Class / Patent application number | Description | Number of patent applications / Date published |
359341310 | Operating frequency | 11 |
20090201574 | OPTICAL AMPLIFICATION MODULE AND LASER LIGHT SOURCE DESIGNED TO SUPPRESS PHOTODARKENING - The present invention relates to an optical amplification module having a construction which effectively suppresses photodarkening, and to a laser light source including the same. The laser light source comprises a light source for outputting light to be amplified, and an optical amplification module. The optical amplification module comprises two types of optical amplification media having different rare earth element concentrations, and a pumping light source. The low concentration medium and the high concentration medium are disposed in the propagation direction of pumping light such that the population inversion of the low concentration medium is higher than that of the high concentration medium. Hence, by arranging two types of optical amplification media with different rare earth concentrations such that the population inversion of the low concentration medium is higher than that of the high concentration medium, sufficient overall gain of the laser light source can be obtained while effectively suppressing photodarkening in the two types of optical amplification media. | 08-13-2009 |
20100046067 | MODULAR, HIGH ENERGY, WIDELY-TUNABLE ULTRAFAST FIBER SOURCE - A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Modularity is ensured by the implementation of interchangeable amplifier components. System compactness is ensured by employing efficient fiber amplifiers, directly or indirectly pumped by diode lasers. Peak power handling capability of the fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive broadening is introduced by dispersive pulse stretching in the presence of self-phase modulation and gain, resulting in the formation of high-power parabolic pulses. In addition, dispersive broadening is also introduced by simple fiber delay lines or chirped fiber gratings, resulting in a further increase of the energy handling ability of the fiber amplifiers. The phase of the pulses in the dispersive delay line is controlled to quartic order by the use of fibers with varying amounts of waveguide dispersion or by controlling the chirp of the fiber gratings. After amplification, the dispersively stretched pulses can be re-compressed to nearly their bandwidth limit by the implementation of another set of dispersive delay lines. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. A particularly compact implementation of the whole system uses fiber oscillators in conjunction with fiber amplifiers. Additionally, long, distributed, positive dispersion optical amplifiers are used to improve transmission characteristics of an optical communication system. Finally, an optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropogates within the Raman amplifier fiber with respect to the pump pulses. | 02-25-2010 |
20100157419 | High Power Short Optical Pulse Source - The invention is directed to a high power short optical pulse source | 06-24-2010 |
20120320451 | LARGE MODE AREA OPTICAL WAVEGUIDE DEVICES - A very large more area active double clad optical waveguide doped with Nd | 12-20-2012 |
20130271824 | OPTICAL PULSE SOURCE - The invention can include an apparatus for producing optical pulses, comprising an oscillator for producing optical pulses at a first optical pulse repetition frequency, the optical pulses having a first wavelength; a first optical fiber amplifier; a second optical fiber amplifier; a pulse picker located between the first and second optical fiber amplifiers, the pulse picker operable to reduce the optical pulse repetition frequency of optical pulses, wherein the first amplifier amplifies optical pulses at the first optical pulse repetition frequency and the second amplifier amplifies optical pulses at a reduced optical pulse repetition frequency that is less than the first optical pulse repetition frequency; a nonlinear optical fiber receiving amplified optical pulses having the reduced optical pulse repetition frequency and the first wavelength to produce, at the reduced optical pulse frequency, optical pulses that include one or more nonlinearly produced wavelengths different than the first wavelength; and wherein the pulse picker and the first and second optical fiber amplifiers are located between the oscillator and the nonlinear optical fiber. | 10-17-2013 |
20140036351 | Pump-Combining Systems And Techniques For Multicore Fiber Transmissions - An optical fiber coupler connects transmission multicore optical fiber (TMCF) with an amplifier multicore optical fiber (AMCF) and a plurality of optical pump fibers. The coupler includes a plurality of signal cores extending between a multicore input endface and a coupler output endface, and a plurality of pump cores extending between a pump input and the coupler output endface. The multicore input endface is connectable to the TMCF, and the pump input is connectable to the optical pump fibers. Each pump core is paired with a corresponding signal core to form a core pair that is adiabatically tapered such that signal light carried by the signal core is combined with pump light carried by the pump core. The coupler output endface is connectable to the AMCF such that the combined light output of each core pair is provided as an input to a respective AMCF core. | 02-06-2014 |
20150015939 | OPTICAL PUMPING APPARATUS FOR FEW-MODE FIBER AMPLIFICATION - An optical pumping apparatus for few-mode fiber amplification is provided. The optical pumping apparatus includes an optical pump source configured to generate an optical pump; an optical power divider configured to divide an optical power of the optical pump from the optical pump source so as to output several optical pumps with uniformly distributed optical power; and a modal multiplexer configured to receive the optical pumps from the optical power divider through a plurality of single-mode fibers, multiplex the received optical pumps, apply a multiplexed optical pump to each mode of a few-mode fiber (FMF) amplifier, and adjust a gain difference among modes, wherein the FMF amplifier obtains a gain by amplifying an optical signal with the optical pump. | 01-15-2015 |
20150029581 | THULIUM LASER - Stimulating emission via thulium's lasing transition from the | 01-29-2015 |
20150340831 | SYSTEMS AND METHODS OF ACHIEVING HIGH BRIGHTNESS INFRARED FIBER PARAMETRIC AMPLIFIERS AND LIGHT SOURCES - Fiber optic amplification in a spectrum of infrared electromagnetic radiation is achieved by creating a chalcogenide photonic crystal fiber (PCF) structure having a radially varying pitch. A chalcogenide PCF system can be tuned during fabrication of the chalcogenide PCF structure, by controlling, the size of the core, the size of the cladding, and the hole size to pitch ratio of the chalcogenide PCF structure and tuned during exercising of the chalcogenide PCF system with pump laser and signal waves, by changing the wavelength of either the pump laser wave or the signal wave, maximization of nonlinear conversion of the chalcogenide PCF, efficient parametric conversion with low peak power pulses of continuous wave laser sources, and minimization of power penalties and minimization of the need for amplification and regeneration of pulse transmissions over the length of the fiber, based on a dispersion factor. | 11-26-2015 |
20160072254 | Optical Amplifier and Optical Transmission System - An optical amplifying apparatus that amplifies an optical signal, including an input section whereto the optical signal is inputted, a laser light source that generates laser light, the laser light source including an uncooled semiconductor laser device, an optical fiber that amplifies the optical signal by a stimulated emission based on the laser light from the laser light source, an output section that outputs the optical signal amplified by the optical fiber, and a passive optical component disposed between the optical fiber and the output section. The laser light source is thermally coupled to the optical fiber and/or the passive optical component via a thermally conductive medium. An oscillating wavelength of the laser light source is varied by increasing a temperature of the laser light source with heat generated by the optical fiber and/or the passive optical component. | 03-10-2016 |
20160099542 | OPTICAL AMPLIFIER USING OPTICAL FIBER - The present disclosure provides an optical amplifier using an optical fiber. The optical fiber includes a single-mode optical fiber in which a plurality of rare earth elements is doped simultaneously; first and second optical fiber gratings disposed at opposite sides of the optical fiber, respectively, and totally reflecting light having a wavelength in a specific range; a pumping light source configured to generate a pumping light to excite rare earth ions in the optical fiber; and an optical coupler connected to the optical fiber and configured to transmit a light signal generated from a light source and the pumping light generated from the pumping light source to the optical fiber. Therefore, it is possible to obtain efficient amplification of a light signal through a simple configuration using the rare earth elements-doped optical fiber. | 04-07-2016 |