Class / Patent application number | Description | Number of patent applications / Date published |
359341320 | Radiation routing | 7 |
20080304138 | Optical Amplifier Comprising a Pump Module - In one aspect, an optical amplifier including a pump module, preferably for amplifying channels of a WDM-signal is provided. The outlet thereof is connected to an amplifying fibre wherein signal radiation formed by optical signals is amplified. In order to amplify the optical signals with minimum gain spectrum difference, i.e. in the WDM-technique with minimal channel level differences, pump radiation emerging from the pump module has a mode field diameter in the amplification fibre which is selected so that it is smaller than a mode field diameter of the signal radiation. | 12-11-2008 |
20090201575 | HIGH POWER PARALLEL FIBER ARRAYS - High power parallel fiber arrays for the amplification of high peak power pulses are described. Fiber arrays based on individual fiber amplifiers as well as fiber arrays based on multi-core fibers can be implemented. The optical phase between the individual fiber amplifier elements of the fiber array is measured and controlled using a variety of phase detection and compensation techniques. High power fiber array amplifiers can be used for EUV and X-ray generation as well as pumping of parametric amplifiers. | 08-13-2009 |
20100195195 | System and method for combining multiple fiber amplifiers or multiple fiber lasers - A system for combining multiple fiber amplifiers, or multiple fiber amplifiers. The system includes a fiber combiner with multiple cores for connecting with the multiple fiber amplifiers and for combining the beams of the fiber amplifiers into a single beam. The fiber amplifiers are aligned, tapered, and stretched. | 08-05-2010 |
20120268808 | Optical Source with Remote Optical Head Outputting High Power Short Optical Pulses - An optical source can include a remote optical head for outputting high power short optical pulses. The optical source can include signal source operable to output short optical pulses; an optical pump light source; an optical head provided at a location remote from the location of the optical signal source; and an optical fibre amplifier having at least its optical output located within the optical head. The source can also include an optical signal delivery fibre arranged to deliver optical pulses from the optical signal source to the optical fibre amplifier and a pump light delivery fibre arranged to deliver optical pump light to the high power optical fibre amplifier. In use short optical pulses of a first optical power are delivered to the optical fibre amplifier and are amplified therein to a higher optical power for output from the optical head | 10-25-2012 |
20130114130 | OPTICAL FIBER AMPLIFIER ARRAY - Devices and techniques are disclosed for amplifying a plurality of optical signals using a single pump laser coupled to a set of optical splitters arranged in a binary tree configuration for powering a plurality of fiber optical amplifying path circuits (FOAP circuits) each configured to amplify one of the plurality of optical signals, where each of the optical splitters at the leaves of the binary tree is coupled to one of the plurality of FOAP circuits to provide the power required to amplify the optical signal. | 05-09-2013 |
20160043525 | AMPLIFICATION OPTICAL FIBER AND FIBER LASER DEVICE USING THE SAME - The refractive index of the first core portion | 02-11-2016 |
20160380403 | TWO-ENDED PUMPING OF A COMPOSITE FIBER OPTIC AMPLIFIER - Exemplary embodiments of the disclosure include a fiber optic amplifier system and a fiber optic oscillator system having a first stage, comprising a first core fiber having a first core diameter and a first cladding size; a second stage, comprising a second core fiber having a second core diameter and a second cladding size; and a double mode adapter connecting the first stage to the second stage, wherein the double mode adapter is configured to provide transitions for the cores and the claddings of the first and second core fibers. | 12-29-2016 |