Class / Patent application number | Description | Number of patent applications / Date published |
362580000 | With ventilating or cooling or thermally controlled light guide | 10 |
20080285303 | OPTICAL MODULE AND MANUFACTURING METHOD THEREOF - An optical module according to the present invention comprises an electric wiring substrate, a first optical element mounted on the electric wiring substrate so that a heat generation section of the first optical element is positioned relatively close to a substrate surface of the electric wiring substrate and a heat sink mounted on the same plane as the mounting plane of the first optical element on the electric wiring substrate, the heat sink being mounted on the electric wiring substrate so that an area of electric wiring on the electric wiring substrate overlaps the heat sink. This improves the efficiency of heat radiation of the optical module. | 11-20-2008 |
20090067191 | LED Lighting System - A lighting system is provided having a light source with a housing, an LED engine, a controller, a heat sink, a connection device, and a power cable opening. The LED engine, controller and heat sink can be enclosed by the housing and sealed from atmosphere. The heat sink can be in thermal communication with the LED engine. The controller can be connected to a power cable inserted through the power cable opening. The controller can control at least one of power to the LED engine and a light output generated by the LED engine. A fiber optic cable can be connected to the LED engine by the connection device. The LED engine can communicate the light output through the fiber optic cable. | 03-12-2009 |
20100220494 | LED LIGHTING SYSTEM - A lighting system is provided having a light source with a housing, an LED engine, a controller, a heat sink, a connection device, and a power cable opening. The LED engine, controller and heat sink can be enclosed by the housing and sealed from atmosphere. The heat sink can be in thermal communication with the LED engine. The controller can be connected to a power cable inserted through the power cable opening. The controller can control at least one of power to the LED engine and a light output generated by the LED engine. A fiber optic cable can be connected to the LED engine by the connection device. The LED engine can communicate the light output through the fiber optic cable. | 09-02-2010 |
20110292677 | HIGHLY INERT FLUID-HANDLING OPTICAL SYSTEMS - A fluid-handling optical system such as a light-pipe assembly of a GC/FTIR apparatus includes a light pipe | 12-01-2011 |
20120014128 | ILLUMINATION APPARATUS - An illumination apparatus is disclosed and includes a light-guiding module and a light source module. The light-guiding module has a light-in surface, which is annular surface inside the light-guiding module. The light source module includes a plurality of light-emitting devices. Each light-emitting device is disposed toward the light-in surface and can emit light through the light-in surface into the light-guiding module. The light-guiding module can be a light-guiding plate with a through hole, a sidewall of which is treated as the light-in surface. The light source module can use an annular circuit board disposed in the through hole. The light-emitting devices are disposed on an outer annular surface of the annular circuit board toward the sidewall. Thereby, the invention can provide illumination of radially guiding light. | 01-19-2012 |
20120155108 | ELECTRICAL ASSEMBLY WITH CONNECTOR-SUPPORTED LIGHT PIPE AND PASS THROUGH HEAT SINK - An electrical assembly includes a guide frame with closed and open ends, the guide frame configured to be mounted to a substrate. The guide frame defines at least one cavity configured to receive an electrical component therein. A connector housing configured to be disposed in the at least one cavity and mounted to the substrate can support a retainer that extends outwardly from a body of the connector housing. The retainer can be configured to receive an attachment member supported by a light pipe, and can extend outwardly through the closed end of the guide frame. A heat sink coupled to the guide frame can be configured to have at least a portion of the light pipe disposed therein. | 06-21-2012 |
20120262939 | Attachment System for Light-Conducting Fibers - In an embodiment, an attachment system for communicating light energy from a light source to a light-conducting fiber includes a light pipe body sufficiently designed to engage a distal end of a light pipe, the light pipe body comprising at least one opening configured to dissipate heat buildup from light energy; a front assembly sufficiently designed to engage the light pipe body, the front assembly comprising an orifice and at least one opening configured to dissipate heat buildup from light energy; a light-conducting fiber body sufficiently designed to engage the front assembly and to hold a proximal portion of a light-conducting fiber, the light-conducting fiber body positioned in the orifice of the front assembly; and an optical taper assembly sufficiently designed to hold an optical taper, the optical taper assembly positioned between and spaced apart from the front assembly, and positioned between and spaced apart from the light pipe. | 10-18-2012 |
20130003406 | Attachment System for Light-Conducting Fibers - In an embodiment, an attachment system for communicating light energy from a light source to a light-conducting fiber includes a light pipe body sufficiently designed to engage a distal end of a light pipe, the light pipe body comprising at least one opening configured to dissipate heat buildup from light energy; a front assembly sufficiently designed to engage the light pipe body, the front assembly comprising an orifice and at least one opening configured to dissipate heat buildup from light energy; a light-conducting fiber body sufficiently designed to engage the front assembly and to hold a proximal portion of a light-conducting fiber, the light-conducting fiber body positioned in the orifice of the front assembly; and an optical taper assembly sufficiently designed to hold an optical taper, the optical taper assembly positioned between and spaced apart from the front assembly, and positioned between and spaced apart from the light pipe. | 01-03-2013 |
20130188388 | SOLID STATE CONTINUOUS WHITE LIGHT SOURCE - A solid state illumination system is provided as a replacement for conventional arc light, metal halide and Xenon white-light sources for applications in life sciences including, microscopy, fluorescence microscopy, and endoscopy. The solid state illumination system generates high quality white light output from LED light sources. The white light output is continuous in the visible spectrum from 380 nm to 650 nm and is suitable for imaging all the most common fluorophores and fluorescent proteins. In embodiments, an LED light pipe engine is used to generate a portion of the spectral content of the white light output. In alternative embodiments the solid state illumination system produces light output of a selectable color. | 07-25-2013 |
20130215637 | HIGHLIGHTING INTERIOR AUTOMOTIVE COMPONENTS BY REFLECTING LIGHT FROM HIDDEN LIGHT PIPE ON TO A CONTOURED REFLECTIVE SURFACE - An illuminating apparatus and method for an interior passenger compartment of a vehicle including, in combination, a panel, a manual operation element mounted to the panel, and a hidden light mounted behind the panel providing indirect light directed along a path extending downwardly across a visible surface of the panel through an aperture in the panel. A bezel can be associated with the manual operation element. The bezel can define an edge with a reflective surface. The bezel is located on the visible surface of the panel within the path of indirect light. The edge reflects indirect light from the hidden light pipe to be visible to occupants of the passenger compartment of the vehicle. | 08-22-2013 |