Entries |
Document | Title | Date |
20080205096 | CONTROL SYSTEM AND METHOD FOR A UNIVERSAL POWER CONDITIONING SYSTEM - A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration. | 08-28-2008 |
20080205097 | Method and arrangement in connection with inverter - A method and an arrangement for controlling an inverter provided with a voltage intermediate circuit, the inverter ( | 08-28-2008 |
20080239770 | Active Network Filter - The invention relates to a supply device ( | 10-02-2008 |
20080291706 | COMMON MODE FILTER SYSTEM AND METHOD FOR A SOLAR POWER INVERTER - A photovoltaic system, method and apparatus are disclosed. In an exemplary embodiment, the system includes a photovoltaic array, a distribution system that distributes power within a premises of a demand-side energy consumer, an inverter coupled to the distribution system that is configured to convert DC power from the photovoltaic array to AC power and apply the AC power to the distribution system, a damping portion configured to damp high frequency voltages derived from the inverter, and trapping circuitry coupled to the damping portion that is configured to reduce a level of low frequency current traveling through the damping portion. | 11-27-2008 |
20080298097 | System and method for precharging passive harmonic filters - A system and method for precharging a harmonic filter connected to a power supply line to receive AC power and deliver the AC power to the motor drive unit includes a control circuit. The control circuit is configured to monitor an operational state of the motor drive unit or the power supply line, and generate a first control signal upon a predetermined change in the operational state and a second control signal delayed from the first control signal. The system also includes a charging circuit having a first switch configured to actuate in response to the first control signal to provide a reduced power to at least a portion of the harmonic filter and a second switch configured to actuate in response to the second control signal to provide a non-reduced power to the at least a portion of the harmonic filter. | 12-04-2008 |
20090010029 | POWER CONVERTER - An apparatus to convert a direct current to an alternating current includes a power module disposed between an input terminal of the direct current and output terminal of the alternating current, the power module comprising an on/off switch element, a first smoothing condenser connected in parallel with the power module, a second smoothing condenser connected in parallel with the power module, the second smoothing condenser comprising an electrostatic capacity less than the first smoothing condenser, a first wiring connecting the power module and the first smoothing condenser, and a second wiring connecting the power module and the second smoothing condenser, the second wiring comprising an inductance greater than the first wiring. | 01-08-2009 |
20090059627 | LINEAR VOLTAGE REGULATOR - A linear voltage regulator is provided. The linear voltage regulator includes a first circuit configured to receive the first voltage from a voltage source and to remove frequency components of the first voltage in a first frequency range to obtain an output voltage at a primary output node. The linear voltage regulator further includes a second circuit having first and second inverters electrically coupled to the primary output node of the first circuit. The second circuit is configured to receive the output voltage and to remove frequency components of the output voltage in a second frequency range. The second frequency range is greater than the first frequency range. | 03-05-2009 |
20090059628 | METHOD FOR REGULATING A VOLTAGE USING A LINEAR VOLTAGE REGULATOR - A method for regulating a voltage using a linear voltage regulator is provided. The linear voltage regulator has a first circuit with a primary output node and a second circuit having first and second inverters electrically coupled to the primary output node. The method includes receiving a first voltage from a voltage source at the first circuit. The method further includes removing frequency components of the first voltage in a first frequency range to obtain an output voltage at the primary output node utilizing the first circuit. The method further includes removing frequency components of the output voltage in a second frequency range utilizing the first and second inverters of the second circuit, the second frequency range being greater than the first frequency range. | 03-05-2009 |
20090097283 | Methods for Minimizing Double-Frequency Ripple Power in Single-Phase Power Conditioners - A method is provided for minimizing a double-frequency ripple power exchanged between a load and an energy source, the energy source delivering electrical power to the load through a single-phase power conditioner, and the power conditioner being coupled to an energy storage device. The method senses a first AC waveform at the output of the power conditioner, generates a second AC waveform at the energy storage device, the second AC waveform having the same frequency as the first AC waveform, and shifts the second AC waveform by a phase shift equal to π/4 radians relative to a phase of the first AC waveform, thereby minimizing the double-frequency ripple power in the power supplied by the energy source. | 04-16-2009 |
20090116266 | PARALLELED POWER CONDITIONING SYSTEM WITH CIRCULATING CURRENT FILTER - This present invention relates to a paralleled power conditioning system with circulating current filter, comprising: an input terminal for receiving a input power; a plurality of power conditioning units; and a load. Each power conditioning unit includes: a DC/DC converter coupled to the input for receiving the input power so as to convert the input power to a DC voltage; a DC/AC inverter coupled to the DC/DC converter for converting the DC voltage to a AC voltage; and a filter coupled to the DC/AC inverter for eliminating the noise generated by the AC voltage and the circulating current among the plurality of power conditioning units so as to generate a filter voltage. The load is connected to the plurality of power conditioning units. The plurality of power conditioning units are connected in parallel to the load. | 05-07-2009 |
20090154202 | Backlight inverter and method of driving same - A backlight inverter is provided which includes at least one inverter transformer and to which a plurality of cold cathode fluorescent lamps are connected, wherein a plurality of primary windings of the inverter transformer are connected to each other either in series or in parallel, a resonance circuit including a leakage inductance and a capacitance component is formed at the secondary side of the inverter transformer, and wherein the inverter transformer is driven at an operating frequency which is included in a frequency range between a parallel resonance frequency and a series resonance frequency of the resonance circuit and which excludes a frequency range between a first inflection point and a second inflection point of a gain characteristic curve of the inverter transformer. | 06-18-2009 |
20090161392 | DC COMPONENT ELIMINATION AT OUTPUT VOLTAGE OF PWM INVERTERS - A control system for a PWM inverter may reduce a DC component of an output of the inverter. An output voltage signal may be attenuated with a low-pass filter to produce a signal with a high DC content. A duty cycle of an output of the low pass filter may be determined with a zero-crossing detector. A calculation may be performed to determine a magnitude of a DC offsetting voltage that may offset the DC component of the inverter output. The inverter may be commanded to produce a DC offsetting voltage with an opposite polarity from the DC component of the inverter output. The opposite polarity DC offsetting voltage may effectively cancel the DC component of the inverter output. A monitoring system may employ an alternate system for determining the level of the DC component, thus providing a desirable redundancy to the system. | 06-25-2009 |
20090237963 | UPS FREQUENCY CONVERTER AND LINE CONDITIONER - Systems and methods disclosed herein monitor and control input to a converter in one or more of a UPS, a frequency converter, or a line conditioner. Distortion due at least in part to ripple voltage can be removed from a control signal that controls input current to the converter. The systems and methods described herein afford a simple and effective way to reduce or eliminate one or more of subharmonic oscillation and total harmonic distortion from a converter input current during synchronous and asynchronous modes of operation. The converter may include one or more of a rectifier and an inverter. | 09-24-2009 |
20090237964 | METHOD FOR OPERATING A CONVERTER CIRCUIT AND APPARATUS FOR IMPLEMENTING THE METHOD - A method is disclosed for the operation of a converter circuit, wherein the converter circuit has a converter unit having a multiplicity of actuatable power semiconductor switches and an LCL filter which is connected to each phase connection of the converter unit, in which the actuatable power semiconductor switches are actuated by means of an actuation signal (S) formed from a hysteresis active power value (d | 09-24-2009 |
20090244936 | Three-phase inverter - The present invention relates to a three-phase inverter ( | 10-01-2009 |
20090257254 | VOLTAGE-CLAMP POWER CONVERTERS - Several inversion circuits used to convert a DC input to an AC output comprise two series circuits, at least one clamp capacitor, and at least one transformer. Each of the series circuits is in parallel with the DC input. The first series circuit includes one switch network and at least one transformer primary. The second series circuit includes one voltage-clamp network and at least one transformer primary. At least one clamp capacitor couples the first and the second series circuits, and is attached to each series circuit at a node between the respective transformer primary winding. The voltage-clamp network may be implemented with two of the three sub-circuits connected in series: a diode, a resister-capacitor-diode, and a MOSFET-capacitor. | 10-15-2009 |
20090296429 | POWER CONVERTER LOAD LINE CONTROL - A snubber circuit for a switching converter. A power source has a first rail and a second rail. A snubber transformer has a primary winding and a secondary winding, a first end of each of the primary and secondary windings being coupled together to form a transformer common point and a second end of the primary winding being connected to a half-bridge switching converter. A first capacitor is connected between the first rail and the transformer common point. A second capacitor is connected between the second rail and the transformer common point. A first diode is connected between the secondary winding and the first rail. A second diode is connected between the secondary winding and the second rail. The snubber circuit suppresses voltage transients and recovers energy from said voltage transients. In one embodiment the switching converter is a half-bridge configuration with zero current switching in a multi-level topology. | 12-03-2009 |
20090316448 | POWER INVERTER CIRCUIT FOR ADJUSTING SYMMETRY OF THE AC-VOLTAGE WITHOUT LOAD-COUPLING - The invention relates to a power inverter circuit for coupling a power station to a power supply system. The invention addresses the problem to reduce the risk of damages to components of the power station and the power supply system in the course of coupling action by providing a power inverter circuit for adjusting symmetry of the AC voltage before coupling the inverter output to a load, comprising: first switching means for selectively connecting a positive voltage to the inverter circuit output, second switching means for selectively connecting a negative voltage to the inverter output, and ohmic resistance means coupled in parallel to the inverter output, a controller for selectively switching the first and second switching means with a switching frequency to produce an AC voltage from the positive and negative voltage, wherein the controller is adapted to alter the duty ratio of the switching frequency to adjust the symmetry of the AC voltage produced by the inverter. | 12-24-2009 |
20100135051 | THREE-PHASE INVERTER FOR CONVERTING DC POWER FROM A GENERATOR INTO THREE-PHASE AC POWER - A three-phase inverter for converting DC power from a generator into three-phase AC power comprises a transformer for transforming two single phase alternating voltages with a fixed phase offset present at corresponding two primary windings into a three-phase alternating voltage present at secondary windings of the transformer. An inverter circuitry for receiving a direct voltage of the generator between two input lines and for supplying the two single phase alternating voltages to the two primary windings of the transformer is included in the three-phase inverter and comprises a split DC link having a center point connected to both input lines via corresponding capacitors and connected to a first terminal of each primary winding of the transformer, and two inverter half-bridges connected to both input lines, wherein a center point of each half bridge is connected to a second terminal of a corresponding one of the primary windings of the transformer. | 06-03-2010 |
20100238690 | METHODS FOR MINIMIZING DOUBLE-FRQUENCY RIPPLE POWER IN SINGLE-PHASE POWER CONDITIONERS - A method is provided for minimizing a double-frequency ripple power exchanged between a load and an energy source, the energy source delivering electrical power to the load through a single-phase power conditioner, and the power conditioner being coupled to an energy storage device. The method senses a first AC signal at an output of the power conditioner and generates a second AC signal at the energy storage device. The second AC signal has a frequency substantially equal to a frequency of the first AC signal and a phase shift of about 45 degrees relative to a phase of the first AC signal. | 09-23-2010 |
20100254170 | DC to AC inverter - A DC to AC inverter has a DC power input port, a buck converter, a buck/boost converter, an output filter and an AC output port. The DC power input port has a positive input terminal and a negative input terminal, both connected to a DC source. The AC output port is connected to a single-phase utility system. When the single-phase utility system is in positive half cycle, the buck converter generates a positive half-cycle signal of sinusoidal current. When the single-phase utility system is in negative half cycle, the buck/boost converter generates a negative half-cycle signal of sinusoidal current. In either the positive or negative half cycles, only one power electronic switch is switched in high frequency to reduce switching loss. Further, the negative input terminal of the DC power input port of the invention can be connected to a neutral line of the single-phase utility system. | 10-07-2010 |
20100277958 | POWER MODULE ASSEMBLY - A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node. | 11-04-2010 |
20110013429 | DC SOURCE ASSEMBLIES - Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal. | 01-20-2011 |
20110103107 | RESONANCE CIRCUIT FOR DC-LINK VOLTAGE CONTROL IN DC-TO-AC INVERTER - The present disclosure relates to a resonance circuit for DC-link voltage control in a DC-to-AC inverter. The resonance circuit comprises two active switches. Before the active switches of the DC-to-AC inverter are turned on, a DC-link voltage is isolated by the active switches and the active switches of the DC-to-AC inverter are discharged by the resonance circuit to zero voltage at both ends. Then, the active switches of the DC-to-AC inverter are turned on again after the DC-link voltage is charged by the resonance circuit until the DC-link voltage restores to a normal voltage value. Hence, the active switches of the DC-to-AC inverter achieve zero-voltage switching. Not only the switching loss can be reduced to enhance the conversion efficiency, but also the electro-magnetic interference as well as the RF interference due to dynamic transient changes of the voltage (dv/dt) and of the current (di/dt) can be lowered. | 05-05-2011 |
20110149618 | Current Waveform Construction to Generate AC Power with Low Harmonic Distortion from Localized Energy Sources - Methods and apparatus to provide low harmonic distortion AC power for distribution by converting energy from natural or renewable sources into electrical form, and constructing a current waveform on a primary winding of a transformer by recapturing inductive energy previously stored in the transformer so as to transform the converted electrical energy into substantially sinusoidal AC voltage at a secondary winding of the transformer. For example, AC power may be supplied to a utility power grid from raw electrical energy from renewable energy sources (e.g., solar cells). An inverter may construct the primary winding current waveform using two unidirectional switches. On each half cycle, one of the switches first applies energy previously recaptured from primary winding inductance, and then applies the raw energy to the transformer primary winding at the utility power grid frequency. Accordingly, the constructed primary winding current may exhibit substantially improved total harmonic distortion. | 06-23-2011 |
20110170322 | POWER CONVERSION DEVICE - A power conversion device includes an inverter for converting DC power to AC power to supply the AC power to a load, a converter for converting AC power from an AC power supply to DC power to supply the DC power to the inverter, a DC voltage converter for converting a voltage value of power stored in a storage battery to supply DC power from the storage battery to the inverter when power supply by the AC power supply is abnormal, and a filter which includes a reactor and a capacitor and removes harmonics generated by the inverter. The inverter includes a three-level circuit constituted of an arm and an AC switch. | 07-14-2011 |
20110261598 | POWER CONVERTER WITH MULTI-LEVEL VOLTAGE OUTPUT AND HARMONICS FILTER - A device for converting a DC voltage into an AC voltage and vice versa comprises at least one phase leg with a first voltage source and a first inductor connected in series between a first DC terminal and a first AC terminal and with a second inductor and a second voltage source connected in series between the first AC terminal and a second DC terminal, where each of the voltage sources comprises at least a first and a second submodule in series-connection, each submodule comprising at least one power electronic switch connected in parallel with at least one capacitor. In the device, a passive electronic filter is arranged between the first and the second inductor as well as the first AC terminal for reducing harmonics in a circulating current. | 10-27-2011 |
20120008349 | POWER INVERTER SYSTEMS WITH HIGH-ACCURACY REFERENCE SIGNAL GENERATION AND ASSOCIATED METHODS OF CONTROL - Power converter systems with high accuracy signal generation and associated methods are disclosed herein. In one embodiment, a method for controlling an inverter coupled to a grid includes receiving data representing a voltage signal of the grid, analyzing the received data in frequency domain, and extracting a fundamental frequency component from the analyzed data in frequency domain. The method can also include calculating a waveform based on the fundamental frequency component and controlling an output of the inverter based on the calculated waveform. | 01-12-2012 |
20120014143 | INVERTER FILTER INCLUDING DIFFERENTIAL MODE AND COMMON MODE, AND SYSTEM INCLUDING THE SAME - An inverter filter is for a plurality of phases. The inverter filter includes a node; a differential mode filter including for each of the phases a first terminal, a second terminal, an inductor electrically connected between the first terminal and the second terminal, and first capacitor electrically connected between the inductor and the node. The inverter filter also includes a third terminal structured to be grounded, and a common mode filter. The common mode filter includes a resistor, and a second capacitor electrically connected in series with the resistor between the node and the third terminal. | 01-19-2012 |
20120063179 | SYSTEM AND METHOD FOR DAMPING LC CIRCUITS IN POWER CONVERSION SYSTEMS - A power conversion system comprises a power converter comprising a plurality of semiconductor power switches, an LC filter coupled between an output of the power converter and an electric grid, and a power conversion control system. The LC filter comprises an inductor coupled in series to the electric grid, and a capacitor. The LC filter and the grid result in an equivalent LC circuit comprising an impedance of the LC filter and an impedance of the electric grid. The power conversion control system comprises a damper and a converter controller. The damper receives an LC filter signal and an equivalent LC circuit impedance signal and generates a damping signal. The converter controller receives a current or voltage reference signal, a current or voltage command signal, and the damping signal to generate control signals for driving switching operations of the semiconductor power switches. | 03-15-2012 |
20120155126 | POWER CONVERTING APPARATUS, GRID INTERCONNECTION APPARATUS AND GRID INTERCONNECTION SYSTEM - A power converting apparatus is provided with a step-up chopper circuit ( | 06-21-2012 |
20120206945 | Controller for a power converter and method of operating the same - There is provided a controller for a converter and a respective method of operating such a controller. The converter receives an input power and provides an output power by a switching operation wherein in an embodiment the output power has at least two phases. The controller includes an input for receiving a feedback signal depending on the output power of the converter, and an output for providing a control signal to the converter to thereby control the switching operation of the converter. The control signal corresponds to a switching pattern that is updated in response to the feedback signal. The control signal includes a harmonic compensation signal which reduces higher harmonics in the output power, the higher harmonics originating from a time delay between taking the feedback signal and the updating of the switching pattern. | 08-16-2012 |
20120275201 | GRID-TIE INVERTER - According to one embodiment, a grid-tie inverter includes: a inverter performing pulse width modulation for a DC voltage; a first capacitor circuit connected to an input side of the inverter so as to form a neutral point; a second capacitor circuit connected to an output side of the inverter so as to form a neutral point; a common mode current bypass channel formed by connecting the neutral points of the first capacitor circuit and the second capacitor circuit; a grounded capacitor provided between the bypass channel and a ground; a first common mode choke coil unit including a common mode choke coil at least one of between the first capacitor circuit and the inverter and between the inverter and the second capacitor circuit; and an output filter converting a pulse width-modulated voltage outputted from the inverter into a sine AC voltage. | 11-01-2012 |
20120281442 | SYSTEM AND METHOD FOR OFFSETTING THE INPUT VOLTAGE UNBALANCE IN MULTILEVEL INVERTERS OR THE LIKE - The system for offsetting the input voltage unbalance in multilevel inverters or the like comprises a control unit operatively associated with a multilevel inverter for converting direct current into alternate current, the control unit being suitable for piloting the multilevel inverter for generating an output current depending on a reference current, and an equalisation unit for equalising the input voltages of the multilevel inverter having first generation means of a harmonic component of order equal to the reference current, out of phase with respect to the fundamental component of the reference current, detection means of the unbalance of the input voltages to the multilevel inverter, regulation means of the amplitude of the harmonic component depending on the detected unbalance, for offsetting the unbalance. The method for offsetting the unbalance of the input voltages in multilevel inverters or the like comprises a control phase of a multilevel inverter for converting direct current into alternate current, in which the multilevel inverter is piloted for generating an output current depending on a reference current, a generation phase of a harmonic component of order equal to the reference current, out of phase with respect to the fundamental component of the reference current, a detection phase of the unbalance of the input voltages to the multilevel inverter and a regulation phase of the amplitude of the harmonic component depending on the detected unbalance, for offsetting the unbalance. | 11-08-2012 |
20120287683 | METHOD AND APPARATUS FOR CONTROLLING ELECTRIC GRID IN ISLANDING MODE - An exemplary method for controlling transfer of electrical power in island mode in an arrangement having a converter and a load connected to the converter through a filter. The method including determining voltage reference components for one or more frequency components of an output voltage of the converter. An effect of a load current is compensated for by forming one or more voltage feedforward terms based on the load current and using the feedforward terms to adjust the voltage reference components. Control reference components for one or more of the frequency components are formed based on the voltage reference components, and a control reference is formed based on the control reference components. The output voltage of the converter is controlled based on the control reference. | 11-15-2012 |
20120300512 | DEVICE FOR POWER CONVERSION USING SWITCHING ELEMENT - A converter is provided as a power conversion device. The converter includes a switching circuit that performs switching on the basis of switching signals; and a control circuit that changes switching frequency of switching signals in a predetermined pattern with the elapse of time, and repeats the changes in switching frequency in the predetermined pattern at every repetition time. The converter sets the repetition time such that a repetition frequency that is the inverse of the repetition time does not coincide with a frequency band that can be demodulated as sound by a radio that receives radio broadcasts. | 11-29-2012 |
20120314461 | POWER CONVERTER - A power converter that is able to lower the level of switching noise in a wide frequency range is disclosed. In detail, the power converter converts an input power by controlling a switching element on the basis of a switching frequency discrete pattern. The switching frequency discrete pattern is composed in such a manner that a main discrete pattern and a sub discrete pattern are synthesized. The main discrete pattern is regulated by a plurality of transitionally discrete frequencies. Also the sub discrete pattern is regulated by a plurality of transitionally discrete frequencies in which a gap of the magnitude among consequent frequencies is smaller than that of the main discrete pattern. | 12-13-2012 |
20130027993 | POWER CONVERSION SYSTEM WITH TRANSIENT EVENT RIDE-THROUGH CAPABILITY AND METHOD THEREOF - An exemplary power conversion system is disclosed including a DC bus for receiving DC power; a line side converter electrically coupled to the DC bus for converting the DC power to AC power; and a voltage source controller to provide control signals to enable the line side converter to regulate the AC power. The voltage source controller comprises a signal generator to generate the control signals based at least in part on a power command signal and a power feedback signal. The voltage source controller further comprises a current limiter to, during a transient event, limit the control signals based at least in part on an electrical current threshold. The voltage source controller further comprises a voltage limiter to, during the transient event, limit the control signals based at least in part on a DC bus voltage feedback signal and a DC boundary voltage threshold. | 01-31-2013 |
20130027994 | Method and system for damping subsynchronous resonant oscillations in a power system using a wind turbine - A wind turbine controlled to damp subsynchronous resonance oscillations on a grid is provided. The wind turbine includes rotor blades for turning by the wind, an electric generator rotatably coupled to the rotor blades, a power converter responsive to electricity generated by the electric generator, the power converter for converting the generated electricity to a frequency and voltage suitable for supply to the power grid, and the power converter for regulating voltage on the grid for damping the subsynchronous oscillations. Additionally, in one embodiment voltage regulation is supplemented by modulating real power to damp the subsynchronous oscillations. | 01-31-2013 |
20130027995 | MODULAR MULTI-LEVEL POWER CONVERTER WITH SECOND AND THIRD ORDER HARMONICS REDUCTION FILTER - A device for converting a DC voltage into an AC voltage includes a passive electronic filter having a first and second energy storage element, a third energy storage element placed between the first and second energy storage elements, a fourth energy storage element connected between a junction of the first energy storage element and the third energy storage element and an AC terminal and a fifth energy storage element connected between a junction of the second energy storage element and the third energy storage element and the AC terminal. The energy storage elements are of two different types, capacitive and inductive, with values selected to provide reduction of frequency components at two times the fundamental frequency of the AC voltage and at three times the fundamental frequency of the AC voltage. | 01-31-2013 |
20130039099 | Method and Apparatus for Controlling LCL Converters Using Asymmetric Voltage Cancellation Techniques - A method and apparatus for LCL resonant converter control utilizing Asymmetric Voltage Cancellation is described. The methods to determine the optimal trajectory of the control variables are discussed. Practical implementations of sensing load parameters are included. Simple PI, PID and fuzzy logic controllers are included with AVC for achieving good transient response characteristics with output current regulation. | 02-14-2013 |
20130070490 | Grid-Connected Inverter and Method for Filtering AC Output Thereof - Disclosed is a grid-connected inverter and a method for filtering AC output thereof. The grid-connected inverter comprises an AC output filter which includes two or more switchable filtering modules, power capacity of each filtering modules corresponding to a different output power of the grid-connected inverter; a monitoring module which is used to perform realtime monitoring on voltage and current outputted by the grid-connected inverter; and a control circuit which is used to calculate an output power grade of the grid-connected inverter according to the voltage and the current monitored by the monitoring module and control switching to the filtering module having a corresponding power capacity according to the power grade, the power grade being selected from a plurality of power grades which are divided according to power capacities of the filtering modules. | 03-21-2013 |
20130121043 | HARMONIC CANCELLING INTERPHASE MAGNETIC DEVICE - A harmonic cancelling interphase magnetic device ( | 05-16-2013 |
20130135906 | CONTROLLER OF POWER CONVERTER - A controller of a power converter has: an average loss calculator ( | 05-30-2013 |
20130135907 | HARMONIC CURRENT SUPPRESSION METHOD AND HARMONIC CURRENT SUPPRESSION DEVICE OF POWER CONVERSION DEVICE - A current control unit takes a deviation between a current command value and a current flowing through an inverter of a power conversion device, and controls the inverter based on the deviation. A harmonic sensing part receives input of an output current of an AC filter, and outputs a predetermined order harmonic of the input current in a direct current value form. A disturbance observer estimates the disturbance of the harmonic based on the output current and a coefficient defined as an inverse function of a transfer function from harmonic suppression current command value to filter output current detection value. A harmonic suppression control unit takes the deviation between the estimated harmonic disturbance and a disturbance command value that suppresses the disturbance, and calculates a harmonic suppression current command value. The harmonic suppression current command value is superimposed on the current command value of the current control unit. | 05-30-2013 |
20130148390 | ELECTRIC CIRCUIT FOR HIGH VOLTAGE POWER CONVERSION - The present invention provides an electric circuit wherein a multi-phase bridge is connected in series with a plurality of single-phase bridges. The multi-phase bridge is composed of a plurality of 3-level diode clamped legs, while the single-phase bridges each is composed of two 3-level diode clamped legs. The present invention also provides control strategy for synthesizing multi-level voltage waveforms from output voltages of the multi-phase bridge and the plurality of single-phase bridges. | 06-13-2013 |
20130155732 | METHODS AND SYSTEMS FOR OPERATING A POWER CONVERTER - A power conversion system for providing power to an electrical grid is described. The power conversion system includes a power converter coupled to a power source and the electrical grid. The power conversion system also includes a converter controller coupled to the power converter and configured to control operation of the power converter to actively cancel harmonic current received at the power converter from the electrical grid. | 06-20-2013 |
20130208517 | Method of Damping Harmonic Output - A method of damping harmonic output of an inverter is provided. The method may receive output phase signals from sensors disposed at an output of the inverter and on an associated electrical grid, filter the output phase signals using a low pass filter configured to extract a fundamental component from the output phase signals, isolate harmonics from the output phase signals based on the extracted fundamental component, and subtract the harmonics from the output phase signals. | 08-15-2013 |
20130208518 | ELECTRIC POWER CONVERTER - An electric power converter includes a DC stabilization circuit ( | 08-15-2013 |
20130229836 | MULTIPLE INVERTER AND ACTIVE POWER FILTER SYSTEM - A multiple inverter and an active power filter system are disclosed in the invention, said multiple inverter can decrease the volume and harmonics, increase the efficiency and decrease the cost, and can be applied to various occasions. The technical scheme is: the filter assembly in the multiple inverter is installed at the output inductor of the multiple inverter for filtering the harmonics. | 09-05-2013 |
20130229837 | INVERTER AND ACTIVE POWER FILTER SYSTEM - An inverter and an active power filter system have been disclosed in the invention, so that the application range of the inverter under the occasions of different capacitor requirement can be widened, the cost can be decreased, and the efficiency can be improved. The technical scheme is: an auxiliary capacitor module can be added on the traditional inverter structure and connected in parallel selectively with the capacitor in the inverter. In a system without connecting an external auxiliary capacitor module, the value of capacitance can be designed to be smaller to satisfy the application under normal occasions. If the device operates under the occasions having large harmonic current or having large neutral line current, the ripple current on the capacitor will be larger so that large capacitance will be required to satisfy the life requirement, therefore, the problem can be solved by a method of installing an auxiliary capacitor module. | 09-05-2013 |
20130229838 | MULTIPLE INVERTER AND ACTIVE POWER FILTER SYSTEM - A multiple inverter with neutral line inductor and an active power filter system are disclosed. In the disclosure, the multiple inverter comprises at least two inverter units connected in parallel, the midpoint of the direct current bus in each inverter unit is connected to the neutral line N through the respective neutral line inductor. The multiple inverter can suppress the ripple produced by the neutral line current without increasing the direct current bus capacitor. | 09-05-2013 |
20130229839 | METHOD AND APPARATUS FOR CONTROLLING A GRID-CONNECTED CONVERTER - A method and an apparatus for controlling a grid-connected converter which includes a boost converter, a buck converter, and a current source inverter having an output CL filter. An input of the buck converter input is connected to an output of the boost converter, and an input of the current source inverter is connected to an output of the buck converter. The method includes controlling a boost converter input voltage, controlling a boost converter output voltage through control of a buck converter output voltage, and controlling the current source inverter to produce an AC current from the buck converter output voltage. The apparatus implements the method. | 09-05-2013 |
20130258726 | ARRANGEMENT FOR TRANSMITTING POWER BETWEEN A DC POWER LINE AND AN AC POWER LINE - An arrangement transmits power between a DC power line and an AC power line carrying a voltage having a number of phases. The arrangement includes a number of transformers, one for each phase and a number of power transfer modules, one for each phase, connected in series between the DC power line and ground, where each module includes a first branch including series connected converter cells and a second branch including series connected switching elements. The primary winding of a transformer is connected to a corresponding AC phase conductor of the AC power line and the secondary winding is connected between a midpoint of the first branch and a midpoint of the second branch of a corresponding power transfer module. | 10-03-2013 |
20130294119 | PHOTOVOLTAIC SYSTEM AND POWER SUPPLY SYSTEM - According to one embodiment, a system includes modules to detect a node voltage and an output current of a converter, a detector to obtain an effective power value, a system condition detector to detect a power supply condition in the electric system or the operating conditions of devices included in the electric system and then output a first signal, a setting unit to switch a set value to a preset first or second value and then output the set value, a unit to calculate an angular frequency of an output voltage of the converter on the basis of an output of the detector, the value, and an output of the system condition detector, and a unit to calculate a target value of the converter. | 11-07-2013 |
20130308353 | NEAR ZERO CURRENT-RIPPLE INVERSION OR RECTIFICATION CIRCUITS - The present invention relates to a near zero current-ripple inversion circuit including top and bottom cells, a transformer (T | 11-21-2013 |
20130322136 | ADVANCED CIRCUIT ARRANGEMENT OF TRANSFORMERLESS 1 PHASE PV INVERTER - Disclosed is an inverter with outputs being connected through two reactors to a utility network, whilst an energy storage capacitor (C) is connected to the PV array (P) such that the C + and − terminals are connected to two half bridges creating an H bridge so that the AC node of one half bridge is connected to the anode of a diode (D1) and the cathode of a diode (D2). An AC node of the other half bridge is connected to an anode of a diode (D3) and a cathode of a diode (D4), whilst the diodes form a diode bridge having a positive node connected to a transistor's (V5) collector and an anode of a diode (D5), the cathode of the diode (D5) being connected to C's positive terminal. | 12-05-2013 |
20130329471 | METHOD AND APPARATUS FOR ZERO-SEQUENCE DAMPING AND VOLTAGE BALANCING - An exemplary method and an apparatus implementing the method for an arrangement having a three-phase, multi-level inverter, an output LCL-filter connecting the inverter to a grid, and a virtual-ground connection between the LCL-filter and the neutral point of the DC-link. The method includes determining a zero-sequence component of an LCL-filter inverter-side current, calculating a zero-sequence damping and balancing voltage term based on the LCL-filter inverter-side current zero-sequence component and voltages over the two halves of the DC-link, and adding the zero-sequence damping and voltage balancing term to the output voltage reference. | 12-12-2013 |
20140003101 | VALVE CURRENT CONTROL METHOD BASED ON MODULAR MULTI-LEVEL CONVERTER | 01-02-2014 |
20140009982 | FEEDBACK CONTROL CIRCUIT FOR POWER CONVERTER AND POWER CONVERTER SYSTEM - A feedback control circuit for a power converter and a power converter system, includes a sampling network, configured to sample an input or output of the power converter, and output a first sampled signal; a filtering network, configured to receive the first sampled signal and output a second sampled signal, the filtering network filtering a ripple signal at a preset frequency out from the first sampled signal, so as to remain signals therein outside the preset frequency, while maintaining a phase delay between the second sampled signal and the first sampled signal within a preset range; a control and drive circuit, configured to receive the second sampled signal, and regulate in accordance with the second sampled signal a control signal outputted from the control and drive circuit to the power converter. | 01-09-2014 |
20140043871 | EMI FILTER USING ACTIVE DAMPING WITH FREQUENCY DEPENDANT IMPEDANCE - A circuit for providing damping in an electromagnetic interference (EMI) filter with an inductor-capacitor (LC) circuit, includes at least one capacitor connected to receive a common-mode current from the LC circuit; a current sensor that senses the common-mode current; a linear amplifier that amplifies the sensed common-mode current; and a power amplifier that receives the amplified sensed common-mode current and outputs a voltage which creates a damping impedance for frequencies of the common-mode current less than a threshold frequency and absorbs the common-mode current for frequencies greater than the threshold frequency. | 02-13-2014 |
20140063873 | METHOD AND APPARATUS FOR INVERTER OUTPUT CURRENT HARMONIC REDUCTION - Method and apparatus for reducing harmonic distortion. In one embodiment, the method comprises determining an inverter output current waveform; determining a plurality of harmonic components of the inverter output current waveform; determining, based on the plurality of harmonic components, a plurality of harmonic compensation components; and generating a compensating current comprising the plurality of harmonic compensation components | 03-06-2014 |
20140063874 | HIGH-FREQUENCY-LINK POWER-CONVERSION SYSTEM HAVING DIRECT DOUBLE-FREQUENCY RIPPLE CURRENT CONTROL AND METHOD OF USE - A direct double-frequency ripple current control in a two-stage high-frequency-link (HFL) based fuel cell converter that can achieve low-frequency ripple free input current without using large electrolytic capacitors is provided. To eliminate the double-frequency ripple current disturbance introduced by the single-phase inverter load, a proportional-resonant (PR) controller is developed to achieve an extra high control gain at designed resonant frequency. This high gain can be viewed as the virtual high impedance for blocking the double-frequency ripple energy propagation from inverter load to fuel cell stack. More particularly, the proposed control system can realize the utilization of all capacitive ripple energy sources in the system by regulating all the capacitors to have large voltage swing and the voltage swing is synchronized to keep real-time balancing of the transformer primary-side and secondary-side voltages. As a result, the zero-voltage-switching (ZVS) operation for all switching devices in the dc-dc stage can be guaranteed. | 03-06-2014 |
20140126252 | METHOD FOR CONTROLLING HARMONICS AND RESONANCES IN AN INVERTER - In a method based on the MPDTC algorithm for controlling an inverter of an electrical system, the harmonics and resonances in the inverter can be damped by extracting frequency information from predicted data of the MPDTC algorithm and by damping harmonic distortion of the electrical system by reintroducing the extracted frequency information into a control loop of the inverter. | 05-08-2014 |
20140133198 | REACTIVE POWER COMPENSATOR - A reactive power compensator according to an embodiment comprises: multilevel inverter circuits respectively constituting each of the three phases; a filter circuit for reducing harmonics connected between the output terminals of each of the multilevel inverter circuits and a power system interconnection terminal; and a control section for causing prescribed three-phase AC voltage to be output by controlling each of said multilevel inverter circuits. Each of the multilevel inverter circuits is constituted by connecting in series one or more single-phase full-bridge single-pulse inverters and is arranged to convert DC voltage to respective positive and negative single-pulse voltages once per cycle of the fundamental wave of the voltage instruction value. | 05-15-2014 |
20140133199 | Capacitor Module And Power Conversion Device - A power conversion device for a vehicle includes: a power module that includes a switching device and, upon operation of the switching device, converts DC power into AC power to be supplied to an electric machine for driving a vehicle; a capacitor module that includes a smoothing capacitor element, an input-side power source terminal for receiving DC power, and an output-side power source terminal for supplying DC power to the power module; and a noise removal capacitor for removing noise, wherein: the noise removal capacitor is built in the capacitor module, and the noise removal capacitor is electrically connected to the input-side power source terminal in a position where a distance between a connection position of the noise removal capacitor and the input-side power source terminal is less than a distance between a connection position of the noise removal capacitor and the output-side power source terminal of the capacitor module. | 05-15-2014 |
20140140112 | POWER CONVERSION APPARATUS WITH LOW COMMON MODE NOISE AND APPLICATION SYSTEMS THEREOF - A power conversion apparatus, comprising: a power conversion circuit comprising an AC source; a power conversion unit with DC terminals and AC terminals; a filter inductor unit including first and second terminals, the first terminals of the filter inductor unit being connected to the AC source, the second terminals of the filter inductor unit being connected to the AC terminals of the power conversion unit; a common mode noise suppression circuit comprising a capacitive impedance network including first and second terminals; an impedance balancing network including first and second terminals; the second terminals of the capacitive impedance network are connected to the first terminals of the impedance balancing network, the first terminals of the capacitive impedance network are connected to the first terminals of the filter inductor unit, and the second terminals of the impedance balancing network are connected to the DC terminals of the power conversion unit. | 05-22-2014 |
20140192567 | METHODS FOR CONTROLLING ELECTRICAL INVERTERS AND ELECTRICAL INVERTERS AND SYSTEMS USING THE SAME - A system for generating a duty cycle control signal for controlling an inverter power train providing an output current waveform to a grid operating with a grid voltage waveform compares a reference current waveform shaped to the grid voltage waveform with the output current waveform to generate an error signal. The error signal is used to generate a corrective control action signal, which is combined with a feed-forward signal representing a nominal duty cycle generated with a feed-forward function. The combination of the feed-forward signal and the corrective control action signal provide the duty cycle control signal. | 07-10-2014 |
20140204633 | Distributed Power Generation Interface - Described herein are methods, systems, and apparatus for a controller for a power circuit that interfaces distributed power generation with a power distribution grid, comprising: a first portion, including a maximum power point tracker, that receives signals corresponding to the distributed power generation voltage and current, and outputs to the power circuit a signal for controlling the voltage of the distributed power generation; a second portion, including a current reference generator, a current controller, and a dc voltage controller, that receives signals corresponding to a dc voltage of the power circuit, the power distribution grid voltage and current, and the inverter current, and outputs signals for controlling the power circuit output voltage; wherein the current reference generator includes nonlinear circuit elements and generates a current reference signal from the dc voltage of the power circuit and the grid voltage and current; such that substantially harmonic-free power is injected into the power distribution grid. The distributed power generation may be, for example, a photovoltaic module or a wind turbine. | 07-24-2014 |
20140211521 | SCALABLE SINGLE-STAGE DIFFERENTIAL POWER CONVERTER - An embodiment of the invention is a scalable single stage differential power converter. The inverter can be implemented in signal, split and multi-phases. A multiphase converter can be achieved with only three modules. Integrated magnetics used in preferred embodiments of the invention mitigate the DC component of the steady-state dynamics and can be extended to AC ripple mitigation. Control architectures in preferred embodiments can mitigate higher order harmonics in steady state dynamics. Embodiments of the invention also provide scalability for voltage and current source topologies. | 07-31-2014 |
20140218980 | Electrical Generator - An inverter circuit comprises an inverter which can be configurable for controlling the supply of mains current from a grid to an electric machine in a start-up mode whereby the machine drives the prime mover for initialisation. Thereafter the same inverter is reconfigurable as part of the circuit to supply reactive power to the grid when the machine is running as a generator powered by the prime mover. | 08-07-2014 |
20140241016 | METHOD AND APPARATUS FOR PRODUCING THREE-PHASE CURRENT - Exemplary embodiments are directed to methods and systems for producing a three-phase current to a three-phase output. Switching converters are used to generate a positive current, a negative current, and an intermediate current. The system is configured such that the produced positive current follows a path of a highest phase of a sinusoidal three-phase signal at a given time, the produced negative current follows a path of a lowest phase of the three-phase signal at the given time, and the produced intermediate current follows a path of a phase of the three-phase signal between the highest and the lowest phase at the given time. The produced currents are switched to each phase conductor of the three-phase output in sequence so that phase currents of the three-phase current are formed in the output conductors. | 08-28-2014 |
20140247630 | POWER INVERTER SYSTEMS WITH HIGH-ACCURACY REFERENCE SIGNAL GENERATION AND ASSOCIATED METHODS OF CONTROL - Power converter systems with high accuracy signal generation and associated methods are disclosed herein. In one embodiment, a method for controlling an inverter coupled to a grid includes receiving data representing a voltage signal of the grid, analyzing the received data in frequency domain, and extracting a fundamental frequency component from the analyzed data in frequency domain. The method can also include calculating a waveform based on the fundamental frequency component and controlling an output of the inverter based on the calculated waveform. | 09-04-2014 |
20140268931 | POWER CONVERSION SYSTEM WITH A DC TO DC BOOST CONVERTER - A voltage booster allowing for increased utilization of low voltage, high current, unregulated DC power (“LVDC source”), such as, but not limited to, fuel cells, batteries, solar cells, wind turbines, and hydro-turbines. LVDC generation systems employing a variable low voltage DC-DC converter of the present disclosure may be used without a power inverter in applications requiring high voltage DC inputs and can also allow for the employment of common, low cost, reliable, low voltage energy storage chemistries (operating in the 12-48 VDC range) while continuing to employ the use of traditional inverters designed for high voltage power supplies. An embodiment of the DC boost converter includes a plurality of interleaved, isolated, full-bridge DC-DC converters arranged in a Delta-Wye configuration and a multi-leg bridge. | 09-18-2014 |
20140268932 | DC-AC INVERTER WITH SOFT SWITCHING - Provided are single phase and multiple phase DC-AC inverters with soft switching, and related methods and uses. The DC-AC inverters comprise at least one voltage source inverter circuit or at least one current source inverter circuit having a DC input and an AC output including a first component at a fundamental frequency and a ripple component at a frequency higher than the fundamental frequency; wherein the ripple component is of a sufficient magnitude that the voltage source inverter circuit output current reverses polarity and allows the at least one inverter circuit to operate with zero voltage switching; or wherein the ripple component is of a sufficient magnitude that the current source inverter circuit output voltage reverses polarity and allows the at least one inverter circuit to operate with zero current switching. The circuits and methods may be used with grid-connected renewable energy sources. | 09-18-2014 |
20140307489 | CONTROL METHOD FOR INVERTER DEVICE, AND INVERTER DEVICE - An inverter device ( | 10-16-2014 |
20140321173 | Systems and Methods for Increasing Output Current Quality, Output Power, and Reliability of Grid-Interactive Inverters - Various enhancements to grid-interactive inverters in accordance with embodiments of the invention are disclosed. One embodiment includes input terminals configured to receive a direct current, output terminals configured to provide an alternating output current to the utility grid, a controller, an output current sensor, and a DC-AC inverter stage comprising a plurality of switches controlled by control signals generated by the controller. In addition, the controller is configured to: generate control signals that cause the switches in the DC-AC inverter stage to switch a direct current in a bidirectional manner; measure the alternating output current; perform frequency decomposition of the output current; and generate control signals that cause the switches in the DC-AC inverter stage to switch current in a way that the magnitude of a plurality of unwanted current components is subtracted from the resulting output current. | 10-30-2014 |
20140340948 | POWER CONVERSION APPARATUS - A power conversion apparatus has a structure in which the negative terminal of an insulated power supply is connected to one of connection nodes of a negative side bus with U-phase, V-phase and W-phase lower-arm switching elements except the end-side ones. That is the negative terminal of the insulated power supply is connected to the connection node between the negative side bus and the V-phase lower arm switching element to enable suppressing variations of input voltages supplied from the insulated power supply to respective drive circuits for driving the lower-arm switching elements by using low pass filters having smaller filtering capacity and smaller size. | 11-20-2014 |
20150009727 | POWER CONVERTER WITH LOW COMMON MODE NOISE - The present invention relates to a power converter with low common mode noise, at least comprising: a ground terminal, a power converting unit, a capacitor unit of common DC bus, a filtering capacitor unit, a filtering inductor unit, and a compensation unit. In the present invention, a filtering inductor unit including three primary windings and three auxiliary windings is used for making the power converting unit couple to three phase terminals of an external electrical apparatus. Moreover, the three auxiliary windings are further formed a compensation circuit by way of being connected with the compensation unit, such that the engineer is able to easily and effectively suppress the common mode noise occurring near the resonant frequency of the power converting apparatus through selecting a suitable turns ratio of the primary windings and the auxiliary windings. | 01-08-2015 |
20150029766 | ELECTROMAGNETIC COMPATIBILITY FILTER WITH AN INTEGRATED POWER LINE COMMUNICATION INTERFACE - An embodiment of the present invention is directed to an integrated electromagnetic compatibility (EMC) filter and power line communication (PLC) interface. The EMC filter and PLC interface comprises a first filter winding and a second filter winding configured as a common mode choke; and a two-part winding on the common mode choke, wherein the two-part winding comprises (i) a first winding coupled proximate the first filter winding and (ii) a second winding coupled proximate the second filter winding, wherein the first winding and the second winding have an equal number of turns, and wherein phasing of the first winding is reversed with respect to the second winding. | 01-29-2015 |
20150070947 | METHOD AND APPARATUS FOR BALANCING VOLTAGES OF MULTI-LEVEL INVERTER DC LINK - A method is provided for balancing voltages of a DC link of a multi-level inverter, where the DC link is divided into two halves by a neutral point connection. The method includes injecting a periodic common-mode voltage injection signal to a common-mode voltage reference and a periodic power injection signal to a power reference of the inverter. The power injection signal has the same frequency as the common-mode voltage injection signal. A phase shift between the common-mode voltage injection signal and the power injection signal is constant. The amplitude of at least one of the common-mode voltage injection signal and the power injection signal is controlled on the basis of a difference between voltages over the two halves of the DC link. An apparatus is also provided for implementing the method. | 03-12-2015 |
20150333617 | APPARATUS FOR CONVERTING DIRECT CURRENT TO ALTERNATING CURRENT - An inverter for converting an input direct current (DC) waveform from a DC source to an output alternating current (AC) waveform for delivery to an AC grid includes an input converter, an output converter, and an active filter, each of which is electrically coupled to a bus. The bus may be a DC bus or an AC bus. The input converter is configured to convert the input DC waveform to a DC or AC bus waveform. The output converter is configured to convert the bus waveform to the output AC waveform at a grid frequency. The active filter is configured to reduce a double-frequency ripple power of the bus waveform by supplying power to and absorbing power from the power bus. | 11-19-2015 |
20150365014 | PHOTOVOLTAIC POWER GENERATION SYSTEM - A photovoltaic power generation system includes a photovoltaic power generation module, a capacitor, a DC/AC voltage converter, a filter, a relay, a PWM controller, a calculation module, a control module, and a grid. The control module traces the maximum power of the photovoltaic power generation module, and detects whether the grid is abnormal or not. Finally, the DC power outputted from the photovoltaic power generation module is transferred to the AC power and outputted to the grid via the DC/AC voltage converter by using the PWM controller. | 12-17-2015 |
20150381027 | RESONANCE SUPPRESSION DEVICE - A resonance suppression device, in which power loss and apparatus capacitance are reduced by outputting a compensating current only while a voltage resonance is being generated, and which suppresses resonance generated by connection of a power apparatus to a power system. In one embodiment, the device includes a capacitance change detector that detects a change of an electrostatic capacitance (impedance) connected to the power system. When the resonance detector detects the resonance, a current command value generator generates the current command value on the basis of harmonic components included in a current supplied from the power apparatus to the power system. When the impedance change detector detects a change of the impedance, the current command value generator generates the current command value so as to reduce the compensating current. | 12-31-2015 |
20160065049 | LCL CAPACITOR CURRENT COMPENSATION AND CONTROL METHOD BASED ON DIVISION AND SUMMATION TECHNIQUE - An LCL capacitor current compensation and control method based on division and summation technique, comprising following steps: calculating new reference current i* | 03-03-2016 |
20160190908 | POWER CONVERSION DEVICE AND CONTROL METHOD THEREOF - According to one embodiment, there is provided a power conversion device, including a control unit configured to control ON/OFF of a switching element of a neutral-point-clamped power conversion device unit, wherein the control unit drives the power conversion device unit by a one-pulse control, controls a phase difference of an output voltage of the power conversion device unit with respect to a reference phase of to control an active current component of an output current of the power conversion device unit, and controls ON/OFF based on: (a) a phase angle for eliminating a predetermined odd-order harmonic component of the output voltage; and (b) a sum of the reference phase and the phase difference. | 06-30-2016 |
20160204688 | Systems and Methods for Increasing Output Current Quality, Output Power, and Reliability of Grid-Interactive Inverters | 07-14-2016 |
20170237364 | METHOD AND APPARATUS FOR ESTIMATED INDUCTANCE AND CURRENT FEEDBACK CONTROL OF A GRID-CONNECTED INVERTER WITH NONLINEAR INDUCTOR | 08-17-2017 |