLIT GATE MEMORY CELLS - A circuit for driving a control gate of a split-gate nonvolatile memory cell may include a switched current source; a first transistor having a current electrode coupled to the switched current source and a control electrode coupled to a voltage source; a second transistor having a current electrode coupled to a second node of the switched current source, and a control electrode coupled to a third voltage source; a third transistor having a control electrode coupled to the second transistor, a current electrode coupled to the first transistor and a fourth switched voltage source; and a fourth transistor having a current electrode coupled to the first switched voltage source, a control electrode coupled to the switched current source, and a second current electrode coupled to the second transistor at a driver voltage node, wherein a voltage level at the driver voltage node is operable to drive the control gate. | 12-24-2015 |
20160019965 | SEMICONDUCTOR MEMORY DEVICE - A semiconductor memory device includes a memory cell, a peripheral circuit configured to drive the memory cell, and a protection element. The peripheral circuit includes a first p-type MOS transistor including a gate electrode and a gate insulating film having a first film thickness, a second p-type MOS transistor including a gate electrode and a gate insulating film having a second film thickness, and an n-type MOS transistor. The gate electrode of the first p-type MOS transistor is connected to the protection element. The gate electrodes included in the second p-type MOS transistor and the n-type MOS transistor are connected only to an impurity region of another transistor or only to a gate electrode of the another transistor. | 01-21-2016 |
20160042794 | LEVEL SHIFTER AND DECODER FOR MEMORY - A level shifter receiving an input with a relatively narrow voltage range and provides an output with a relatively wide voltage range. The level shifter including a transistor with a turn-on voltage. Control circuitry applies a bias to the level shifter such that the transistor does not receive the turn-on voltage. | 02-11-2016 |
20160064086 | CIRCUIT AND METHOD FOR ADJUSTING SELECT GATE VOLTAGE OF NON-VOLATILE MEMORY - A circuit for adjusting a select gate voltage of a non-volatile memory is provided. The circuit includes a well, a select gate, an adjustment unit, and a switch. There is a capacitive coupling between the well and the select gate. The adjustment unit generates a driving voltage for the select gate. The switch is coupled in series with the adjustment unit between the select gate and the well. | 03-03-2016 |
20160078943 | SEMICONDUCTOR MEMORY DEVICE AND METHOD FOR DRIVING THE SAME - According to one embodiment, a semiconductor memory device includes: semiconductor member; electrode member; charge accumulation member; a memory unit; and a control unit. Memory cell is formed at each crossing portion of the semiconductor member and the electrode member. The memory unit retains information indicating that the memory cell belongs to first group or second group. The control unit performs first step and second step, when reducing the charge accumulated in the charge accumulation member. In the first step, first voltage is applied both between the semiconductor member and the electrode member of the first group and between the semiconductor member and the electrode member of the second group. In the second step, second voltage is applied between the semiconductor member and the electrode member constituting the memory cell belonging to the second group. | 03-17-2016 |
20160086667 | SYSTEM HAVING A SEMICONDUCTOR INTEGRATED CIRCUIT DEVICE - A semiconductor memory apparatus including a latch unit configured to be driven in response to activation of a reset selection signal and resetting a first node and a second node; and an auxiliary driving unit configured to support a driving force of the latch unit in response to the reset selection signal and a voltage logic level of the first node or the second node, wherein the first node and the second node have substantially opposite voltage logic levels. | 03-24-2016 |
20160099071 | Supply Power Dependent Controllable Write Throughput for Memory Applications - Techniques that allow dynamic management of throughput in a memory device based on a power supply voltage are provided. In an example embodiment, a method of operating a memory device comprises monitoring on the power supply level applied to the device and determining a corresponding number of bitlines that the device can activate at the same time, generating a control signal based on the number of bitlines, and using the control signal to activate a portion of the memory device corresponding to the determined number of bitlines. | 04-07-2016 |
20160203871 | METHOD FOR DRIVING SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE | 07-14-2016 |
20160254057 | SEMICONDUCTOR DEVICE | 09-01-2016 |
20180025783 | NON-VOLATILE MEMORY DEVICE AND METHOD OF FABRICATING THE SAME | 01-25-2018 |
20190147953 | EEPROM, AND METHODS FOR ERASING, PROGRAMMING AND READING THE EEPROM | 05-16-2019 |
20190147955 | REDUCING DISTURBS WITH DELAYED RAMP UP OF SELECTED WORD LINE VOLTAGE AFTER PRE-CHARGE DURING PROGRAMMING | 05-16-2019 |
20190147956 | BLOCK DECODER OF NONVOLATILE MEMORY AND LEVEL SHIFTER | 05-16-2019 |