Entries |
Document | Title | Date |
20080198639 | OPERATION CONTROL CIRCUIT - It is an object of the present invention to provide an operation control circuit without using a photo-coupler. The operation control circuit controls the operation of an LED in a DC/AC inverter comprising a voltage conversion circuit, a DC/AC conversion circuit for converting output voltage of the voltage conversion circuit to two pieces of AC voltage each with an opposite phase, and an LED which is lit when AC voltage is outputted from the DC/AC conversion circuit. The operation control circuit comprising a rectifier circuit, capacitors connected between the input terminal of the rectifier circuit and the output terminal of the DC/AC conversion circuit, and a comparator circuit connected to the same ground level as the ground level connected to the LED for lighting the LED when voltage V | 08-21-2008 |
20080225561 | Apparatus and Method for Controlling Inverter - An apparatus and method for controlling an inverter capable of enhancing reliability of current measurement by ensuring an optimal time for which effective voltage vectors are applied to detect a three-phase current according to a phase current and sizes of the effective voltage vectors, the apparatus comprising a space voltage modulator that generates and outputs effective voltage vectors based upon a voltage command value, and a low modulation determiner that determines whether the effective voltage vectors are located within a low modulation region, and outputs a low modulation switching control signal or a normal modulation switching control signal according to the determination. | 09-18-2008 |
20080259662 | AC power supply and method for controlling output current thereof - An AC power supply and a method for dynamically controlling the output current thereof are disclosed. An output voltage stop signal is used to disable a DC/AC converter from outputting. During a period that the DC/AC converter stops its output, the output current of the DC/AC converter is measured and is fed back to a output current control device as an output current feedback signal to produce a deviation. Using the difference between the output current feedback signal of the DC/AC converter and the deviation, an approximate DC value of the output current of the DC/AC converter is calculated. With reference to the approximate DC value, the DC/AC converter can be controlled so that the DC current injection in the output current is approximately zero. | 10-23-2008 |
20080266918 | Polyphase Voltage Converter Control Method - A method for driving a power bridge ( | 10-30-2008 |
20080278983 | Controlling Apparatus of a Power Converter of Single-Phase Current For Photovoltaic Generation System - A control apparatus of a single-phase power converter for a photovoltaic power generation system is disclosed, including a POS MPPT controller for calculating a rating current by applying a POS MPPT control method to an output current detected through a current transformer of a single-phase AC filter, a bandpass filter for filtering only signals of a low-frequency band from a load, a single-phase reference current generator for producing a reference current by matching a phase of the current from the POS MPPT controller to a phase from the bandpass filter, a single-phase current subtractor for subtracting an output current of a current transformer from the reference current calculated by the single-phase reference current generator to thereby calculate a difference current between the output current of the current transformer and the reference current, a PI controller for outputting a control signal, corresponding to the difference current from the single-phase current subtractor, to a PWM signal generator, and the PWM signal generator for generating a PWM phase control signal corresponding to the control signal from the PI controller. | 11-13-2008 |
20080278984 | AUTOMATIC ZERO VOLTAGE SWITCHING MODE CONTROLLER - A switching DC to AC power converter includes an automatic zero voltage switching (ZVS) mode controller. The automatic zero voltage switching mode controller may adjust a ZVS dead-time in accordance with a range of load currents being supplied by the power converter that range from quiescent conditions to a predetermined loading level of the power converter. The variable ZVS dead-time may be larger nearer to quiescent conditions, and become progressively smaller as load currents increase. Outside a predetermined range of load currents, the variable ZVS dead-time may be disabled or minimized. | 11-13-2008 |
20080310202 | Method for Automatic Adjustment of the Mains-System Frequency Parameter of a Frequency Converter Which Is Connected to a Mains System - The invention relates to a method for automatically recognizing a value of the parameter network frequency of a frequency converter connected to a network. According to the invention, the curve of a measured intermediate circuit voltage of the frequency converter is analyzed in order to verify if the network is a 50 Hz or a 60 Hz network, whereupon an analyzed value is entered as parameter network frequency. The frequency converter itself is capable of determining if it is connected to a 50 Hz or 60 Hz network, rendering unnecessary any intervention by a user. | 12-18-2008 |
20080316782 | SYSTEM AND METHOD FOR PRODUCTING ANHARMONIC MULTI-PHASE CURRENTS - A system and method for producing anharmonic multi-phase currents wherein the harmonic component of an inverter is filtered and superimposed with a series of control pulses to create a control signal. The control signal is fed back to the inverter, causing the inverter to produce anharmonic multi-phase currents. | 12-25-2008 |
20090010030 | Power supply circuit with feedback circuit - An exemplary power supply circuit ( | 01-08-2009 |
20090021967 | Method for controlling a generation of an alternating current in a vehicle - In a method for controlling a generation of an alternating current in a vehicle equipped with a battery and an inverter, the inverter is electrically connectable to the battery in order to generate an alternating current from a direct current of the battery for electrical devices that are electrically connectable to the inverter, and the battery is recharged when a charging state of the battery is equal to or less than a threshold value that is sufficient to generate an alternating current required for the electrical devices. | 01-22-2009 |
20090027932 | ALTERNATIVE-SOURCE ENERGY MANAGEMENT - A power converter system includes a power converter system including: a DC-to-AC power converter; a first output configured to be coupled to a power grid; a first input configured to be coupled to the power grid; second outputs each configured to be coupled to a corresponding AC load; a power-grid switch coupled to the converter and to the first output; load switches coupled to the converter, the second outputs, and the first input; and a controller coupled to the load switches and to the first output and configured to determine whether energy from the power grid satisfies at least one criterion, the controller being further configured to control the power-grid switch and the load switches to couple the converter to the first output and to couple the first input to the second outputs if the at least one criterion is satisfied and otherwise to control the power-grid switch and the load switches to isolate the converter from the first output and to couple the converter to at least one of the second outputs. | 01-29-2009 |
20090046488 | INVERTER CIRCUIT - An inverter circuit ( | 02-19-2009 |
20090059631 | VOLTAGE-SENSED SYSTEM AND METHOD FOR ANTI-ISLANDING PROTECTION OF GRID-CONNECTED INVERTERS - A method is provided for preventing islanding of a power source connected to an electric AC grid via an interface. The method senses an output voltage waveform of the interface, controls an output current waveform of the interface to track a reference current waveform having a mathematical relationship with the sensed output voltage waveform, and discontinues the output current waveform when the output voltage waveform is sensed to be outside a predetermined waveform range. | 03-05-2009 |
20090073733 | METHOD AND APPARATUS TO REDUCE AUDIO FREQUENCIES IN A SWITCHING POWER SUPPLY - A controller for use in a power supply regulator is disclosed. One controller includes a feedback circuit coupled to generate an equivalent switching frequency signal in response to a sense signal from a power supply regulator output. A comparator is coupled to compare the equivalent switching frequency signal with a reference signal. A period modulation circuit is coupled to the feedback circuit to generate a period modulation switching signal in response to the equivalent switching frequency signal. A multi-cycle modulator circuit is coupled to the output of the comparator. The multi-cycle modulator circuit is coupled to enable or disable a switch signal from the controller, which is to be coupled to a switch of the power supply regulator. A group of two or more consecutive switching cycles is separated from a next group having two or more switching cycles by a time of no switching. The time of no switching is adjusted in closed loop to regulate a transfer of energy from a power supply regulator input to the power supply regulator output. | 03-19-2009 |
20090129132 | CONTROL DEVICE FOR POWER CONVERTER - A control circuit for a power converter includes a voltage command unit that generates a voltage command signal, a voltage command compensation unit that compensates the voltage command signal to generate a compensatory voltage command signal, and a switching pattern arithmetic unit that generates a switching signal for each of semiconductor switching elements of the power converter based on the compensatory voltage command signal and a carrier wave. The conversional fundamental frequency of the power converter is f and the carrier frequency of the carrier wave is fc. The voltage command compensation unit generates a compensation signal including at least one compensatory frequency component of fc−n×f (where n denotes successive positive and negative integers), and generates the compensatory voltage command signal. | 05-21-2009 |
20100008113 | SEMICONDUCTOR POWER CONVERSION DEVICE - A surge voltage target setting unit ( | 01-14-2010 |
20100046258 | POWER SUPPLY CONTROL SYSTEM - A digital control system for a switch mode power supply (SMPS), the control system having a demand input for a signal indicating whether an output voltage of said SMPS is above or below a desired value, and a drive output for a switch controlling energy transfer between an input and an output of said SMPS during a power switching cycle, the control system further including: a signal processor coupled to said demand input and to said drive output to control said drive output responsive to said demand signal to regulate said output voltage at said desired value, and wherein said signal processor includes at least one storage element to store at least one value of said demand signal, and wherein said switching control signal for a said power switching cycle is responsive to a value of said demand signal in at least two previous power switching cycles. | 02-25-2010 |
20100067271 | REACTIVE POWER COMPENSATION IN SOLAR POWER SYSTEM - A method of providing reactive power support is proposed. The method includes detecting at least one of a plurality of network parameters in a distributed solar power generation system. The generation system includes a plurality of photovoltaic modules coupled to a grid via inverters. The method further includes sensing a state of the photovoltaic modules coupled to the distributed solar power generation system and determining a reactive power measure based upon the sensed state and the detected network parameters. The reactive power measure is used to generate a reactive power command. The reactive power command is further used to compensate reactive power in the distributed solar power generation system. | 03-18-2010 |
20100073976 | DC/AC CONVERTER - A DC/AC converter includes: a resonant circuit including a transformer having a primary winding and a secondary winding and at least one capacitor, in which the capacitor is connected to at least one of the primary winding and secondary winding of the transformer, and an output terminal to which the load is to be connected is provided on the secondary winding side; a switching circuit connected to both ends of a direct current power supply and having a bridge configuration composed of switching elements for flowing a current through the primary winding of the transformer and the capacitor in the resonant circuit; and a control circuit that turns on/off the switching elements by a pair of drive signals, and flows a current through the load bidirectionally, thereby performs a PWM control for the current flowing through the load, wherein the control circuit includes step drive circuits which turn on the switching elements in steps, and the step drive circuits are provided so as to individually correspond to the switching elements. | 03-25-2010 |
20100091532 | METHOD AND APPARATUS FOR IMPROVED BURST MODE DURING POWER CONVERSION - A method and apparatus for converting DC input power to AC output power. The apparatus comprises an input capacitor, a DC-AC inverter, a burst mode controller for causing energy to be stored in the input capacitor during at least one storage period and the energy to be drawn from the input capacitor during at least one burst period, wherein the AC output power is greater than the DC input power during the at least one burst period; a first feedback loop for determining a maximum power point (MPP) and operating the DC-AC inverter proximate the MPP; and a second feedback loop for determining a difference in a first power measurement and a second power measurement, producing an error signal indicative of the difference, and coupling the error signal to the first feedback loop to adjust at least one operating parameter of the DC-AC inverter to drive toward the MPP. | 04-15-2010 |
20100124084 | POWER CONVERTER WITH CONTROL CIRCUIT AND RELATED CONTROL METHOD - A control circuit for use in a power converter has a multi-function terminal, a current comparator circuit, and an under-voltage detection circuit. The current comparator circuit compares current flowing through a power switch of the power converter with a reference value through the multi-function terminal when the power switch is on, and turns the power switch off when the current reaches the reference value. The under-voltage detection circuit determines whether an input voltage of the power converter is less than a predetermined value through the multi-function terminal when the power switch is turned off. | 05-20-2010 |
20100149844 | INVERTER APPARATUS - An inverter apparatus converts a DC power of a capacitor charged via a rectifier circuit connected to a first AC power system into an AC power, and supplies the AC power to a second AC power system. The inverter apparatus includes a discharge circuit, a control circuit, a trigger circuit, a first voltage-sag detection circuit, a control power circuit, and a second voltage-sag detection circuit. When the second voltage-sag detection circuit detects a voltage sag of the control power circuit below a threshold, the trigger circuit generates a discharge command signal for causing the discharge circuit to discharge a charge from the capacitor. | 06-17-2010 |
20100208501 | POWER TRANSFER MANAGEMENT FOR LOCAL POWER SOURCES OF A GRID-TIED LOAD - A power transfer system provides power factor conditioning of the generated power. Power is received from a local power source, converted to usable AC power, and the power factor is conditioned to a desired value. The desired value may be a power factor at or near unity, or the desired power factor may be in response to conditions of the power grid, a tariff established, and/or determinations made remotely to the local power source. Many sources and power transfer systems can be put together and controlled as a power source farm to deliver power to the grid having a specific power factor characteristic. The farm may be a grouping of multiple local customer premises. AC power can also be conditioned prior to use by an AC to DC power supply for more efficient DC power conversion. | 08-19-2010 |
20100246223 | TRANSFORMERLESS PHOTOVOLTAIC GRID-CONNECTING INVERTING DEVICE AND CONTROL METHOD THEREOF - The present invention relates to a transformerless photovoltaic grid-connecting inverting device and an inverting control method thereof. The inverting device comprising a boosting unit, an inverting unit, a grid-connecting unit and a control unit. The boosting unit is connected to a solar cell, for boosting an output voltage of the solar cell and then outputting a direct voltage. The inverting unit is used to convert the direct voltage output by the boosting unit into an alternating voltage. The grid-connecting unit is connected between the inverting unit and an alternating power grid, and closes or breaks up the electrical connection between the inverting unit and the alternating power grid based on a control signal. The control unit is connected to the grid-connecting unit and the inverting unit, and determines a drive signal output to the inverting unit and a grid-connecting signal output to the grid-connecting unit based on the direct voltage and the alternating voltage and phase of the power grid, wherein the phase of the drive signal is synchronous with the phase of the alternating current in the power grid. Therefore, the present invention achieves an inverting device which has a low cost and increased efficiency and safety. | 09-30-2010 |
20100302819 | SOLAR INVERTER AND CONTROL METHOD - A power generation system including a photovoltaic (PV) module to generate direct current (DC) power is provided. The system includes a controller to determine a maximum power point for the power generation system and a boost converter for receiving control signals from the controller to boost the power from the PV module to a threshold voltage required to inject sinusoidal currents into the grid. A DC to alternating current (AC) multilevel inverter is provided in the system to supply the power from the PV module to a power grid. The system also includes a bypass circuit to bypass the boost converter when an input voltage of the DC to AC multilevel inverter is higher than or equal to the threshold voltage. | 12-02-2010 |
20100309695 | Method and apparatus for improved burst mode during power conversion - A method and apparatus for coupling power to an AC power grid. In one embodiment, the method comprises interleaving a storage period and a burst period, wherein (i) energy is stored during the storage period for a predetermined number of grid voltage cycles, and (ii) stored energy is converted to AC power and coupled to the AC power grid during the burst period. | 12-09-2010 |
20100315850 | POWER INVERTER - A power inverter is provided for converting DC power into AC power. The inverter may be operable to couple to two or more transformer modules each operable to convert at least a portion of the DC power to at least a portion of the AC power. In one embodiment, two or more transformer modules are removably coupled to the inverter. In an alternative embodiment, the inverter is capable of electrically coupling to an externally-housed transformer module. In an alternative embodiment, the inverter may include two or more transformer modules hard-wired into the device. The inverter may include an AC safety plug for releasably connecting to an AC power network and outputting AC power. The inverter may include one or more sensors configured to detect one or more properties of the AC power network for the purposes of determining whether a connection to the power network should be established. | 12-16-2010 |
20110013432 | Systems, Methods, and Apparatus for Operating a Power Converter - Embodiments of the invention can provide systems, methods, and apparatus for operating a power converter. According to one embodiment, a system for operating a power converter can be provided. The system can include a direct current (DC) power source with an output electrically coupled to an input of the power converter. The system can also include a controller operable to modify the performance of the DC power source through the power converter. As part of this modification, the controller can determine whether a low voltage ride (LVRT) event exists in a load and can adjust the DC power source when a LVRT event occurs. | 01-20-2011 |
20110141778 | SWITCH CONTROLLER FOR SWITCHING POWER SUPPLY AND METHOD THEREOF - A switch controller for switching power supply is coupled to an auxiliary winding of the switching power supply through a detecting resistor. The switch controller provides a detecting current passing through the detecting resistor for keeping the voltage level of a detecting signal transmitted by the detecting resistor higher than a predetermined voltage. In this way, the switch controller can avoid the latch-up phenomenon caused by receiving the detecting signal of the negative voltage level. In addition, the switch controller can detect the magnitude of an input voltage of the switching power supply by means of the detecting current, and accordingly control the operation of the switching power supply. | 06-16-2011 |
20110141779 | Boost Multilevel Inverter System - A boost inverter includes a first capacitor for connection in parallel with a dc supply voltage; a second capacitor connected in series with the first capacitor; an energy transfer path including a transfer capacitor and switches connected to the transfer capacitor for cyclically transferring energy from the first capacitor to the transfer capacitor and then from the transfer capacitor to the second capacitor; a multilevel inverter circuit connected in parallel with the series combination of the first and second capacitors, the inverter having at least one phase output for connection to an electric motor; and a PWM controller that activates the energy transfer path when a desired peak-to-peak output voltage exceeds the dc supply voltage and deactivates the energy transfer means when the desired peak-to-peak output voltage is less than the dc supply voltage. | 06-16-2011 |
20110164440 | VOLTAGE-SENSED SYSTEM AND METHOD FOR ANTI-ISLANDING PROTECTION OF GRID-CONNECTED INVERTERS - A method is provided for preventing islanding of a power source connected to an electric AC grid via an interface. The method senses an output voltage waveform of the interface, controls an output current waveform of the interface to track a reference current waveform having a mathematical relationship with the sensed output voltage waveform, and discontinues the output current waveform when the output voltage waveform is sensed to be outside a predetermined waveform range. | 07-07-2011 |
20110292700 | POWER CONVERSION DEVICE AND METHOD FOR CONTROLLING THEREOF - In a power conversion device that includes a PWM converting means for generating a PWM pulse by comparing three-phase voltage commands with a triangular wave carrier signal, a power converter for converting between a DC voltage and a three-phase AC voltage by driving a switching element according to the PWM pulse, a current detecting means for detecting a pulsed current flowing through a DC bus conductor of a main circuit, and a voltage command correcting means for correcting three-phase voltage commands, which corrects the three-phase voltage commands so that a line voltage value between the maximum phase and an intermediate phase and a line voltage value between the intermediate phase and the minimum phase are each equal to or larger than a predetermined value, the maximum phase, intermediate phase, and minimum phase being determined in correspondence to momentary values of the three-phase voltage commands arranged in descending order, if the voltage command is outside an allowable upper limit or lower limit, not only the voltage command for the maximum phase and/or the minimum phase but also the voltage command for the intermediate phase are corrected. | 12-01-2011 |
20110292701 | METHOD AND APPARATUS FOR IMPROVED BURST MODE DURING POWER CONVERSION - A method and apparatus for power conversion. In one embodiment, the apparatus comprises a DC-AC conversion stage; an intermediate capacitor coupled across the DC-AC conversion stage; and a burst mode controller coupled to the intermediate capacitor and the DC-AC conversion stage, wherein the burst mode controller (i) maintains a voltage of the intermediate capacitor below a preset limit during a storage period and (ii) drives the DC-AC conversion stage to convert DC input to AC output during a burst period, wherein the storage and burst periods occur during a burst mode operation. | 12-01-2011 |
20110305053 | Switching Control Circuits with Valley Lock for Power Converters - A switching control circuit for a switching power converter is provided. The switching control circuit is coupled to a switching device and an auxiliary winding of a transformer. The switching control circuit includes a valley detecting circuit, a valley lock circuit, and a PWM circuit. The valley detecting circuit is coupled to receive a reflected voltage signal from the auxiliary winding of the transformer for outputting a control signal in response to the reflected voltage signal. The valley lock circuit is coupled to receive the control signal for outputting a judging signal in response to the control signal during a first period and a second period following the first period. The PWM circuit outputs a switching signal in response to the judging signal. | 12-15-2011 |
20120008352 | METHOD AND APPARATUS OF PROVIDING A BIASED CURRENT LIMIT FOR LIMITING MAXIMUM OUTPUT POWER OF POWER CONVERTERS - A biased current-limit circuit for limiting a maximum output power of a power converter includes an oscillator for generating a pulse signal and an oscillation signal. A waveform generator generates a waveform signal in response to the oscillation signal. A sample-hold circuit is used to sample the waveform signal to generate a hold signal in response to a switching signal. The sample-hold circuit further samples the hold signal to generate a current-limit threshold in response to a second-sampling signal. A current comparator is utilized to compare a current-sensing signal with the current-limit threshold to limit a maximum on-time of the switching signal. | 01-12-2012 |
20120020128 | FUEL CELL SYSTEM - A fuel cell system FCS includes a fuel cell FC, a motor ES | 01-26-2012 |
20120033468 | POWER CONVERSION SYSTEMS - In a general aspect, a power conversion system includes a power converter, a transformer, and a voltage adjustment device. The power converter is configured to receive a variable DC power generated by a power generation device and to convert the received DC power to AC power at a first voltage. The transformer is configured to receive the AC power from the power converter and to deliver AC power at a second voltage to a utility power network. The voltage adjustment device is configured to adjust the first voltage to a target value determined on the basis of a voltage of the DC power. | 02-09-2012 |
20120039101 | Method of and Apparatus for Connecting a Photovoltaic Device to an AC Power Grid - A method of connecting a photovoltaic device to an AC power grid through an inverter includes monitoring a DC voltage at an input of an inverter, and activating the inverter when the monitored DC voltage exceeds a first predetermined threshold. The method further includes synchronizing an output voltage of the inverter with a grid voltage, connecting an output of the inverter to the AC power grid upon synchronization if the monitored DC voltage exceeds a second predetermined threshold, and deactivating the inverter if a detected power being fed through the inverter falls below a predetermined power threshold while maintaining the connection between the output of the inverter and the AC power grid. Lastly, the method includes disconnecting the output of the deactivated inverter from the grid if the monitored DC voltage falls below a third predetermined threshold. Further, an apparatus that performs such functionality is also provided. | 02-16-2012 |
20120081937 | Converters and Inverters for Photovoltaic Power Systems - A power system includes a plurality of DC/DC converters and a DC/AC inverter. The plurality of DC/DC converters having outputs electrically connected in parallel for supplying a DC voltage bus to an input of the DC/AC inverter. The plurality of DC/DC converters each include a maximum power point tracker (MPPT). Various DC/DC converters and DC/AC inverters suitable for use in this system and others are also disclosed. | 04-05-2012 |
20120134188 | Systems and Apparatus for Reducing Electromagnetic Interference and Methods of Assembling the Same - An electric machine drive system is described. The system includes an inverter, an electric machine coupled to the inverter by at least one output conductor and including a ground connection, and an active common mode current reducing device coupled between the ground connection of the electric machine and the inverter. | 05-31-2012 |
20120140535 | METHOD FOR OPERATING A CONVERTER CIRCUIT - A method for operating a converter circuit is provided. The converter circuit includes a converter unit and a transformer. The transformer includes at least one winding set with a primary winding and a secondary winding. The converter unit is connected, on the AC voltage side, to the primary winding of the respective winding set. In order to compensate for undesirable saturation of the transformer, the converter unit is used to deliberately apply a DC voltage to the primary winding of the respective winding set of the transformer. | 06-07-2012 |
20120147638 | ELECTRIC POWER CONVERSION DEVICE - An electric power conversion device includes a power conversion circuit for receiving electric power from an overhead wire through an LC filter circuit composed of a reactor and a capacitor and converting the electric power to output and a control unit for controlling the power conversion circuit, wherein the control unit is provided with a delay unit for delaying the voltage across the capacitor so as to produce a first control signal, produces a second output voltage instruction from the first control signal and a first output voltage instruction specifying the magnitude of the output voltage of the converted power, and controls the power conversion circuit based on the second output voltage instruction. | 06-14-2012 |
20120170336 | POWER CONVERSION CIRCUIT - The present invention discloses a power conversion circuit. A control module controls a pulse width modulation regulator to regulate a duty cycle of a DC-DC converter according to the direct current link voltage of the DC-DC converter and the output current and voltage of a renewable power supply. The control module also controls the pulse width modulation regulator to regulate a duty cycle of a DC-AC inverter according to the direct current link voltage of the DC-DC converter, output voltage of a utility power supply, and the output current and voltage of the renewable power supply. | 07-05-2012 |
20120182774 | Method For Operating A Converter In A System For Generating Electrical Energy - Described is a method for operating a converter for a system for generating electrical energy. In an embodiment of the method, the output voltage of the converter is converted to a d, q coordinate system, wherein the d, q coordinate system is assigned to the frequency of the voltage for the energy supply grid. A desired value is furthermore specified in the d, q coordinate system, several momentary or future values are determined from the output voltage in the d, q coordinate system for different switch positions of the converter, deviations between the desired value and the momentary or future values are determined in the d, q coordinate system, and the converter is switched to one of the switch positions in dependence on these deviations. | 07-19-2012 |
20120188806 | POWER DISTRIBUTION SYSTEM - A power distribution system includes a DC-DC converter which outputs a DC power after converting the DC power outputted from a DC power source to a desired voltage level. In the power distribution system, the DC-DC converter is controlled so as to operate only when the input voltage falls in a predetermined range. | 07-26-2012 |
20120218794 | DISTRIBUTED POWER SUPPLY SYSTEM AND CONTROL METHOD THEREOF - A distributed power supply system is configured to execute a process for determining whether or not to permit a diagnostic process in such a manner that it is determined whether or not a difference between a set upper limit value and an actual measurement current value is not less than a load current value, the set upper limit value being a predetermined upper limit value set with respect to a detected current of a current sensor, the measurement current value being detected by the current sensor in a state where the diagnostic process is not executed, and the load current value being a value of a current flowing from a commercial power utility to a power load during execution of the diagnostic process; and if it is determined that the difference is not less than the load current value, the controller permits the diagnostic process. | 08-30-2012 |
20120287687 | POWER CONVERTER MODULE - A power converter module is disclosed, which is an all-digital module. The power converter module includes a reference voltage generation unit, a voltage loop control unit, a current loop control unit, an input voltage compensation unit, and a pulse width modulation generation unit, to transfer input power to stable output power for providing power to an external loading device through driving bridge switch unit with external driver. The voltage loop control unit and the current loop control unit contain a proportion-integral-differentiation controller for receiving signal related to voltage and current of loading device to form voltage control loop and current control loop. The pulse width modulation generation unit contains function of deciding necessary stop time to improve quality of output power and decrease the effect of input power and loading variation, and to provide stable sine-waveform output power to the external loading device. | 11-15-2012 |
20120320644 | DEVICE AND METHOD FOR DC TO AC CONVERSION - The present invention provides a DC to AC converter including a device enabling separation of electric current into a positive portion of the circuit and a negative portion of the circuit, each portion of the circuit including an electronic switch, wherein one portion of the circuit is adapted to produce a wave form in a positive half cycle, the second portion of the circuit is adapted to produce a wave form in a negative half cycle, the voltage of the output current is fed to a polarity switch as feedback to change the polarity, and wherein the carrier duty cycle is adapted to change from 0 to 100 percent in each polarity. | 12-20-2012 |
20130027997 | MAXIMUM POWER POINT TRACKING FOR POWER CONVERSION SYSTEM AND METHOD THEREOF - An exemplary power conversion system comprises an MPPT unit, a DC bus, a power converter, and a converter controller. The MPPT unit receives a feedback current signal and a feedback voltage signal from a power source and generates an MPPT reference signal based at least in part on the feedback current and voltage signals. The DC bus receives DC power from the power source. The power converter converts the DC power on the DC bus to AC power. The converter controller receives the MPPT reference signal from the MPPT unit and an output power feedback signal measured at an output of the power converter; generates control signals for AC power regulation and maximum power extraction based at least in part on the MPPT reference signal and the output power feedback signal; and sends the control signals to the power converter. | 01-31-2013 |
20130051098 | ADAPTIVE SLOPE COMPENSATION PROGRAMMABLE BY INPUT VOLTAGE OF POWER CONVERTER - A method for controlling a power converter is provided. The method includes the following steps. A switching signal coupled to switch a transformer for regulating the output of the power converter is generated in accordance with a feedback signal and a ramp signal. The ramp signal is generated in accordance with a switching current signal and a slope compensation signal. The slope compensation signal is generated in response to an input voltage signal. The input voltage signal is generated in response to the level of the input voltage of the power converter. The feedback signal is generated in accordance with the output of the power converter, and the switching current signal is correlated with a switching current of the transformer. | 02-28-2013 |
20130063993 | ALTERNATING CURRENT LINE EMULATOR - An alternating current (AC) line emulator includes an AC power supply and an automatic regulating load. The AC power supply is used for providing an AC line frequency and an AC line voltage. The automatic regulating load is coupled between the AC power supply and a grid-connected power generation system for functioning as a test load of the grid-connected power generation system, and preventing current from reversing to the AC power supply and shutting down the AC power supply. When the grid-connected power system is tested, power consumption of the automatic regulating load is equal to a sum of output power of the grid-connected power generation system and output power of the AC power supply. | 03-14-2013 |
20130070496 | METHOD AND APPARATUS FOR POWER MODULE OUTPUT POWER REGULATION - A method and apparatus for regulating power production. In one embodiment, the method comprises comparing a line voltage level to a first threshold and a second threshold, wherein the line voltage level is a level of a line voltage at an output of a power converter; and modifying power produced by the power converter by (i) a first modification when the line voltage level is between the first and the second thresholds, and (ii) a second modification when the line voltage level exceeds the second threshold. | 03-21-2013 |
20130077366 | SOLAR ENERGY GENERATION SYSTEM TRACKING ADAPTIVE MAXIMUM POWER POINT AND ITS METHOD - Provided are a solar energy generation system having an adaptive maximum power point tracking function and a method thereof. The solar energy generation system includes: a minimum maintenance voltage determination unit configured to output a minimum maintenance voltage which enables the inverter to maintain an operation thereof corresponding to a grid voltage of the grid; a maximum power point tracking controller configured to determine a maximum power point tracking voltage at a maximum power point of the photovoltaic module, using the minimum maintenance voltage and an output voltage and output current of the photovoltaic module, and to output a reference voltage to track the maximum power point; a voltage calculator configured to calculate a difference between the reference voltage and the output voltage of the photovoltaic module; and a voltage adjuster configured to generate a reference current value using an output of the voltage calculator. | 03-28-2013 |
20130094259 | CONTROL APPARATUS OF POWER INVERTER CIRCUIT - It provides the effective power conversion control technique which it can control which it made use of a characteristic (nature) of each A/D converter in. It comprises the third control part including the third operating circuit it inputs signal from third A/D converter inputting the detecting signal which is different from the detecting signal which is the same as the detecting signal or the detecting signal and above third A/D converter, and to generate the third operating signal, and the above actuating management circuit manages the actuating of an above first control part and the second above control part and the third above control part. | 04-18-2013 |
20130141956 | BATTERY FREE OFF-GRID SOLAR INVERTER SYSTEM AND CONTROL METHOD THEREOF - A battery free off-grid solar inverter system includes an inverter and a controller. The inverter is used for converting a direct current voltage provided by a solar panel into an alternating current voltage. The inverter has an input terminal, an output terminal, and a control terminal. The input terminal is used for coupling to the solar panel for receiving the direct current voltage, and the output terminal is used for coupling to a load for coupling the alternating current voltage. The controller is coupled to the control terminal for gradually increasing the alternating current voltage to make the direct current voltage be gradually decreased when the battery free off-grid solar inverter system is turned on. The controller stops increasing the alternating current voltage when the direct current voltage is lower than a predetermined direct current voltage value. | 06-06-2013 |
20130148393 | METHODS AND SYSTEMS FOR CONTROLLING A POWER CONVERTER - A controller for controlling a power converter is described. The controller includes an input configured to receive at least one grid feedback signal, a filter, and an output. The filter is configured to receive the at least one grid feedback signal and generate an output signal that does not deviate by more than a predefined amount from the at least one grid feedback signal. The output is configured to provide a voltage command signal to the power converter that is based at least partially on the output signal. | 06-13-2013 |
20130148394 | METHODS AND SYSTEMS FOR CONTROLLING A POWER CONVERSION DEVICE - A power conversion system configured to provide alternating current (AC) power to a transformer is described. The power conversion system includes a power conversion device that includes a device input and a device output. The power conversion device is configured to receive power from a power source at the device input and the device output is configured for coupling to a transformer input. The power conversion system also includes a sensor coupled at a first point of interconnection between the device output and the transformer input and is configured to measure a voltage level at the first point of interconnection. The power conversion system also includes a system controller communicatively coupled to the power conversion device and the sensor. The system controller is configured to determine an impedance of the power grid based at least partially on the voltage level at the first point of interconnection. | 06-13-2013 |
20130155738 | SYSTEM AND METHOD FOR CONTROLLING REACTIVE POWER IN A POWER CONVERSION SYSTEM - A power conversion system includes a three-phase power converter electrically couplable to a photovoltaic power source for converting DC power to three-phase AC power; sensors for measuring voltage levels of the AC power at each phase; and a controller for generating and transmitting independent reactive power commands for each phase of the three-phase power converter based at least in part on the voltage levels and an existing voltage imbalance. | 06-20-2013 |
20130155739 | SOLAR POWER GENERATION SYSTEM, CONTROL DEVICE USED FOR SOLAR POWER GENERATION SYSTEM, AND CONTROL METHOD AND PROGRAM FOR SAME - In a light power generation system, a control device, a control method, and a program, efficient power can be supplied. The maximum power detection unit operates a MOSFET in a power converter circuit and open-circuits both ends of a solar cell panel in the maximum power detection mode. After that, the maximum power detection unit short-circuits both ends of the solar cell panel, detects a maximum power by monitoring the output power of the solar cell panel during a period from the open state to the short-circuited state, and defines the voltage of the solar cell panel as an optimal voltage when detecting the maximum power. In a tracking operation mode, the control unit performs PWM control with respect to the MOSFET by defining the optimal voltage to be a reference signal. Operations are repeated between the maximum power detection mode and the tracking operation mode. | 06-20-2013 |
20130182474 | POWER CONVERSION DEVICE FOR SOLAR ENERGY GENERATING SYSTEM - A power conversion device includes a DC-DC converter, a DC-AC inverter and a relay. The DC-DC converter leads in a DC from an external solar panel and transforms the DC into a direct voltage. The DC-AC inverter transforms the direct voltage from the DC-DC converter into an alternating voltage and connecting to an external electric load via electric load output ends. The relay includes a coil connected to an external commercial power line via commercial power input ends, and conductive contacts actuated by the coil and serially-disposed between the commercial power input ends and the DC-AC inverter, and with the commercial power line electrifying the coils, the conduction control is formed therebetween, preventing the electric energy of the solar energy generation from inversely transmitting to the commercial power line when interrupting the commercial power service. | 07-18-2013 |
20130182475 | MULTI-PHASE INVERTER CONTROL DEVICE AND CURRENT CONTROL METHOD FOR THE SAME - The present invention provides a multi-phase inverter control device and a current control method for the same. The multi-phase inverter control device comprises a discrete circuit receiving CT IOCCS, CT IOCS and CT LIVS, and converting them into a plurality of DT signals; a multi-dimensional quantization circuit calculating according to an MDFQCC (Multi-Dimensional Feedback Quantization Current Control) algorithm to obtain DT IOVS for determining a plurality of switching signals; a driver circuit receiving the switching signals, and converting the switching signals into a plurality of switch driving signals; and an inverter circuit receiving the switch driving signals to output voltage across the load. The present invention decreases switching frequency, reduces switching loss and controls the inverter to output current efficiently. | 07-18-2013 |
20130182476 | ADAPTIVE SAMPLING CIRCUIT FOR DETECTING THE DEMAGNETIZED VOLTAGE OF THE TRANSFORMER - An adaptive sampling circuit of the power converter according to the present invention comprises a sample-and-hold unit and a signal-generation circuit. The sample-and-hold unit is coupled to a transformer to generate a feedback signal by sampling a demagnetized voltage of the transformer in response to a sample signal. The signal-generation circuit generates the sample signal in response to a magnetized voltage of the transformer, the demagnetized voltage of the transformer, a switching signal and a code. The sample signal is used for sampling the demagnetized voltage. The feedback signal is correlated to an output voltage of the power converter. The switching signal is generated in response to the feedback signal for switching the transformer and regulating the output of the power converter. The adaptive sampling circuit is used to precisely measure the demagnetized voltage of the transformer without the limitation of the transformer design. | 07-18-2013 |
20130182477 | Method for Stabilizing an Electric Grid - A method for grid support by means of an inverter is disclosed, wherein the grid is supported by feeding in compensation currents. The method includes measuring a prevailing grid state, and breaking down voltages measured for measuring the prevailing grid state into symmetrical components of the grid state including positive sequence system components and negative sequence system components. The method further includes determining symmetrical components of a compensation current including positive sequence system components and negative sequence system components of the compensation current as functions of deviations of the positive sequence system components and negative sequence system components of the grid state from reference values, and feeding-in a compensation current as the vector sum of the determined symmetrical components of the compensation current | 07-18-2013 |
20130229842 | Solar Photovoltaic Power Conditioning Units - We describe a photovoltaic power conditioning unit comprising: both dc and ac power inputs; a dc link; at least one dc-to-dc converter coupled between dc input and dc link; and a dc-to-ac converter coupled between dc link and ac output. The dc-to-dc converter comprises: a transformer having input and output windings; an input dc-to-ac converter coupled between dc input and input winding; and an ac-to-dc converter coupled between output winding the dc link. The output winding has a winding tap between the first and second portions. The ac-to-dc converter comprises: first and second rectifiers, each connected to a respective first and second portion of the output winding, to the dc link and winding tap; and a series inductor connected to the winding tap. Rectifiers are connected to the winding tap of the output winding via the series inductor wherein the series inductor is shared between the first and second rectifiers. | 09-05-2013 |
20130258732 | SYSTEM AND METHOD FOR REDUCING REACTIVE CURRENT IN POWER CONVERTER BURN-IN TESTS - A system and method for reducing reactive current in burn-in test systems for solar power converters is disclosed. An emulator configured to simulate a DC power source and the power converter subject to the burn-in test can be coupled in a two-unit circulating configuration. An AC feeder line configured to supply power to the two-unit circulating configuration. A controller can be configured to adjust the output of one or more of the emulator and power converter to reduce reactive current flowing in the AC feeder line. For instance, the controller can adjust the modulation of switching devices used in the power converter or emulator to adjust the power factor of various components of the burn-in test system to compensate for the reactive current in the AC feeder line. | 10-03-2013 |
20130294126 | Photovoltaic Power Conditioning Units - We describe a photovoltaic (PV) panel system comprising a PV panel with multiple sub-strings of connected solar cells in combination with a power conditioning unit (microinverter). The power conditioning unit comprises a set of input power converters, one connected to each sub-string, and a common output power conversion stage, to provide power to an ac mains power supply output. Integration of the micro-inverter into the solar PV module in this way provides many advantages, including greater efficiency and reliability. Additionally, embodiments of the invention avoid the need for bypass diodes, a component with a high failure rate in PV panels, providing lower power loss and higher reliability. | 11-07-2013 |
20130294127 | SINGLE-PHASE VOLTAGE SOURCE DC-AC POWER CONVERTER AND THREE-PHASE VOLTAGE SOURCE DC-AC POWER CONVERTER - A single-phase voltage source DC-AC power converter includes (a) a single-phase voltage source DC-AC power converting circuit having a gate signal generator that detects a single-phase AC output current at an AC terminal and that generates gate signals for making values of a PWM command and the single-phase AC output current identical, and (b) target current producing means that produces the PWM command such that a DC component included in the single-phase AC output voltage at the AC terminal becomes zero. | 11-07-2013 |
20130301321 | TRACKING CONVERTERS WITH INPUT OUTPUT LINEARIZATION CONTROL - In a preferred embodiment, a voltage inverter comprises a voltage converter circuit and a controller. The voltage inverter produces a time-varying output voltage from an input voltage, which can be a DC input voltage or an AC input voltage. The controller provides a control signal at a duty ratio determined dynamically by a set of signals. The set of signals include the time-varying output voltage, a predetermined output voltage, a gain factor and an inductor current in the voltage converter circuit. The predetermined output voltage can have an AC waveform or an arbitrary time-varying waveform. The voltage inverter operates to match the time-varying output voltage to the predetermined output voltage. Input-output linearization is used to design a buck inverter, and input-output linearization with leading edge modulation is used to design boost and buck-boost inverters under conditions where left half plane zero effects are present. | 11-14-2013 |
20130301322 | METHOD AND APPARATUS FOR IMPROVED BURST MODE DURING POWER CONVERSION - A method and apparatus for power conversion. In one embodiment, the method comprises operating an inverter in bursts by (i) enabling power production by the inverter during a first plurality of periods, and (ii) disabling power production by the inverter during a second plurality of periods. | 11-14-2013 |
20140043880 | Method and Apparatus for Determining a Fault Current Portion in a Differential Current - When determining a fault current portion I | 02-13-2014 |
20140063881 | INVERTER AND DRIVING METHOD THEREOF - An inverter according to an embodiment of the present disclosure may include a converter having a switch, configured to convert a DC voltage into a half-wave rectified sine waveform voltage; a switching device unit having a switch, configured to convert the half-wave rectified sine waveform voltage into a sine waveform voltage; and a controller configured to control the on/off of the switch of the converter and the switch of the switching device unit. | 03-06-2014 |
20140119080 | INVERTER APPARATUS AND INVERTER SYSTEM - According to one embodiment, an inverter apparatus includes a power conversion unit, a wireless communication unit and a control unit. The power conversion unit converts input power that is one of DC power and AC power into AC output power. The wireless communication unit wirelessly receives a first synchronization signal. The control unit controls a phase of the output power based on the first synchronization signal. | 05-01-2014 |
20140119081 | POWER CONVERSION APPARATUS - A power conversion apparatus is applied to an assembled battery which is a series connection of a plurality of unit batteries, two or more and at least part of the plurality of unit batteries being selection objects. The apparatus includes a voltage output section which outputs voltage, opening and closing sections each of which is provided on each current path connecting each of the selection objects with the voltage output section and which is opened and closed to open and close the current path, and an operation section which operates the opening and closing sections so that the voltage output section outputs AC voltage. | 05-01-2014 |
20140185344 | METHOD AND APPARATUS FOR DETERMINING A CORRECTED MONITORING VOLTAGE - A method and apparatus for correcting a locally measured inverter voltage. In one embodiment, the method comprises determining a voltage compensation to compensate for a voltage drop along an AC bus between an inverter and a remotely located point on the AC bus; obtaining a voltage measurement at the inverter; applying the voltage compensation to the voltage measurement to determine a corrected voltage measurement; comparing the corrected voltage measurement to a voltage requirement; and performing a corrective action at the inverter when the corrected voltage measurement does not meet the voltage requirement. | 07-03-2014 |
20140198547 | MULTILEVEL INVERTER - There is provided a multilevel inverter capable of easily perform balancing of voltages by way of controlling switching of voltage dividing based on an offset between voltages divided by capacitors of a voltage dividing circuit. The multilevel inverter includes: a voltage dividing unit including a plurality of capacitors for dividing an input direct current (DC) voltage; an inverter unit switching the divided DC voltages to output a predetermined alternating current (AC) voltage; and a control unit providing a control signal for controlling switching of the inverter unit based on an offset between the voltages divided by the plurality of capacitors. | 07-17-2014 |
20140211527 | SYSTEMS AND METHODS FOR OPERATING A MICRO INVERTER IN A DISCONTINUOUS POWER MODE - A micro inverter is provided. The micro inverter includes an inverter efficiency threshold detector configured to determine whether an efficiency of the micro inverter is below a threshold efficiency, wherein the micro inverter is configured to convert direct current power into alternating current power, and a microcontroller coupled to the inverter efficiency threshold detector and configured to operate the micro inverter in a continuous power mode, operate the micro inverter in a discontinuous power mode, and switch the micro inverter between the continuous power mode and the discontinuous power mode based on whether the efficiency of the micro inverter is below the threshold efficiency. | 07-31-2014 |
20140218984 | INVERTER CONTROL MODULE WITH HARMONIC SUPPRESSION CAPABILITY - An inverter control module electrically connected to an inverter module is disclosed to include an error detection unit for receiving a control signal and a feedback signal from an external source and processing these signals and then outputting a corresponding error signal, a signal amplifier module electrically coupled to the error detection unit for receiving the error signal and amplifying the error signal or raising the frequency of the error signal and then outputting the processed signal, and a driver module electrically coupled to the signal amplifier module for receiving the amplified or frequency-raised error signal and generating a corresponding driving signal and then outputting the driving signal to a power module of the inverter module for driving the power module to work. | 08-07-2014 |
20140233286 | Distributed Power Harvesting Systems Using DC Power Sources - A method for maintaining reliability of a distributed power system including a power converter having input terminals and output terminals. Input power is received at the input terminals. The input power is converted to an output power at the output terminals. A temperature is measured in or in the environment of the power converter. The power conversion of the input power to the output power may be controlled to maximize the input power by setting at the input terminals the input voltage or the input current according to predetermined criteria. One of the predetermined criteria is configured to reduce the input power based on the temperature signal responsive to the temperature. The adjustment of input power reduces the input voltage and/or input current thereby lowering the temperature of the power converter. | 08-21-2014 |
20140247632 | SYSTEMS AND METHODS FOR DETECTING ISLANDING CONDITIONS IN GRID-TIED INVERTERS - A grid-tie inverter includes a power circuit and a control circuit coupled to the power circuit. The power circuit has an input terminal for coupling to a DC power source and an output terminal for coupling to an AC power grid. The control circuit is configured to perturb an AC output current of the power circuit a first time and detect a first change in an AC output voltage of the power circuit without shutting down the power circuit, perturb the AC output current of the power circuit a second time and detect a second change in the AC output voltage of the power circuit, and shut down the power circuit in response to detecting at least the first change in the AC output voltage and the second change in the AC output voltage. Example embodiments and related methods of controlling grid-tied inverters are also disclosed. | 09-04-2014 |
20140268957 | Single Phase Power System Controller and Method Therefor - Provided herein is a single phase power system controller and a method for controlling a single phase power system. The single phase power system controller comprises an error signal generator that generates an error signal from an instantaneous power reference signal and a measured instantaneous output power signal corresponding to the power delivered to a power distribution grid; and a modulator that modulates the error signal according to a trigonometric function of the grid voltage phase angle and produces a control signal for an inverter controller. In accordance with the circuits and methods provided herein, real and reactive power delivered to the grid are controlled simultaneously based on instantaneous output power feedback. | 09-18-2014 |
20140293669 | METHOD AND APPARATUS FOR IMPROVED BURST MODE DURING POWER CONVERSION - A method for converting DC input power into AC output power comprising operating in a continuous mode, while the DC input power is at a first level, wherein DC input power is continuously converted into AC output power and applied to an AC power grid and upon detecting the DC input power is at a second level, operating in a burst mode, wherein a burst of AC output power for a half grid cycle is followed by a period of energy storage lasting an integer number of grid cycles. | 10-02-2014 |
20140313799 | Power Transforming Apparatus - A power transforming apparatus implements a transformation of an energy signal and comprises a control unit, a pulse width modulation (PWM) unit, a transformation unit, and a slope compensation unit. The control unit outputs a target power signal. The PWM unit is coupled with the control unit and generates a switch signal. The transformation unit is coupled with the PWM unit, and implements a power transforming of the energy signal to output an energy transformation signal according to the switch signal. The slope compensation unit is coupled with the control unit and the PWM unit, and implements a slope compensation, according to the target power signal and a feedback signal, to output a compensation signal to the PWM unit. The switch signal is generated according to the target power signal and the compensation signal. | 10-23-2014 |
20140369098 | MICRO INVERTER WITH DC-TO-AC CONVERTER AND SOLAR PHOTOVOLTAIC SYSTEM HAVING THE SAME - A DC-to-AC converter receives a DC power generated from a solar panel and converts the received DC power into an AC power outputted through a power line. The DC-to-AC converter includes a signal input port for externally connecting an environment sensing apparatus. The environment sensing apparatus senses environment conditions around the solar panel and produces an analog sensing signal. The DC-to-AC converter receives the analog sensing signal, converts the analog sensing signal into a digital sensing signal, and outputs the digital sensing signal the power line. A micro inverter is composed of the DC-to-AC converter and the solar panel, and the micro inverter is constructed in the solar photovoltaic system, thus eliminating unnecessary hardware devices. | 12-18-2014 |
20150036399 | COPY SYSTEM FOR COPYING PARAMETER OF INVERTER - The present invention relates to a copy system for copying parameter of inverter configured to improve portability and convenience by copying parameter of inverter through synchronization utilizing a smart copier, and to easily, simply and quickly perform parameter copying of inverter, wherein the system includes a smart copier stored with a parameter, and an inverter configured to be controlled by a parameter copied from the smart copier, and wherein the smart copier selects parameters that are grouped and stored for each usage, and transmits the parameters to the inverter for configuration of the inverter, the inverter stores the parameters transmitted from the smart copier, and is controlled in response to the parameters by reading the stored parameters while the inverter is turned on. | 02-05-2015 |
20150085542 | MICRO INVERTER OF SOLAR POWER SYSTEM AND METHOD OF OPERATING THE SAME - A method of operating a micro inverter of a solar power system includes following steps: First, an output power value of a solar photovoltaic module is acquired. Afterward, it is to judge whether the micro inverter executes a power boosting mode. If the power boosting mode is executed, a maximum output power of the micro inverter is boosted from a rated output power value to a maximum output power value. Finally, it is to judge whether the output power value of the solar photovoltaic module is greater than the maximum output power value. If YES, the maximum output power value is outputted from the micro inverter. | 03-26-2015 |
20150092464 | Power Control Device - A power control device is provided which can execute self-sustaining operation only when conditions for allowing the self-sustaining operation are satisfied reliably, so as to supply AC power to a power load connected with a power system before the self-sustaining operation. | 04-02-2015 |
20150131346 | METHOD FOR DESIGNING POWER CONTROLLER, POWER CONTROLLER, AND POWER CONTROL DEVICE - A method including: setting a weighting function based on an amount of change in impedance of a control target; and determining, for a power controller, a transfer function composed of a transfer function of an internal model obtainable by performing Laplace transform on the voltage reference value and a transfer function of a partial controller, the transfer function of the partial controller being for outputting the control output after receiving, as an input, an output of the transfer function of the internal model, wherein the determining includes determining the transfer function of the partial controller using an H∞control theory so as to reduce (i) a first amount of control obtainable by multiplying the control output and the weighting function and (ii) a second amount of control that is an output of the transfer function of the internal model. | 05-14-2015 |
20150295511 | DUAL MODE MICRO-INVERTER SYSTEM AND OPERATION - A dual mode direct current-to-alternating current (DC-AC) micro-inverter is capable of operating either with or without connection to an active external AC power source. The dual mode DC-AC micro-inverter may operate in “current control mode” when connection to the active AC power source is present and may operate in “voltage control mode” when connection to the active external AC source is absent. Processes for operating an array of these micro-inverters are disclosed. The dual mode operation capability enables the micro-inverter(s) to function both in the grid connected mode (i.e., current control mode) as well as off-grid mode (i.e., voltage control mode). The system is configured to sense the presence or absence of grid power and automatically select the appropriate mode of operation. For the voltage control mode of operation, a process may include designating a master from the array of micro-inverters in order to establish the voltage and frequency references. | 10-15-2015 |
20150318792 | METHOD FOR DRIVING INVERTERS, AND INVERTER ADAPTED TO REDUCE SWITCHING LOSSES - A method for controlling the switching of an inverter, a bridge of which is adapted to chop a voltage from a direct voltage source for feeding a chopped voltage to a primary of a transformer; the inverter comprises a diode rectifier circuit receiving the input voltage from the secondary of the transformer in order to achieve a voltage fed to a chopper which feeds a load. The method comprises: a step in which the switches of the bridge are driven so that the power source is disconnected from the primary, the terminals of which are connected to each other by at least two of the electronic switches and recirculation diodes of the bridge itself, so that the voltage present on the secondary of said transformer is null; a step in which the switching of at least one electronic switch of a chopper branch is achieved when the voltage on the secondary is substantially null in order to minimize switching losses due to the opening/closing of the electronic switch of the chopper. | 11-05-2015 |
20160006366 | INVERTER AND OPERATING METHOD FOR AN INVERTER - A method for operating an inverter which is connected to an energy supply grid via a transformer for feeding in electrical energy into the energy supply grid, includes measuring output currents and output voltages of the inverter, and actuating power switches of the inverter using actuation signals that are generated as a function of the measured output currents and the measured output voltages at a fundamental frequency of the energy supply grid. The actuation signals are further generated as a function of a harmonic component of the measured output voltages of the inverter at a multiple of the fundamental frequency using a control loop with positive feedback. | 01-07-2016 |
20160049884 | POWER CONVERSION DEVICE - A power conversion device: including a group of serial three-level inverters in which 2 | 02-18-2016 |
20160094037 | DC-Bus Controller for an Inverter - Provided are DC-bus voltage or DC-bus current controller methods and circuits, for a voltage or current source inverter. A mean value calculator provides an output signal comprising the mean value of the DC-bus voltage or current, which is used as a feedback signal in a closed loop of the voltage or current source inverter controller, such that a ripple in the DC-bus voltage or current is substantially prevented from entering the closed-loop. In some embodiments a droop controller, which may be adaptive, is used in the closed loop with reverse proportional gain. The adaptive droop controller may provide a constant or variable DC-bus voltage or current. Embodiments regulate the DC-bus voltage or current to an optimized value such that power losses for load and grid conditions are minimized or reduced, and voltage and current ripple is minimized. Embodiments may be used in voltage and current source inverters connected to the utility power distribution grid, in power generation systems, in distributed generation systems, and renewable energy systems. | 03-31-2016 |
20160094148 | PHOTOVOLTAIC SYSTEM AND METHOD FOR CONTROLLING THE SAME - Provided are a photovoltaic system and a method for controlling a photovoltaic system. The photovoltaic system includes a photovoltaic output device, an inverter device, an AC interface device, a control device and an AC load, where a supply terminal of the AC load is connected to an AC output side of the inverter device, and a control terminal of the AC load is connected to the control device, and the method for controlling the photovoltaic system is applied to the control device. The method for controlling the photovoltaic system includes: controlling the AC interface device to maintain the inverter device being disconnected from an electrical grid; starting the inverter device and then starting the AC load; and controlling the AC interface device to connect the inverter device to the electrical grid, in a case that it is determined that a grid connection condition is met for the photovoltaic system. | 03-31-2016 |
20160099659 | OUTPUT POWER ADJUSTING METHOD FOR INVERTER - An output power adjusting method is applied on an inverter. The inverter includes a capacitor to store direct current (DC) electricity provided by a photovoltaic (PV) module. At least the DC electricity provided by the PV module is converted into alternating current (AC) electricity. Determine whether a power value of the AC electricity exceeds a power threshold. When the AC electricity exceeds the power threshold, the inverter works in a continuous mode. When the AC electricity does not exceed the power threshold, the inverter works in a discontinuous mode where the PV module charges the capacitor. In the discontinuous mode, determine whether a voltage on the capacitor exceeds a reference voltage, and when the voltage on the capacitor exceeds the reference voltage, the DC electricity provided by the PV module and DC electricity in pulses provided by the capacitor are converted to the AC electricity. | 04-07-2016 |
20160111974 | SINGLE-PHASE PHOTOVOLTAIC INVERTER - Disclosed are a single-phase photovoltaic inverter and a control method thereof in which a small insulated transformer and an ordinary current transformer are used to measure a leakage current instead of a high-priced current transformer that is only used to measure a leakage current. The single-phase photovoltaic inverter that converts DC electric power supplied from a single-phase photovoltaic module into AC electric power includes an input terminal including a first input terminal connecting to a positive polarity of the single-phase photovoltaic module and a second input terminal connecting to a negative polarity of the single-phase photovoltaic module, an inverter unit configured to convert DC electric power supplied through the input terminal into AC electric power and supply the converted AC electric power to a grid, and a leakage current measuring unit connected in parallel with the inverter unit and configured to measure a leakage current delivered through the input terminal. | 04-21-2016 |
20160164431 | DUAL MODE DC-AC INVERTER SYSTEM AND OPERATION - A dual mode direct current-to-alternating current (DC-AC) inverter is capable of operating either with or without connection to an active external AC power source. The dual mode DC-AC inverter may operate in “current control mode” when connection to the active AC power source is present and may operate in “power control mode” when connection to the active external AC source is absent. Processes for operating an array of these DC-AC inverters are disclosed. The dual mode operation capability enables the DC-AC inverters to function both in the grid connected mode (i.e., current control mode) as well as off-grid mode (i.e., power control mode). The system is configured to sense the presence or absence of grid power and automatically select the appropriate mode of operation. For the power control mode of operation, a process may include designating a master from the array of DC-AC inverters in order to establish the voltage and frequency reference. | 06-09-2016 |
20160172998 | POWER CONVERTER | 06-16-2016 |
20160254760 | INVERTER PHASE CURRENT RECONSTRUCTION APPARATUS AND METHODS | 09-01-2016 |
20190146540 | CONTROL METHOD FOR IMPROVING CONVERSION EFFICIENCY OF A MULTI-CHANNEL MPPT INVERTER | 05-16-2019 |