Class / Patent application number | Description | Number of patent applications / Date published |
358480000 | Coherent light | 11 |
20080266619 | Optical scanner with non-redundant overwriting - An optical scanning device is provided which comprises a laser array which emits laser beams including a number of beams (1, 2, . . . , n) writing a swath of rasters having a laser scanning section which, when an interlaced scanning period i, is set to a natural number between beams which are adjacent in a sub-scanning direction, scans the laser beams emitted from the laser array with the interlaced scanning period i. The laser scanning section can scan the laser beams such that the beam number n and the interlaced scanning period i are relatively prime natural numbers, and n>i. In a first scan, data for raster lines (1, 2, . . . , n) can be selectively associated with a respective first exposure. At a second scan, data for raster lines (i+1, i+2, . . . n) can be selectively associated with a respective second exposure and data for raster lines (n+1, n+2, . . . , n+i) can be selectively associated with a respective first exposure. The first respective exposure for raster lines (i+1, i+2, . . . , n) is not equal to the respective second exposure for raster lines (i+1, i+2, . . . , n). | 10-30-2008 |
20090153919 | ENHANCED ILLUMINATED SCANNING UNIT REFERENCE MARKER - A method for providing a visible reference marker on a scanning unit for orienting an item to be scanned or copied includes the steps of emitting a light from a light source, guiding the light to a scanning unit having a contact glass scanning surface, and redirecting the light to define an illuminated reference marker substantially adjacent to the contact glass. A reference marker assembly for accomplishing that method is provided, including a light source, a waveguide for guiding light emitted from the light source to a scanning unit having a contact glass, and a redirector for redirecting the light to define an illuminated reference marker adjacent to the contact glass, for orienting an item to be copied or scanned. The light source may be a light emitting diode, and the redirector may be a light diffuser for redirecting the collected light to define an illuminated reference marker adjacent to the contact glass. | 06-18-2009 |
20110109947 | OPTICAL SCANNER WITH NON-REDUNDANT OVERWRITING - An optical scanning device is provided which comprises a laser array which emits laser beams including a number of beams (1, 2, . . . , n) writing a swath of rasters having a laser scanning section which, when an interlaced scanning period i, is set to a natural number between beams which are adjacent in a sub-scanning direction, scans the laser beams emitted from the laser array with the interlaced scanning period i. The laser scanning section can scan the laser beams such that the beam number n and the interlaced scanning period i are relatively prime natural numbers, and n>i. In a first scan, data for raster lines (1, 2, . . . , n) can be selectively associated with a respective first exposure. At a second scan, data for raster lines (i+1, i+2, . . . , n) can be selectively associated with a respective second exposure and data for raster lines (n+1, n+2, . . . , n+i) can be selectively associated with a respective first exposure. The first respective exposure for raster lines (i+1, i+2, . . . , n) is not equal to the respective second exposure for raster lines (i+1, i+2, . . . , n). | 05-12-2011 |
20110317228 | OPTICAL SCANNING APPARATUS PROVIDED WITH RESONANCE-DRIVEN SWING MIRROR AND IMAGE FORMING APPARATUS - An optical scanning apparatus capable of suppressing a track error is provided. The apparatus includes a swing mirror supported by a torsional vibration system having a first natural frequency and a second natural frequency that is a double of the first natural frequency, and a driving unit applying a swing torque to the vibration system. The apparatus can detect passage of an optical beam at two locations and output track information of the swing mirror, and perform feedback control. When the feedback control is performed, the apparatus sequentially switches target tracks of scanning in a forward and a backward direction, the phases of the second natural frequency of the target tracks being mutually reversed, calculates an amount of offset compensation based on a difference between the predetermined target track and the track for each scanning in the forward and backward direction, and reflects the amount in the feedback control. | 12-29-2011 |
20120170084 | SURFACE-EMITTING SEMICONDUCTOR LASER, SURFACE-EMITTING SEMICONDUCTOR LASER DEVICE, OPTICAL TRANSMISSION APPARATUS, AND INFORMATION PROCESSING APPARATUS - A surface-emitting semiconductor laser includes a substrate, a first semiconductor multi-layered reflector of a first conductivity type, an active region, a second semiconductor multi-layered reflector of a second conductivity type, a columnar structure, a current-confining layer including a conductive area surrounded with an oxidized area, a first electrode defining a light-emitting window, a first dielectric film covering the light-emitting window, and a second dielectric film formed on the first dielectric film. The second dielectric film has an asymmetrical shape having a long axis and a short axis, the second dielectric film is located at a position overlapping with the conductive area, the second refractive index n | 07-05-2012 |
20140300937 | ORGANIC LIGHT EMITTING DISPLAY DEVICE AND DRIVING METHOD THEREOF - An organic light emitting diode (OLED) display is disclosed. One ascpect includes a pixel unit including a plurality of pixels formed at portions at which scanning lines and data lines intersect with each other; a scan driver for supplying scan signals to the scanning lines. The OLED display further comprises a data driver for supplying data signals to the data lines; and a data compensation unit changing the input data using a correction coefficient stored as a unit of a pixel block including a plurality of pixels and supplying the changed input data to the data driver. In such OLED display, the pixel block is divided so that the number of pixel arranged in the first direction is different from the number of pixel arranged in the second direction which intersects with the first direction. | 10-09-2014 |
20150326746 | SINGLE-FACET SPINDLE IMPLEMENTATION FOR A LASER SCANNER SYSTEM - A system includes a laser scanner system. The system includes a scanner laser to generate an optical scanning beam. The system also includes a spindle assembly comprising a spindle that extends along an axis and reflects the optical scanning beam. The system also includes a beam detector to receive the reflected optical scanning beam from the single facet and to indicate when to generate a latent image corresponding to an image based on the optical scanning beam for a given scan operation. The system further includes a scan controller to control the scanner laser such that the optical scanning beam is reflected from only a single facet of the spindle during the given scan operation. | 11-12-2015 |
358481000 | Including a polygon reflector | 4 |
20080225349 | Optical scanning apparatus and image forming apparatus using same - An optical scanning apparatus is detachably mountable in an image forming apparatus. The optical scanning apparatus includes a light source unit to simultaneously emit a plurality of light beams; an optical element unit including an optical element to focus light beams deflected by the optical element onto a surface to be scanned, and hold the light source unit in a rotatively adjustable manner; and a rotation adjustment unit to adjust a position of the light source unit relative to the optical element unit in a rotation direction when an external force acts on the rotation adjustment unit. The rotation adjustment unit is disposed at a rear end of the optical scanning apparatus in an inserting direction to the image forming apparatus or at an adjustable position when the optical scanning apparatus is installed in the image forming apparatus. | 09-18-2008 |
20080285095 | SCANNING OPTICAL DEVICE, IMAGE FORMING DEVICE AND JITTER CORRECTION METHOD - A scanning optical device includes a rotating polygonal mirror having a plurality of reflecting faces. A first light source emits a first light beam from one section obtained by sectioning the scanning optical device with a plane passing through the rotation axis of the rotating polygonal mirror. A second light source emits a second light beam from the other section. The first calculation unit calculates scan time of the first light source. The second calculation unit calculates scan time of the second light source. The jitter correction unit corrects jitter by controlling a pixel clock supplied to the first light source according to the scan time of the second light source. The jitter correction unit also corrects jitter by controlling a pixel clock supplied to the second light source according to the scan time of the first light source. | 11-20-2008 |
20090015885 | IMAGE FORMING APPARATUS AND CONTROL METHOD THEREOF - A frequency adjusting unit adjusts a frequency of the clock signal to be supplied to a drive unit when an image is to be formed on the second face in response to a contraction ratio of the printing material on which an image has been formed on the first face. The phase difference determining unit determines a phase difference between the clock signal corresponding to the first face and the clock signal corresponding to the second face in response to a frequency difference and a sign thereof between the clock signal corresponding to the first face and the clock signal corresponding to the second face. The change control unit changes from the clock signal corresponding to the first face to the clock signal corresponding to the second face. | 01-15-2009 |
20090021802 | IMAGE FORMING APPARATUS, CONTROL METHOD THEREOF AND PROGRAM THEREOF - An image forming apparatus which performs an exposure of a plurality of line images concurrently, by scanning an image carrier with a plurality of light beams in a main scanning direction and simultaneously drives the image carrier in a sub scanning direction, the image forming apparatus having: a plurality of light sources which are driven to emit the plurality of light beams corresponding to image data; a polygon mirror configured to deflect the plurality of light beams emitted from the plurality of light sources in a main scanning direction; and a control section which determines an image formation speed and switches, based on the determined image formation speed, a control between a control of changing a number of light sources used for light emission drive and a control of changing a number of polygon mirror use-surfaces used for a scanning with the light beams in the main scanning direction. | 01-22-2009 |