Class / Patent application number | Description | Number of patent applications / Date published |
359327000 | Raman type | 25 |
20110063718 | Optical frequency up-conversion of femtosecond pulses into targeted single bands in the visible and ultraviolet - An apparatus and methods for generating a substantially supercontinuum-free widely-tunable multimilliwatt source of radiation characterized by a narrowband line profile. The apparatus and methods employ nonlinear optical mechanisms in a nonlinear photonic crystal fiber (PCF) by detuning the wavelength of a pump laser to a significant extent relative to the zero-dispersion wavelength (ZDW) of the PCF. Optical phenomena employed for the selective up-conversion in the PCF include, but are not limited to, four-wave mixing and Cherenkov radiation. Tunability is achieved by varying pump wavelength and power and by substituting different types of PCFs characterized by specified dispersion properties. | 03-17-2011 |
20110122482 | SPECTRALLY BEAM COMBINED LASER SYSTEM AND METHOD AT EYE-SAFER WAVELENGTHS - Fiber-laser light is Raman shifted to eye-safer wavelengths prior to spectral beam combination, enabling a high-power, eye-safer wavelength directed-energy (DE) system. The output of Ytterbium fiber lasers is not used directly for spectral beam combining. Rather, the power from the Yb fiber lasers is Raman-shifted to longer wavelengths, and these wavelengths are then spectrally beam combined. Raman shifting is most readily accomplished with a “cascaded Raman converter,” in which a series of nested fiber cavities is formed using fiber Bragg gratings. | 05-26-2011 |
20110134510 | Despeckling Apparatus and Method - An apparatus and method that reduces laser speckle by using stimulated Raman scattering in an optical fiber. The fiber core diameter and length are selected to achieve a desired output color. An adjustable despeckler is formed by combining two optical fibers in parallel and adjusting the amount of light in each path. | 06-09-2011 |
20110267683 | SYSTEM AND METHOD FOR MONITORING IN-SITU PROCESSING OF SPECIMENS USING COHERENT ANTI-STOKES RAMAN SCATTERING (CARS) MICROSCOPY - System and method are disclosed for in-situ monitoring of a specimen while undergoing a defined process. The system includes a processing system adapted to perform the defined process on the specimen, and a coherent anti-Stokes Raman scattering (CARS) microscopy system adapted to in-situ monitor the specimen. In another aspect, the CARS microscopy system is adapted to in-situ monitor the specimen simultaneous with the defined process being performed on the specimen by the processing system. In still another aspect, the CARS microscopy system is adapted to perform a measurement of the specimen while the defined process being performed on the specimen is paused or temporarily halted. | 11-03-2011 |
20110299152 | DEVICE FOR GENERATING A SHORT DURATION LASER PULSE - An embodiment relates to a device for generating a short duration laser pulse, which comprises: means for generating a laser beam and for filtering same, arranged in such a way as to generate an input laser beam providing an input laser pulse; a transparent slide comprising a non-linear scattering material; the laser generation means being arranged so that the slide widens the spectrum of the input laser pulse by phase self-modulation in order to generate a wide-spectrum laser pulse; compression means adapted for compressing the wide-spectrum laser pulse in order to generate a short duration laser pulse; wherein the laser generation means are arranged so that the input beam is spatially uniform on the transparent slide and has a break integral B lower than three when the input beam passes through the transparent slide. | 12-08-2011 |
20120062983 | OPTICAL PARAMETRIC AMPLIFICATION, OPTICAL PARAMETRIC GENERATION, AND OPTICAL PUMPING IN OPTICAL FIBERS SYSTEMS - Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800-2100 nm and after frequency doubling in the wavelength range of 900-1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800-2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber. | 03-15-2012 |
20120170110 | Speckle Reduction Method - A method of despeckling light that includes mixing high-speckle laser light with low-speckle laser light in amounts selected to achieve a desired color point in a digital image. The high speckle laser light may be red laser diodes and the low-speckle laser light may be green stimulated-Raman-scattering light from an optical fiber. The desired color point may be DCI red or Rec. 709 red. | 07-05-2012 |
20120307349 | Speckle Reduction Using Multiple Starting Wavelengths - A method and apparatus for despeckling light that includes combining a first starting wavelength, stimulated Raman scattering light from the first starting wavelength, a second starting wavelength, and stimulated Raman scattering light from the second starting wavelength. The method and apparatus may include a first laser with a first infrared wavelength of 1047 nm and a second laser with a second infrared wavelength of 1053 nm. | 12-06-2012 |
20130044367 | Microbend-Enhanced Despeckling - A method and apparatus that enhances an aspect of light output from an optical fiber by microbending the optical fiber to increase stimulated Raman scattering light. The enhancement may be a change in speckle characteristics or a change in color. There may be an optical monitor that varies the amount of microbending by controlling the force on the optical fiber. | 02-21-2013 |
20130107350 | Multiple Laser Despeckling | 05-02-2013 |
20130250401 | Laser Projection System with Improved Bit Depth - An apparatus and method for despeckling that includes a green laser diode assembly, a pulsed laser with a repetition rate of less than 100 kHz, and stimulated Raman scattering light formed in an optical fiber. The laser diode light and stimulated Raman scattering light are combined to form a projected digital image. The green laser diode assembly or the pulsed laser is switched to improve the bit depth of the projected digital image. | 09-26-2013 |
20130308176 | COMPACT RAMAN GENERATOR WITH SYNCHRONIZED PULSES - According to an embodiment of the disclosure, a Raman generator includes a Raman medium and one or more optical elements. The Raman medium is configured to receive a pump pulse at a first wavelength and shift at least a portion of the pump pulse energy or power into a Stokes-shifted pulse at a second wavelength. The one or more optical elements are configured to synchronize one or more subsequent passages of the Stokes-shifted pulse through the Raman medium with one or more subsequent pump pulses at the first wavelength. The synchronized passage of the Stokes-shifted pulse and one or more subsequent pump pulses through the Raman medium increases a power of the Stoke-shifted pulse. | 11-21-2013 |
20130308177 | COMPACT RAMAN GENERATORS - According to an embodiment of the disclosure, a Raman generator includes a Raman medium and one or more optical elements. The Raman medium is configured to receive a pump pulse at a first wavelength and shift at least a portion of the pump pulse energy or power into a Stokes-shifted pulse at a second wavelength. The one or more optical elements are configured to pass the pump pulse and the Stokes-shifted pulse multiple times through the Raman medium. Each pass of the pulses through the Raman medium follows a path. Each path is parallel or anti-parallel to the other paths. | 11-21-2013 |
20130335812 | EFFICIENT EXTENDED SHIFT MONOLITHIC RAMAN FIBER LASER - A system and method for producing Stimulated Raman Scattering (SRS) is disclosed. A single optical fiber or Raman oscillator is optically pumped by a pump laser of sufficient power to generate SRS to generate several Stokes shifts of energy. This generates a multi-wavelength output or a single wavelength with several stokes energy shifts from the pump wavelength. A selective, monolithic-coated Raman fiber oscillator laser is utilized to increase the efficiency of frequency shifting by providing frequency-specific feedback at both facets of a free space coupled optical fiber oscillator. Frequencies that lie several bands away from the primary pump frequency may be efficiently achieved in a fiber oscillator by re-circulating the required stokes-shifted frequencies via selective high-reflection coatings. By re-circulating the intra-band stokes frequencies, the required intensities in each respective frequency will be increased, thereby dropping the respective Raman threshold in the optical fiber. | 12-19-2013 |
20140071518 | OPTICAL ISOLATOR - An optical isolator for optically isolating an optical system, the optical system outputting electromagnetic radiation at predetermined ranges of frequencies, the optical isolator including a filter, and a Raman shifter, the filter is optically coupled with the output of the optical system and allows electromagnetic radiation of at least the predetermined ranges of frequencies to pass therethrough, the Raman shifter is optically coupled with the output of the filter for shifting the frequencies of the electromagnetic radiation through Raman scattering, the filter filtering back reflected portions of the shifted frequencies electromagnetic radiation. | 03-13-2014 |
20140111847 | Despeckling Apparatus and Method - An apparatus and method that reduces laser speckle by using stimulated Raman scattering in an optical fiber. The fiber core diameter and length are selected to achieve a desired output color. An adjustable despeckler is formed by combining two optical fibers in parallel and adjusting the amount of light in each path. | 04-24-2014 |
20140177034 | Despeckling Stability - An apparatus and method that improves the stability of despeckling using stimulated Raman scattering in an optical fiber. Optical modes in the fiber are scrambled by physical movement of the optical fiber, focusing assembly, or laser beam. The improvement in stability may include a reduction in flicker or reduction in long-term drift. | 06-26-2014 |
20140185130 | Despeckling Red Laser Light - A method of despeckling light that includes mixing high-speckle far-red laser light with low-speckle green laser light in amounts selected to achieve a desired color point in a digital image. The far-red laser light may be red laser diodes with wavelengths in the range of 640 to 680 nm. The green laser light may include stimulated-Raman-scattering light from an optical fiber. The desired color point may be DCI red or Rec. 709 red. | 07-03-2014 |
20150015937 | METHODS AND SYSTEMS FOR NONLINEAR OPTICAL WAVE-MIXING - A system for conversion or amplification using quasi-phase matched nonlinear optical wave-mixing comprises a first radiation source for providing a pump radiation beam, a second radiation source for providing a signal radiation beam, and a bent structure for receiving the pump radiation beam and the signal radiation beam. The radiation propagation portion of the bent structure is made of a uniform nonlinear optical material and the radiation propagation portion comprises a dimension taking into account the spatial variation of the nonlinear optical susceptibility along the radiation propagation portion as experienced by radiation travelling along the bent structure for obtaining quasi-phase matched nonlinear optical wave-mixing in the radiation propagation portion. The dimension thereby is substantially inverse proportional with the linear phase mismatch for the nonlinear optical process. The system also comprises an outcoupling radiation propagation portion for coupling out an idler radiation beam generated in the bent structure. | 01-15-2015 |
20150085348 | DEVICE AND METHOD FOR CONVERTING A LIGHT AND A LASER SYSTEM - Disclosed herein is a device ( | 03-26-2015 |
20160048769 | Single photon source based on a quantum dot molecule in an optical cavity - A solid-state device for generating a single photon for quantum information processing, the device including: a quantum dot molecule including: a first singly-charged quantum dot; and a second singly-charged quantum dot; wherein the first singly-charged quantum dot is adjacent to the second singly-charged quantum dot; and a tunnel barrier that separates the first singly-charged quantum dot from the second singly-charged quantum dot. | 02-18-2016 |
20160097964 | METHOD AND APPARATUS FOR OPTICAL ASYNCHRONOUOS SAMPLING SIGNAL MEASUREMENTS - A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed. | 04-07-2016 |
20160178984 | SINGLE-PHOTON GENERATOR AND SINGLE-PHOTON GENERATING METHOD | 06-23-2016 |
20160195793 | Optical Sources | 07-07-2016 |
20160202123 | Nanotransfer Printing Method and Surface-Enhanced Raman Scattering Substrate, Surface-Enhanced Raman Scattering Vial and Surface-Enhanced Raman Scattering Patch Manufactured Using the Same | 07-14-2016 |