Class / Patent application number | Description | Number of patent applications / Date published |
361750000 | With specific dielectric material or layer | 42 |
20100238636 | STRETCHABLE CIRCUIT CONFIGURATION - A stretchable electronic circuit that includes a stretchable base substrate having a plurality of stretchable conductors formed onto a surface thereof, with both the stretchable base substrate and conductors being bendable together about two orthogonal axes. The stretchable circuit also includes a stretchable sensor layer attached to the base substrate with a cavity formed therein which has a contact point exposing one of the plurality of stretchable conductors. The stretchable electronic circuit further includes a surface mount device (SMD) package with a conductor contact protrusion installed into the cavity, and wherein a substantially constant electrical connection is established between the conductor contact protrusion and the stretchable conductor at the contact point by tensile forces interacting between the stretchable base substrate and the stretchable sensor layer. | 09-23-2010 |
20110044014 | Flexible Printed Circuit and Display Module Comprising the Same - A flexible printed circuit and a display module comprising the flexible printed circuit are disclosed. The display module comprises a display panel, a printed circuit board, and a flexible printed circuit. The flexible printed circuit electrically connects the display panel and the printed circuit board, and further comprises a flexible substrate and a cover lay. The flexible substrate has an upper surface and two opposite end portions. The cover lay is disposed on the upper surface of the flexible substrate and extends along a lengthwise direction of the flexible substrate. The cover lay further has two opposite sides each also extending along the lengthwise direction of the flexible substrate. Each of the sides has at least a partially continuous contour which is formed with a discontinuous status on at least one of the end portions. | 02-24-2011 |
20110063808 | PACKAGE OF ENVIRONMENTAL SENSITIVE ELEMENT - A package of an environmental sensitive element including a flexible substrate, an environmental sensitive element, a flexible sacrificial layer and a packaging structure is provided. The environmental sensitive element is disposed on the flexible substrate. The flexible sacrificial layer is disposed on the environmental sensitive element, wherein the environmental sensitive element includes a plurality of first thin films and the flexible sacrificial layer includes a plurality of second thin films. The bonding strength between two adjacent second thin films is substantially equal to or lower than the bonding strength between two adjacent first thin films. Further, the packaging structure covers the environmental sensitive element and the flexible sacrificial layer. | 03-17-2011 |
20110211316 | TAILORABLE FLEXIBLE SHEET OF MONOLITHICALLY FABRICATED ARRAY OF SEPARABLE CELLS EACH COMPRISING A WHOLLY ORGANIC, INTEGRATED CIRCUIT ADAPTED TO PERFORM A SPECIFIC FUNCTION - A flexible sheet of organic polymer material, may include a monolithically fabricated array of one or more types of cells juxtaposed among them to form a multi-cell sheet. Each cell may include a self consistent, organic base integrated circuit, replicated in each cell of same type of the array, and shares, in common with other cells of same type, at least a conductor layer of either an electrical supply rail of the integrated circuit or of an input/output of the integrated circuit. A piece of the multi-cell, sheet including any number of self consistent integrated circuit cells, may be severed from the multi-cell sheet by cutting the sheet along intercell boundaries or straight lines, with a reduced affect on the operability of any cell spared by the cutting. | 09-01-2011 |
20110228492 | METHOD OF PREPARING A FLEXIBLE SUBSTRATE ASSEMBLY AND FLEXIBLE SUBSTRATE ASSEMBLY THEREFROM - Some embodiments teach a method of preparing a flexible substrate assembly. The method can include: (a) providing a carrier substrate; (b) providing a cross-linking adhesive; (c) providing a plastic substrate; and (d) coupling the carrier substrate to the plastic substrate using the cross-linking adhesive. Other embodiments are disclosed in this application. | 09-22-2011 |
20120026700 | WIRING BODY CONNECTION STRUCTURE - A wiring body connection structure includes a first wiring body and a second wiring body, the first wiring body having a first base material made of an elastomer and a first wiring containing an elastomer and a conductive material, the second wiring body having a second base material and a second wiring. In the wiring body connection structure, a laminated section is partitioned where a first end of the first wiring body and a second end of the second wiring body overlap in a front-rear direction. The wiring body connection structure further includes a cover member arranged on a front surface of the first wiring body, and a conductive adhesive layer bonding the first end and the second end in the laminated section while ensuring a conductive property. The cover member is interposed between a frontmost end of the second end and the first wiring in the laminated section. | 02-02-2012 |
20120147571 | PRINTED CIRCUIT BOARD RADIO-FREQUENCY SHIELDING STRUCTURES - Electrical components such as integrated circuits may be mounted on a printed circuit board. To prevent the electrical components from being subjected to electromagnetic interference, a radio-frequency shielding structure may be mounted over the electrical components. The radio-frequency shielding structure may be formed from a printed circuit that includes a ground plane such as a flex circuit or rigid printed circuit board that includes at least one blanket layer of metal. The printed circuit board to which the electrical components are mounted may include a recess in which the electrical components are mounted. Additional components may be mounted to the interior and exterior surface of the radio-frequency shielding structure. The radio-frequency shielding structure may be formed from a flex circuit that has slits at its corners to accommodate folding. | 06-14-2012 |
20120155038 | FLEXIBLE CIRCUIT BOARD AND MANUFACTURING METHOD THEREOF - The present invention provides a high-performance flexible circuit board having excellent flexibility, a fine wiring pattern, and fine electric contacts, and a manufacturing method thereof. In a flexible circuit board ( | 06-21-2012 |
20120162937 | CIRCUIT BOARD ASSEMBLY - A circuit board assembly includes a circuit board, a fixing device, and a color-changing layer. The fixing device is capable of holding and securing the circuit board and includes a main body and a cover. The cover is rotatably hinged to the main body. The color-changing layer is located on either or both of the circuit board and cover. When the circuit board is assembled at a predetermined position of the fixing device and is secured on the main body by the cover, the cover exerts a pressure to form protruding points on the color-changing layer at the positions corresponding to the elastic contacts, the color-changing generates an electric field and changes color, which is easily and quickly verifiable by a worker. | 06-28-2012 |
20120162938 | FLAT DISPLAY PANEL - A flat display panel is disclosed. In one embodiment, the flat display panel includes i) a first substrate on which a display unit is formed, ii) a second substrate formed to face the first substrate, iii) a resin layer formed on the second substrate; a window formed on the resin layer, iv) a flexible printed circuit (FPC) and a spacer formed between the window and the first end of the FPC. A first end of the FPC is combined with the second substrate, and a second end of the FPC is combined with the first substrate, so that the first substrate and the second substrate are electrically connected to each other. | 06-28-2012 |
20120182701 | METHOD OF TRANSFERRING AND ELECTRICALLY JOINING A HIGH DENSITY MULTILEVEL THIN FILM TO A CIRCUITIZED AND FLEXIBLE ORGANIC SUBSTRATE AND ASSOCIATED DEVICES - A method is for making an electronic device and includes forming an interconnect layer stack on a sacrificial substrate and having a plurality of patterned electrical conductor layers, and a dielectric layer between adjacent patterned electrical conductor layers. The method also includes laminating and electrically joining through an intermetallic bond a liquid crystal polymer (LCP) substrate to the interconnect layer stack on a side thereof opposite the sacrificial substrate. The method further includes removing the sacrificial substrate to expose a lowermost patterned electrical conductor layer, and electrically coupling at least one first device to the lowermost patterned electrical conductor layer. | 07-19-2012 |
20120182702 | METHOD OF MAKING AN ELECTRONIC DEVICE HAVING A LIQUID CRYSTAL POLYMER SOLDER MASK AND RELATED DEVICES - A method of making an electronic device includes forming a circuit layer on a liquid crystal polymer (LCP) substrate and having at least one solder pad. The method also includes forming an LCP solder mask having at least one aperture therein alignable with the at least one solder pad. The method further includes aligning and laminating the LCP solder mask and the LCP substrate together, then positioning solder paste in the at least one aperture. At least one circuit component may then be attached to the at least one solder pad using the solder paste. | 07-19-2012 |
20120182703 | METHOD OF MAKING AN ELECTRONIC DEVICE HAVING A LIQUID CRYSTAL POLYMER SOLDER MASK LAMINATED TO AN INTERCONNECT LAYER STACK AND RELATED DEVICES - A method for making an electronic device includes forming an interconnect layer stack on a rigid wafer substrate having a plurality of patterned electrical conductor layers, a dielectric layer between adjacent patterned electrical conductor layers, and at least one solder pad on an uppermost patterned electrical conductor layer. An LCP solder mask having at least one aperture therein alignable with the at least one solder pad is formed. The LCP solder mask and interconnect layer stack are aligned and laminated together. Solder is positioned in the at least one aperture. At least one circuit component is attached to the at least one solder pad using the solder. | 07-19-2012 |
20120243186 | METALLIC LAMINATE AND METHOD FOR PREPARING THE SAME - The present invention provides a metallic laminate and a method for preparing the same. The metallic laminate includes a metal layer, and at least one polymide resin layer. The polymide resin layer has a modulus of elasticity of 70 Mpa at 400° C. | 09-27-2012 |
20130058057 | TERMINAL UNIT - The terminal unit includes a main board, electronic components implemented on the main board, a sub-board covering above the electronic components and a frame member so disposed between the main board and the sub-board as to surround the electronic components. A flexible printed circuit covers an outer side of a wall portion of the frame member and is so wound around the frame member from upper and lower sides of the wall portion as to cover at least part of an inner side of the wall portion. A wiring pattern formed on the flexible printed circuit is electrically connected to the electronic components, and information to be protected that is stored on the electronic components becomes unreadable if the wiring pattern is cut off or short-circuited. | 03-07-2013 |
20130114219 | OPTO-ELECTRONIC FRONTPLANE SUBSTRATE - Frontplane articles are described utilizing laminated glass substrates, for example, ion-exchanged glass substrates, with flexible glass and with opto-electronic devices which may be sensitive to alkali migration are described along with methods for making the articles. | 05-09-2013 |
20130188323 | Recyclable Circuit Assembly - An electronic circuit assembly comprises a substrate and circuit components attached to the substrate by means of an electrically conductive adhesive, wherein the adhesive is releasable under predetermined release conditions, whereby to enable the circuit components to be removed from the substrate for recovery or re-use. | 07-25-2013 |
20130188324 | Method for Manufacturing a Flexible Electronic Device Using a Roll-Shaped Motherboard, Flexible Electronic Device, and Flexible Substrate - A method of manufacturing a flexible electronic device includes forming a flexible substrate on a roll-type mother substrate, separating the flexible substrate from the roll-type mother substrate, and forming an electronic device on a separation surface of the flexible substrate, which has contacted the roll-type mother substrate, thus solving the problems of low performance and low yield of flexible electronic devices due to a low processing temperature, high surface roughness, high thermal expansion coefficient, and poor handling characteristics. | 07-25-2013 |
20130271930 | Method Of Preparing A Flexible Substrate Assembly And Flexible Substrate Assembly Therefrom - Some embodiments include a method of preparing a flexible substrate assembly. Other embodiments of related methods and structures are also disclosed. | 10-17-2013 |
20130343012 | DISPLAY DEVICE - A display device includes a set bracket having end portions bent in a predetermined angle, a display panel including a display formed on the set bracket, a bending portion integrally extended from the display and bent to correspond to a bent form of the set bracket, and a fastening portion integrally extended from the bending portion and fixed to the set bracket, and a set case configured to receive the set bracket and the display panel. | 12-26-2013 |
20130343013 | PORTABLE TERMINAL - Disclosed herein is a portable terminal, including: a case; a first substrate disposed at one side of the case; a second substrate spaced from the first substrate to form a battery installing space; and a connection substrate electrically connecting between the first substrate and the second substrate and disposed in parallel with a side of the case. | 12-26-2013 |
20140022746 | STRAIN RELIEF STRUCTURES FOR STRETACHBLE INTERCONNECTS - Intersection structures are provided to reduce a strain in a conformable electronic system that includes multi-level arrangements of stretchable interconnect structures. Bypass regions are formed in areas of the stretchable interconnect structures that may ordinarily cross or pass each other. The bypass regions of the stretchable interconnects are disposed relative to each other such that the intersection structure encompasses at least a portion of the bypass regions of each stretchable interconnect structure. The intersection structure has elastic properties that relieve a mechanical strain on the bypass regions during stretching at least one of the stretchable interconnect structures. | 01-23-2014 |
20140098501 | COVER LAY FILM AND FLEXIBLE PRINTED WIRING BOARD - A cover lay film includes an electromagnetic wave shielding layer formed of a conductive material, a resistor layer having a greater surface resistance than the electromagnetic wave shielding layer, and an insulating resin layer provided between the electromagnetic wave shielding layer and the resistor layer, wherein a plurality of openings penetrating in a thickness direction of the electromagnetic wave shielding layer are provided in the electromagnetic wave shielding layer. | 04-10-2014 |
20140118970 | FLEXIBLE DISPLAY PANEL AND FABRICATING METHOD THEREOF, AND IMAGE DISPLAY TERMINAL UNIT - A flexible display panel, and particularly, to a flexible display panel which is bendable, not an existing glass substrate, a fabrication method thereof, and an image display terminal unit using a flexible display panel are provided. | 05-01-2014 |
20140192491 | CIRCUIT SUBSTRATE STRUCTURE AND METHOD FOR MANUFACTURING THEREOF - The invention provides a circuit substrate structure and a method for manufacturing thereof. The circuit substrate structure includes a substrate, a pixel array layer, a display unit, a peripheral circuit layer, at least one integrated circuit chip, a flexible printed circuit board, at least one flattening material layer and a passivation layer. In the circuit substrate structure, the flattening material layer is positioned on the peripheral circuit layer, and possesses at least one opening corresponded to and around the integrated circuit chip. By positioning the flattening material layer, the circuit substrate structure possesses a flat surface, and prevents producing air bubbles, so as to enhance the reliability of the display device. | 07-10-2014 |
20140204543 | TAMPER PROTECTION DEVICE AND DATA TRANSACTION APPARATUS - A data transaction apparatus includes a housing, a system circuit board comprising a tamper detection circuit disposed in the housing, and a tamper protection device configured to seal the system circuit board within the housing in a detachable manner. The tamper protection device includes a tamper resistant board and a resin layer covering the tamper resistant board, wherein the tamper resistant board includes a flexible substrate and a plurality of fence-like lead wires disposed on the flexible substrate. In one embodiment of the present disclosure, the tamper detection circuit is triggered to generate a secure response when a tamper event is detected. | 07-24-2014 |
20140268596 | Flexible Metal Interconnect Structure - A flexible metal interconnect structure for transmitting signals between IC devices in flexible electronic devices is formed between two compliant flexible material layers that are laminated together form a multi-layer flexible substrate. The interconnect structure is formed by two rows of spaced-apart conductive pads (metal islands) attached to the inside (facing) surfaces of the flexible material layers. Compliant micro-contact elements such as micro-springs provide sliding metal pressure contacts that maintain electrical connections between the islands during stretching of the composite sheet. Specifically, at least two micro-contact elements are attached to each metal island in one of the rows, with one element in sliding pressure contact with an associated first metal island in the opposing row and the second element in sliding pressure contact with an associated second metal island. The islands and sliding contacts can be patterned into high density traces that accommodate large strains. | 09-18-2014 |
20140321075 | ELECTRICAL AND MECHANICAL INTERCONNECTION FOR ELECTRONIC COMPONENTS - The described embodiments relate generally to electronic devices and more particularly to methods for forming mechanical and electrical connections between components within an electronic device. In one embodiment, an interconnect component such as a flex cable is attached to a substrate such as a printed circuit board. A plurality of apertures can be created in the interconnect component, passing through bonding pads located on one end of the interconnect component. The interconnect component can then be aligned with bonding pads on the substrate with the bonding pads on the interconnect component facing away from the substrate. A conductive compound can be injected into the apertures through the interconnect component, forming a mechanical and electrical connection between the bonding pads. In some embodiments, an adhesive layer can be used to further strengthen the bond between the interconnect component and the substrate. | 10-30-2014 |
20140321076 | RESIN MULTILAYER SUBSTRATE - A resin multilayer substrate includes a resin structure formed by laminating a plurality of resin layers and disposed components. Built-in components are embedded within the resin structure and a mounted component mounted on a surface of the resin structure. The resin structure includes a flexible part in which a first lamination number of the resin layers are laminated and a rigid part in which a second lamination number of the resin layers is laminated. The second lamination number is larger than the first lamination number. When viewed in a plan view, the flexible part has a shape which is not a rectangle, and a disposed component which is closest to a boundary line between the flexible part and the rigid part is disposed such that a side thereof which is closest to the boundary line is parallel to the boundary line. | 10-30-2014 |
20140328033 | FLEXIBLE DISPLAY DEVICE AND FABRICATION METHOD THEREOF - Disclosed is a flexible display device capable of forming a display device on a glass substrate and simultaneously ensuring flexibility, and a fabrication method thereof, the method including preparing a glass substrate having a display region and a non-display region defined on a front surface thereof, forming a display device on the display region defined on the front surface of the glass substrate, preparing a metal foil substrate, bonding the metal foil substrate to the glass substrate such that a front surface of the metal foil substrate faces the front surface of the glass substrate so as to seal the display device, attaching a first passivation film on a region of a rear surface of the glass substrate, the region corresponding to a part or all of the non-display region defined on the front surface of the glass substrate, and attaching a second passivation film on an entire rear surface of the metal foil substrate, performing a first etching with respect to the display region of the rear surface of the glass substrate by using the first passivation film as a mask, removing the first passivation film, and performing a second etching with respect to the display region and the non-display region of the rear surface of the glass substrate, removing the second passivation film, and mounting a display device driving unit on the non-display region defined on the front surface of the glass substrate. | 11-06-2014 |
20140334113 | ELECTRONIC TEXTILE WITH MEANS FOR FACILITATING WASTE SORTING - According to the present invention, an electronic textile ( | 11-13-2014 |
20140376197 | METHOD OF TRANSFERRING AND ELECTRICALLY JOINING A HIGH DENSITY MULTILEVEL THIN FILM TO A CIRCUITIZED AND FLEXIBLE ORGANIC SUBSTRATE AND ASSOCIATED DEVICES - A method is for making an electronic device and includes forming an interconnect layer stack on a sacrificial substrate and having a plurality of patterned electrical conductor layers, and a dielectric layer between adjacent patterned electrical conductor layers. The method also includes laminating and electrically joining through an intermetallic bond a liquid crystal polymer (LCP) substrate to the interconnect layer stack on a side thereof opposite the sacrificial substrate. The method further includes removing the sacrificial substrate to expose a lowermost patterned electrical conductor layer, and electrically coupling at least one first device to the lowermost patterned electrical conductor layer. | 12-25-2014 |
20150062842 | ELEMENT SUBSTRATE, DISPLAY APPARATUS AND MANUFACTURING METHOD OF ELEMENT SUBSTRATE - An element substrate comprises a flexible substrate, an element layer, a buffer layer and an interface layer. The element layer is disposed on the flexible substrate. The buffer layer is disposed on the flexible substrate. The buffer layer and the element layer are disposed on the opposite sides of the flexible substrate. The interface layer is disposed between the flexible substrate and the buffer layer and includes partial material of both of the flexible substrate and the buffer layer. A display apparatus including the element substrate and a manufacturing method of the element substrate are disclosed. | 03-05-2015 |
20150077951 | CIRCUIT BOARD ASSEMBLY - A circuit board assembly is described. The circuit board assembly ( | 03-19-2015 |
20150131238 | FLEXIBLE DISPLAY DEVICE - A flexible display device includes: a flexible display panel configured to display an image; a dielectric elastomer film disposed on a portion of the flexible display panel; a first electrode layer disposed on an upper portion of the dielectric elastomer film; and a second electrode layer disposed on a lower portion of the dielectric elastomer film, the first electrode layer includes a plurality of first electrodes, each of the plurality of first electrodes disposed apart from each other, the second electrode layer includes a plurality of second electrodes, each of the plurality of second electrodes disposed apart from each other. | 05-14-2015 |
20150131239 | Three Dimensional Stretchable Electronic Device and Manufacturing Method Comprising the Same - Disclosed herein are a three-dimensional stretchable electronic device and a manufacturing method comprising the same, wherein the three-dimensional stretchable electronic device is configured such that a connection line is positioned therein and thus can be protected from the outside, and the connection line is made of a liquid metal so there is no change in volume of the connection line upon stretching. Additionally, elements can be transferred to both sides of the substrate, thus increasing the degree of integration. | 05-14-2015 |
20150146388 | FLEXIBLE DISPLAY APPARATUS - A flexible display apparatus includes a flexible display unit, a flexible film and a molding compound. The flexible display unit has a first region and a second region surrounding the first region, and the flexible film is disposed on the flexible display unit and at least located within the first region. The flexible film has a circumferential surface and at least one accommodating groove, the accommodating groove is sunken from the circumferential surface, and the flexible film exposes the second region of the flexible display unit. The molding compound is disposed on the flexible display unit, covers the circumferential surface and the second region exposed by the flexible film and fills the accommodating groove. A thickness of the molding compound filling the accommodating groove is the same as the thickness of the flexible film. | 05-28-2015 |
20150296607 | Electronic Device With Flexible Printed Circuit Strain Gauge Sensor - An electronic device may be provided with a flexible printed circuit. The flexible printed circuit may have layers of metal and dielectric. Strain gauge resistors may be formed from a strain gauge metal such as constantan. The strain gauge metal may be formed within the flexible printed circuit layers. A strain gauge may include strain gauge circuitry coupled to a strain gauge bridge circuit. Strain gauge resistors for the bridge circuit may be formed from traces that follow parallel meandering paths in the flexible printed circuit layers. A component such as a fingerprint sensor may overlap the strain gauge resistors. Strain gauge resistors may be formed in different overlapping metal layers in the flexible printed circuit layers or may be formed from the same metal layer. Electroplating techniques may be used to form metal traces to which solder balls or wire bonds are coupled. | 10-15-2015 |
20150296622 | Flexible Printed Circuit With Semiconductor Strain Gauge - A semiconductor strain gauge may be incorporated into a flexible printed circuit. The semiconductor strain gauge may be mounted in an opening in the flexible printed circuit. Electrical connections such as wire bonds may couple the semiconductor strain gauge to metal traces on a flexible printed circuit substrate in the flexible printed circuit. A flexible printed circuit opening may be filled with an encapsulant that encapsulates a semiconductor strain gauge. Vias may be formed through the encapsulant to contact the semiconductor strain gauge. Metal traces that run across the surface of the substrate and the encapsulant may contact the vias to form paths to the semiconductor strain gauge. A semiconductor strain gauge may be mounted on a substrate and covered with dielectric. Metal traces in a redistribution layer in the dielectric may overlap the semiconductor strain gauge and make contact to the semiconductor strain gauge. | 10-15-2015 |
20160044784 | FLEXIBLE PRINTED CIRCUIT BOARD WITH COMPONENT MOUNTING SECTION FOR MOUNTING ELECTRONIC COMPONENT AND FLEXIBLE CABLE SECTIONS EXTENDING IN DIFFERENT DIRECTIONS FROM THE COMPONENT MOUNTING SECTION - [Problem] To allow an efficient sheet layout of a flexible printed circuit board having a plurality of cable sections extending in different directions and to improve a yield. | 02-11-2016 |
20160073539 | FLEXIBLE PRINTED CIRCUIT BOARD ASSEMBLY FOR ELECTRONIC DEVICES - A flexible printed circuit board assembly for electronic devices is disclosed. An example embodiment includes: a force sense resistor (FSR) comprising: at least one flexible common reference trace; at least one flexible conductive trace having a varying-width pattern and being placed adjacent to the at least one flexible common reference trace, the conductive trace being at a varying distance from the common reference trace relative to a location along the FSR; and a flexible piece of piezoresistive material covering the common reference trace and the conductive trace, the flexible piece of piezoresistive material being configured to produce a measurable electrical resistance relative to a distance between the conductive trace and the common reference trace as pressure is applied to the piezoresistive material, the FSR enabling detection of pressure levels and locations along the FSR. | 03-10-2016 |
20160202729 | ROLLABLE DISPLAY | 07-14-2016 |