Class / Patent application number | Description | Number of patent applications / Date published |
356447000 | With modulation (e.g., flicker beam) | 12 |
20080225299 | Apparatus and Method for Appearance Inspection - Rotating polygon mirrors are configured such that angles formed by a rotation axis and mirror surfaces differs from one another in the mirror surfaces in order to shift a collecting point of a scanning light flux in a sub-scanning direction in association with rotation at constant angular speed. A collecting point position forming optical system is configured such that the collecting point is moved in an inspection range Zr in a height direction Z. The XYZ scanning is performed by moving the inspection object in the sub-scanning direction such that the collecting point shifted in the sub-scanning direction and the height direction is linearly scanned in the height direction of the inspection object in synchronization with the rotation of the rotating polygon mirror at the constant angular speed, and the an appearance positional coordinate of the inspection object is determined by a confocal method to perform the appearance inspection. | 09-18-2008 |
20090116025 | FIELD TEST OF A RETRO-REFLECTOR AND DETECTOR ASSEMBLY - An opto-electronic assembly and testing method are disclosed. A housing of the opto-electronic assembly is coupled to a window to form an optical chamber. A retro-reflector can be coupled to the housing. A radiation source can be disposed on or about the retro-reflector. The radiation source can emit radiation into the optical chamber through at least a portion of the retro-reflector. A detector can sense a level of the radiation in the optical chamber. A controller coupled to the detector can signal an error condition when the level of the radiation exceeds a threshold associated with the presence of obscurants on the window. Optionally, the controller can be coupled to the radiation source for selectively emitting pulses of radiation into the optical chamber and detecting data bits corresponding to the pulses of radiation. | 05-07-2009 |
20090116026 | Reflection characteristic measuring apparatus for sheet specimen, method of calibrating reflection characteristic measuring apparatus for sheet specimen, and calibration reference plate for use in calibration of reflection characteristic measuring apparatus for sheet specimen - A reflection characteristic measuring apparatus capable of scanning a specimen surface of a sheet specimen at a high speed is provided. The reflection characteristic measuring apparatus includes a group of illuminating and light-receiving systems for directing illuminating light onto the specimen surface of the sheet specimen held by a specimen holding roller pair and for receiving reflected light from the specimen surface. The illuminating and light-receiving systems measure a spectral characteristic of the received reflected light. The illuminating and light-receiving systems are disposed over one-dimensional arrays of color samples which extend in the longitudinal direction of the sheet specimen, and scan the one-dimensional arrays in a direction opposite to a direction in which the sheet specimen is transported. | 05-07-2009 |
20100067017 | OPTICAL MODULATION-TYPE DETECTION DEVICE AND ELECTRONIC DEVICE - An optical modulation-type detection device has a noise detection mode having (i) an offset canceling (hereinafter referred to as “OC”) period in which (a) the light-reception signal pathway of a pulse signal converting section is cut off so that an offset of the pulse signal converting section is suppressed and (b) the light-reception signal pathway of the pulse signal converting section is reconnected while a state in which the offset is suppressed is being maintained, at an end of the OC period, and (ii) an asynchronous reception period in which whether or not asynchronous reception occurs is detected after the first period, and an object detection mode having a synchronous reception period in which whether or not synchronous reception occurs is detected after the asynchronous reception is not detected in the noise detection mode. | 03-18-2010 |
20100103427 | OBJECT DETECTOR - An object detector has a light projecting unit that projects light, a light scanning actuator that scans the light, and a light receiving unit. The light scanning actuator includes plate springs, each having a thin-plate shape and one end in a longitudinal direction thereof being fixed; a movable part attached to the other ends in the longitudinal directions of the plate springs; and an electromagnetic driving unit having a magnet that generates a magnetic flux, a yoke that forms a closed magnetic circuit with the magnet and has a part being stacked on the magnet, and a coil held by the movable part and positioned in a gap between the magnet and the yoke such that an aperture plane is substantially orthogonal to a stacking direction of the magnet and the yoke, the electromagnetic driving unit configured to drive the movable part by an electromagnetic force applied to the coil. | 04-29-2010 |
20100245830 | METHOD OF MEASURING DEGRADATION CONDITION OF OUTPUT MIRROR IN LASER OSCILLATOR AND LASER MACHINING APPARATUS - In a laser machining apparatus that performs machining by a laser beam ( | 09-30-2010 |
20100296097 | SCANNING OPTICAL MEASUREMENT APPARATUS HAVING SUPER RESOLUTION - Provided is a scanning optical measurement apparatus having super resolution. The scanning optical measurement apparatus includes: a light source; a first lens, which focuses light irradiated from the light source; a first pin hole, which is disposed next to the first lens; a second lens, which diverges light that passed through the first pin hole; a scanning unit, which scans light that passed through the second lens; a first beam splitter, which is disposed between the second lens and the scanning unit; an object lens, which focuses light that passed through the scanning unit on the subject; a slide, where the subject is placed; an optical probe, which reflects the light that passed through the subject after being irradiated from the light source; a second beam splitter, which is disposed between the scanning unit and the object lens; a first optical detector, which detects the light that passed through the first beam splitter after being reflected from the subject and the optical probe; a second pin hole, which is disposed between the first beam splitter and the first optical detector; and a second optical detector, which detects light that passed through the second beam splitter after being reflected from the subject and the optical probe. | 11-25-2010 |
20110043813 | OPTICAL APPARATUS, OPTICAL DETECTOR, OPTICAL MODULATOR, IMAGING APPARATUS, AND CAMERA - Provided is an optical apparatus having high durability, less optical absorption than a hole-type metal thin film filter, high transmittance and high reflectance, and variable optical characteristics. The apparatus includes: a dielectric substrate; a metal structure group including multiple metal structures two-dimensionally and discretely disposed at regular intervals; and a dielectric layer covering the metal structure group, in which: the metal structures have a first length equal to or shorter than a predetermined wavelength in a visible light region in one direction, and a second length equal to or shorter than the wavelength in a perpendicular direction; and the metal structures resonates with light entering the dielectric substrate or the dielectric layer, having a variable dielectric constant, to generate localized surface plasmon resonance on a surface of the metal structures to have a minimum transmittance or a maximum reflectance of the light having the wavelength. | 02-24-2011 |
20120268744 | MULTIPLE MEASUREMENT TECHNIQUES INCLUDING FOCUSED BEAM SCATTEROMETRY FOR CHARACTERIZATION OF SAMPLES - A system for monitoring thin-film fabrication processes is herein disclosed. Diffraction of incident light is measured and the results are compared to a predictive model based on at least one idealized or nominal structure. The model and/or the measurement of diffracted incident light may be modified using the output of one or more additional metrology systems. | 10-25-2012 |
20130194577 | METHOD FOR DETERMINING AN ACTIVE DOPANT PROFILE - A method for determining an active dopant concentration profile of a semiconductor substrate based on optical measurements is disclosed. The active dopant concentration profile includes a concentration level and a junction depth. In one aspect, the method includes obtaining a photomodulated reflectance (PMOR) amplitude offset curve and a PMOR phase offset curve for the semiconductor substrate based on PMOR measurements, determining a decay length parameter based on a first derivative of the amplitude offset curve, determining a wavelength parameter based on a first derivative of the phase offset curve, and determining, from the decay length parameter and the wavelength parameter, the concentration level and the junction depth of the active dopant concentration profile. | 08-01-2013 |
20130301054 | DIAGNOSTIC SYSTEM FOR OPTICAL TOUCH CONTROL MODULE AND AUTOMATIC DIAGNOSTIC METHOD THEREOF - A diagnostic system for an optical touch control module and an automatic diagnostic method thereof are disclosed. The diagnostic system is used for testing an optical capturing module of the optical touch control module. The diagnostic system includes a controlling module, a first test element, a second test element, and a rotary fixture. The first and the second test element are disposed on a touch surface for allowing the optical capturing module to capture a first and a second test signal. The rotary fixture is used for contacting to the optical capturing module, wherein the controlling module determines whether an image signal captured by the optical capturing module has the first and the second test signal. If not, the controlling module controls the rotary fixture to rotate the optical capturing module to adjust a capturing direction. | 11-14-2013 |
20140009763 | SYSTEMS AND METHODS REDUCING COHERENCE EFFECT IN NARROW LINE-WIDTH LIGHT SOURCES - Systems and methods are described for reducing coherence effect in narrow line-width light sources through various modulation techniques. The systems and methods can include a narrow line-width laser source with a thermoelectric cooler thermally coupled thereto and a controller communicatively coupled to the thermoelectric cooler. The controller is configured to provide a varied input signal to the thermoelectric cooler to reduce coherence of the narrow line-width laser source by artificially broadening the narrow line-width on a time averaged basis. The systems and methods can also include direct modulation of the narrow line-width laser source. The systems and methods can include a narrow line-width Optical Time Domain Reflectometer (OTDR). The systems and methods can also include direct modulation of the narrow line-width laser source with or without the varied input signal to the thermoelectric cooler. | 01-09-2014 |