Entries |
Document | Title | Date |
20080198381 | Pressurized detectors substance analyzer - An apparatus, system and method to measure the concentration of a constituent element in a gas sample contained in an analyzer. A sample cell has an inlet and an outlet. The inlet is to receive a predetermined mass of a gas sample and the outlet is to couple to a valve. The sample cell is to receive the predetermined mass of the gas sample over a predetermined pressurization period until substantially the entire mass of the gas sample contained in the analyzer is contained within the sample cell. The gas sample is pressurized to a predetermined pressure over the pressurization period. A detector cell is located adjacent to the sample cell. The detector cell is to determine a concentration of a constituent of the pressurized gas sample. | 08-21-2008 |
20080212100 | Sono-Photonic Gas Sensor - Sensing a gas includes introducing a gas into a chamber, forming a standing acoustic wave in the chamber, and irradiating the chamber with electromagnetic radiation. Some of the electromagnetic radiation passes into the chamber, through the standing acoustic wave in the chamber, and out of the chamber. An amount of electromagnetic radiation that passes out of the chamber, or is transmitted through the chamber, is detected. A concentration of the gas in the chamber can be assessed. | 09-04-2008 |
20080218757 | SENSOR - A method for acquiring information includes the steps of preparing a laser having a micro-cavity, and detecting a light emitted from the laser. An oscillation state of the laser is changed according to a change of an environmental condition around the micro-cavity, and the light emitted from the laser is changed. | 09-11-2008 |
20080218758 | METHOD, SYSTEM AND MODULE FOR MONITORING A POWER GENERATING SYSTEM - A sensing module positioned about an optical fiber cable having a long axis. The optical fiber includes a core that transmits light through the optical fiber cable. The sensing module includes a first short-period fiber grating positioned about the core. A second short-period fiber grating is positioned about the core and at a distance along the long axis with respect to the first short-period fiber grating. At least one of a long-aperiod fiber grating and a long-period fiber grating is positioned between the first short-period fiber grating and the second short-period fiber grating. A fiber cladding is positioned around the long-period grating and/or the long-aperiod grating of the sensing module. A sensing skin is positioned about the fiber cladding and includes a chemical gas active material. | 09-11-2008 |
20080225296 | Pressure-invariant trace gas detection - A system includes a light source, a detector, at least one pressure sensor, and a control unit. The light source emits light at a wavelength substantially corresponding to an absorption line of a target gas. The detector is positioned to detect the intensity of light emitted from the light source that has passed through the target gas. The pressure sensor detects the pressure of the target gas. The control circuit is coupled to the detector and the light source to adjust the modulation amplitude of the light source based on the pressure detected by the at least one pressure sensor. Related systems, apparatus, methods, and/or articles are also described. | 09-18-2008 |
20080231857 | Sensor system and sampling cell assembly for use with sensor system - A sensor system for detection of a gaseous chemical substance is provided, which includes an optical sampling cell holding a sampling chamber of a volume of at most 20 mm | 09-25-2008 |
20080239322 | OPTICAL ABSORPTION GAS SENSOR - An optical absorption gas sensor comprising a body having an internal wall which defines a chamber, at least one aperture in the body through which a gas sample can enter the chamber, a light source, at least one reflector, a detector assembly which extends into the chamber and has a first side and an opposite second side, a detector which measures light which is incident at at least a range of angles on at least a part of a first surface of the detector assembly on the first side of the detector assembly, wherein the light source is located within the chamber on the second side of the detector assembly, the whole being configured such that light from the light source passes through the gas sample and is reflected around the detector assembly, by the at least one reflector, onto the detector. | 10-02-2008 |
20080252891 | Photoacoustic gas sensor - A photoacoustic sensor includes a sensor system for photoacoustic detection, at least one noise canceling pressure sensor and a control system in operative connection with the noise canceling pressure sensor to actively cancel the effects of noise in the environment on the sensor system. Another photoacoustic sensor includes a measurement volume, a source of light energy, a photoacoustic pressure sensor, and at least one vibration canceling sensor (for example, a microphone or an accelerometer). A further photoacoustic sensor includes a measurement volume, a source of light energy and a photoacoustic pressure sensor. The measurement volume has an inner surface that is continuously curved over substantially the entire inner surface other than where a window in optical connection with the source of light intersects the measurement volume. | 10-16-2008 |
20080259340 | AIRBORNE TUNABLE MID-IR LASER GAS-CORRELATION SENSOR - A method and apparatus for measuring target gas concentrations in an atmosphere. The method and apparatus emit in the atmosphere a laser beam tuned to a molecular absorption line of a target gas, receive a reflected signal affected by gas absorption of the target gas in the atmosphere, divide and direct the received signal into a first optical path and a second optical path including in one of the paths a correlation gas cell filled with a predetermined concentration of the target gas, detect transmitted signals through the first optical path and the second optical path, and calculate a target gas concentration by comparing a first signal transmitted through the first optical path to a second signal transmitted through the second optical path. The apparatus includes a laser source tunable to a specific molecular absorption line of a target gas and configured to emit in the atmosphere a laser beam having a spectral bandwidth greater than a full width of the molecular absorption line of the target gas, a receiver configured to receive a reflected signal affected by gas absorption of the target gas in the atmosphere, and at least one detector configured to detect transmitted signals through the first optical path and the second optical path. | 10-23-2008 |
20080259341 | METHOD AND APPARATUS FOR OPTICALLY READING GAS SAMPLING TEST CARDS - A method and apparatus for measuring a gas concentration detected by a passive sampler are provided. The apparatus includes a light source which illuminates a passive sampler, a detector which detects light from the light source reflected from the passive sampler and provides an output signal, and a microprocessor which receives the output signal and calculates light absorption by the passive sampler based on the received signal. | 10-23-2008 |
20080285037 | MULTI-WAVELENGTH MODE LOCKED LASER - A mode-locked laser employs a light-wavelength-dependent, path-length adjuster to provide different path-lengths for multiple light frequencies and dual modulation frequencies selecting multiple modes with different wavelengths. The result is a single cavity laser producing mode-locked light outputs at defined different frequencies. Tuning of each frequency may be obtained by changing the laser modulation frequencies. | 11-20-2008 |
20080291452 | Optical Switching Device - Optical switching device comprising a substrate on which a magnesium transition metal layer such as a magnesium nickel metal layer is provided. At supplying of hydrogen the magnesium transition metal layer is, starting from the substrate, converted to a magnesium transition metal hydride layer. This has optical properties different from the magnesium transition metal layer. The change in optical properties viewed from the transparent substrate side can change from reflective to transparent wherein a black phase is in between. To obtain and maintain this black phase is relatively critical. However, there are many applications in which such a black phase could be very useful. In order to be able to obtain a stable black phase according to the invention it is proposed to have a relatively thin magnesium metal layer for example of 50 nm at the maximum and to provide an auxiliary layer on top of the magnesium transition metal layer. | 11-27-2008 |
20080304066 | Method for measuring the concentration of a gas component in a measuring gas - There is described a method for measuring a concentration of a gas component in a measuring gas, wherein the light of a wavelength tunable light source is passed along a single optical path through a measuring volume containing the measuring gas and a reference cell containing a reference gas to a detector. The reference cell is selected to contain a selected isotope of the gas component to be measured in a known abundance ratio higher than the known natural-abundance isotope ratio of the gas component in the measuring volume; the light source is tuned to sweep the wavelength of the light over the absorption lines of the selected isotope and the remaining gas component; and the concentration of the gas component in the measuring volume is calculated from the ratio of the detector signals at the peaks of the absorption lines, based on Lambert's law and taking into account the known abundance isotope ratios. | 12-11-2008 |
20080316489 | Gas Sensor - A gas sensor for measuring at least one gas concentration, in particular for a vehicle climate control system, having a substrate, an IR radiation source fastened on the substrate, an IR detector fastened on the substrate, a measurement chamber for receiving a gas having the gas concentration that is to be measured, a shielding device situated in the measurement chamber between the IR radiation source and the IR detector, for shielding a direct transmission of IR radiation from the IR radiation source to the IR detector along an optical axis, and a reflective surface that has a concavely curved first mirrored area for receiving the IR radiation emitted by the IR radiation source, and that has a concavely curved second mirrored area that reflects the IR radiation to the IR detector, the measurement chamber being formed between the reflective surface and the substrate. | 12-25-2008 |
20090009769 | Gas sensors and methods of controlling light sources therefor - A gas sensor includes a light source, a power source in operative connection with the light source and a control system in operative connection with the light source and the power supply. The control system is adapted to control power input from the power source to the light source such that the time period of the control frequency is shorter than the thermal time constant of at least one of (i) the infrared light source, (ii) the gas within the sensor, or (iii) a detector of the sensor. The time period of the control frequency can, for example, be no greater than ⅓ of the thermal time constant, no greater than 1/10 of the thermal time constant, or even no greater than 1/20 of the thermal time constant. A feedback signal can be provided to the control system assist in achieving control. | 01-08-2009 |
20090027677 | METHOD AND GAS SENSOR FOR PERFORMING QUARTZ-ENHANCED PHOTOACOUSTIC SPECTROSCOPY - A method for performing quartz-enhanced photoacoustic spectroscopy of a gas, includes providing a light source configured to introduce a laser beam having at least one wavelength into the gas such said at least one molecule within in the gas is stimulated generating an acoustic signal, accumulating the acoustic signal in a resonant acoustic detector, generating a resonant absorption signal (S | 01-29-2009 |
20090059234 | HOLLOW WAVEGUIDE CAVITY RINGDOWN SPECTROSCOPY - Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements. | 03-05-2009 |
20090059235 | Rotationally Asymmetric Chaotic Optical Multi-Pass Cavity - The present invention relates to a rotationally asymmetric chaotic optical multi-pass cavity useful in optical gas sensing spectroscopy, optical delay lines, and laser amplification systems, for example. The cavity may include a single closed mirror having a light reflective surface that is deformed in two orthogonal directions and more particularly, but not exclusively, in the shape of a quadrupole in both horizontal and vertical planes. The cavity includes a light entry port and a light exit port which may be the same or separate ports, as well as a gas inlet and a gas outlet. The optical path length, the beam divergence rate, and the spot pattern are controlled by selecting the cavity deformation coefficients and the input beam direction to achieve the desired beam path and beam quality. | 03-05-2009 |
20090066956 | Method and apparatus for enhancing the accuracy of CRDS measurements - A method and apparatus for enhancing the accuracy of spectroscopic measurements using a cavity ringdown spectrometer (CRDS) is provided. A first aspect of the invention consists of a novel algorithm for the processing of ring-down data that significantly reduces the amplitude of an exponential fitting artifact, and thereby gives a better estimate of the actual loss. The primary cause of the artifact is the presence of an unwanted backwards-traveling wave that counter-propagates within the ringdown cavity. Scattering due to small imperfections at the cavity mirrors produces this wave and its intensity may be minimized by adjustment of the mirror positions during cavity construction. A second aspect of the invention consists of an apparatus for measuring the backscattered wave within a cavity to allow such cavity mirror adjustments to be made. | 03-12-2009 |
20090066957 | Method and Apparatus for Sensing a Target Substance by Analysing Time Series of Said Target Substance - This invention is concerned with apparatus, methods and computer program code for sensing a target substance using one or more very high sensitivity optical sensors such as sensors employing evanescent waves and/or cavity ring-down techniques. The methods and apparatus we describe are particularly useful in reducing false alarm rates. | 03-12-2009 |
20090066958 | METHOD AND DEVICE FOR DETERMINING THE TOTAL OXYGEN CONTENT AND/OR THE TOTAL CARBON CONTENT IN AMMONIA - The invention relates to a process for determining the total oxygen content and the total carbon content in ammonia, in which ammonia is first split into nitrogen and hydrogen, then the oxygen still present in the ammonia is reacted essentially fully with hydrogen to give water and the carbon still present is reacted essentially fully with hydrogen to give methane. In a next step, the water content and the methane content in the gas are determined. Finally, the total oxygen content is determined from the water content and the total carbon content from the methane content. The invention further relates to an apparatus for performing the process, which comprises a cracker for splitting the ammonia and for converting the oxygen- and/or carbon-comprising compounds, and at least one cavity ring-down spectrometer for detecting the water content and/or carbon content. The cracker and the at least one spectrometer, and also all devices and connecting lines between the cracker and the spectrometer, are surrounded by an inert gas. | 03-12-2009 |
20090097031 | MICRO-CAVITY GAS AND VAPOR SENSORS AND DETECTION METHODS - Micro-cavity gas or vapor sensors and gas or vapor detection methods. Optical energy is introduced into a resonant micro-cavity having a deformable coating such as a polymer. The coating swells or expands when it is exposed to or absorbs a gas or vapor, thereby changing the resonant wavelength of optical energy circulating within the micro-cavity/coating. Expansion or swelling of the coating may be reversible such that it contracts when gas or vapor diffuses from the coating. The coating deformation and/or a change of one or more optical properties of the optical energy circulating within the micro-cavity are used to detect the presence of the gas or vapor or molecules or particulates thereof. | 04-16-2009 |
20090128819 | LOW COST APPARATUS FOR DETECTION OF NITROGEN-CONTAINING GAS COMPOUNDS - Nitrogen-containing compounds are detected by chemically converting ( | 05-21-2009 |
20090128820 | OPTICAL SYSTEM AND ATOMIC OSCILLATOR BACKGROUND - An optical system of an atomic oscillator includes: a coherent light source emitting two resonant light components each having a p-polarized light component and an s-polarized light component, the tow resonant light components being coherent light and having a different frequency each other; a polarization splitter arranged at an output side of the coherent light source, the polarization splitter transmitting one of the p-polarized light component and the s-polarized light component and changes an optical path of the other of the p-polarized light component and the s-polarized light component to be outputted; a quarter-wave plate arranged at an output side of the polarization splitter so as to convert one of circularly polarized light and linearly polarized light to the other of circularly polarized light and linearly polarized light; a gas cell in which metal atom vapor is enclosed; a light guide that guides light after passing through the gas cell back to the gas cell as a turned-back light; and a photodetector that detects the turned-back light, the turned-back light having been passed through the gas cell and changed the optical path by the polarization splitter. The atomic oscillator controls an oscillation frequency by using a light absorption characteristic caused by a quantum-interference effect when the two resonant light components are incident on the optical system. | 05-21-2009 |
20090135425 | HYDROGEN GAS DETECTION DEVICE - In a hydrogen gas detection device, light emitted from a light source is irradiated onto a hydrogen sensor whose reflectance (optical reflectance) varies upon contact with hydrogen gas, and the light transmitted through the hydrogen sensor or reflected by a reflective film of the hydrogen sensor is received by an optical sensor. On the basis of the signal output from the optical sensor and indicative of the amount of light received, the hydrogen gas detection device detects leakage of hydrogen gas. | 05-28-2009 |
20090141281 | DETECTOR/IMAGER - A back scatter absorption detector/imager having an optical parametric device for generating sensing radiation, the optical parametric device having a nonlinear medium (NLC) and a pump wave laser source, the nonlinear medium (NLC) being able to generate a signal and an idler wave in response to being stimulated with the pump wave, thereby to generate sensing radiation, and a detector (D) for detecting any sensing radiation back-scattered from a target area, characterised in that the pump wave laser source and the nonlinear medium (NLC) are provided in the same optical cavity. | 06-04-2009 |
20090153864 | GAS SENSING APPARATUS AND METHOD OF SENSING GAS USING THE SAME - Provided are a gas sensing apparatus and a gas sensing method using the apparatus. The gas sensing apparatus includes a detection chamber, a light source, a light sensor, a gas source, and a controller. The light source is disposed at one end of the detection chamber, and a light sensor is disposed at the other end of the detection chamber. The gas source provides gas to the detection chamber. The controller controls the light source and the light sensor. The light source includes a laser supplying laser light, and a light scanner reflecting and scanning the laser light in the detection chamber. The controller includes a phase sensitive detector electrically connected to the light sensor. | 06-18-2009 |
20090180119 | MULTI-COLOR CAVITY RINGDOWN BASED DETECTION METHOD AND APPARATUS - A multi-color cavity ringdown based spectrometer is housed in a light tight enclosure to detect the presence of trace quantities of gas phase molecules emanating from explosives, drugs, or hazardous materials being transported through the enclosure or compounds contained in a patient's breath. A method is also disclosed for detecting gas phase molecules emanating from explosives, drugs, hazardous materials, or a patient's breath. | 07-16-2009 |
20090195780 | Optical arrangement for determining the concentration of a substance in a fluid - An arrangement for determining concentration of substances in a fluid comprising a light source ( | 08-06-2009 |
20090201507 | Wavelength modulation spectroscopy method and system - A method and system for measuring the concentration of a gas component in a measuring gas a provided. The wavelength of a light source is modulated with a modulation signal at a modulation frequency, while the wavelength is swept over an interaction feature of a sample. The intensity of the light source is further modulated at a wavelength outside the interaction feature with a burst signal, where an N-th harmonic of the burst frequency coincides with an M-th harmonic of the modulation frequency. The light is passed to the sample and thereafter to a detector. The detector output is demodulated at the M-th harmonic, and the demodulated detector output is normalized by calculating the ratio between a demodulated detector output portion derived from the light modulated with the modulation signal and another demodulated detector output portion derived from the light modulated with the burst signal. | 08-13-2009 |
20090207413 | OPTICAL METHODS AND SYSTEMS FOR DETECTING A CONSTITUENT IN A GAS CONTAINING OXYGEN IN HARSH ENVIRONMENTS - A method for detecting a gas phase constituent such as carbon monoxide, nitrogen dioxide, hydrogen, or hydrocarbons in a gas comprising oxygen such as air, includes providing a sensing material or film having a metal embedded in a catalytically active matrix such as gold embedded in a yttria stabilized zirconia (YSZ) matrix. The method may include annealing the sensing material at about 900° C., exposing the sensing material and gas to a temperature above 400° C., projecting light onto the sensing material, and detecting a change in the absorption spectrum of the sensing material due to the exposure of the sensing material to the gas in air at the temperature which causes a chemical reaction in the sensing material compared to the absorption spectrum of the sensing material in the absence of the gas. Systems employing such a method are also disclosed. | 08-20-2009 |
20090213380 | GAS ANALYZER SYSTEM - A gas analyzer system includes an optical source, an optical filter assembly, a controller, and an analyzer. The optical source generates an optical signal. The optical filter assembly includes different optical filters in which to filter the optical signal. During operation, the controller selects sequential application of each of the different optical filters in a path of the optical signal to modulate the optical signal using different frequency bands of optical energy. The modulated optical signal passes through an unknown sample. Based on absorption of the optical signal by the sample gas at different frequencies, the optical analyzer detects which types of multiple different gases are present in the sample. | 08-27-2009 |
20090231588 | OPTICAL GAS DETECTION - The present invention provides a transmitter unit for an open path gas detector for detecting a target gas and comprises: a radiation transmitter, e.g. a tuneable laser diode, capable of emitting radiation at a wavelength absorbed by the target gas, and a radiation deflector, having a deflecting part and a non-deflecting part, e.g. a mirror having a non-reflective part. The deflecting part and the non-deflecting part are located in the path of the radiation emitted by the transmitter and the non-deflecting part does not deflect the said radiation emitted by the transmitter or does so to a different extent than the deflecting part. In this way, the beam has a core in shadow that can be used to align the beam with a receiver unit. The radiation deflector is preferably a mirror having a reflective surface for reflecting radiation emitted by the transmitter and a non-reflective part that does not reflect the said radiation emitted by the transmitter or does so to a lesser extent that the reflecting surface. The non-reflective part is preferably transparent so that it allows radiation to pass through it, which can be used to measure the wavelength of the transmitter and, if necessary correct it. | 09-17-2009 |
20090231589 | Stable Metal/Conductive Polymer Composite Colloids and Methods for Making and Using the Same - Stable metal/conductive polymer composite colloids and methods for making the same are provided. The subject colloids find use in a variety of different applications, including analyte detection applications. Also provided are kits that include the subject colloids. | 09-17-2009 |
20090237667 | Particle density measuring probe and particle density measuring equipment - Disclosed is a particle density measuring probe for measuring the density of atoms or molecules in a plasma atmosphere by absorption spectroscopy. The probe has a cylindrical light guiding member provided in the plasma atmosphere. At the front end of the light guiding member, there is provided a reflection plate for reflecting light that has propagated through the cylindrical light guiding member. Behind the reflection plate, in a cross section perpendicular to the longitudinal direction of the light guiding member, a part devoid of a portion of wall surface is provided by a predetermined length in the longitudinal direction. A plasma introducing portion allows mutual contact between light passing through this part devoid of a portion of wall surface and atoms or molecules in the plasma atmosphere. The probe has a main body that guides light in an axial direction by total reflection by a side wall, and that is located behind the plasma introducing portion. | 09-24-2009 |
20090251700 | METHODS AND APPARATUS FOR NORMALIZING OPTICAL EMISSION SPECTRA - An arrangement for in-situ optical interrogation of plasma emission to quantitatively measure normalized optical emission spectra in a plasma chamber is provided. The arrangement includes a flash lamp and a set of quartz windows. The arrangement also includes a plurality of collimated optical assemblies, which is optically coupled to the set of quartz windows. The arrangement further includes a plurality of fiber optic bundles, which comprises at least an illumination fiber optic bundle, a collection fiber optic bundle, and a reference fiber optic bundle. The arrangement more over includes a multi-channel spectrometer, which is configured with at least a signal channel and a reference channel. The signal channel is optically coupled to at least the flash lamp, the set of quartz windows, the set of collimated optical assemblies, the illuminated fiber optic bundle, and the collection fiber optic bundle to measure a first signal. | 10-08-2009 |
20090268204 | OPTICAL ABSORPTION GAS ANALYSER - An optical absorption gas analyser for determining the concentration of a target gas in a sample is disclosed. The analyser comprises a chamber for containing the sample in use; a radiation source assembly arranged to emit radiation into the chamber; a first radiation detector assembly arranged to detect radiation transmitted along a first optical path through the chamber and a second radiation detector assembly arranged to detect radiation transmitted along a second optical path through the chamber, wherein the length of the second optical path which the sample can intercept is shorter than that of the first optical path. The analyser further comprises a processor adapted to generate a sensing signal S | 10-29-2009 |
20090273785 | ELECTRIC GATED INTEGRATOR DETECTION METHOD & DEVICE THEREOF - A cavity ring down system is optimized to precisely measure trace gases or particles in an air sample by using time sampling detection and multiple-sample averaging resulting in a high signal-to-noise ratio. In one embodiment, a cavity ring down system is programmed to measure the rise time and the fall time of the light level in an optical cavity. The cavity ring down system is programmed to integrate a plurality of sample portions during a rise time and a plurality of sample portions during a fall time (in alternate intervals) to obtain a time constant with no sample present and a time constant with sample present. The measurements are used to calculate trace gases in the air sample. | 11-05-2009 |
20090279094 | GAS-MEASURING ARRANGEMENT WITH AN OPEN OPTICAL MEASURING SECTION - A gas-measuring arrangement ( | 11-12-2009 |
20090284745 | GAS CELL USING TWO PARABOLIC CONCAVE MIRRORS AND METHOD OF PRODUCING GAS SENSOR USING THE SAME - Disclosed are an optical cavity and a gas cell fabricated by using the same. The optical cavity is the most important element of the gas cell, which measures density of gas using light absorption characteristics of the gas. The gas cell includes two quadratic parabolic concave mirrors, which share a focus and an optical axis. Light incident toward the focus is reflected from the two quadratic parabolic concave mirrors so that the light may travel in parallel to the optical axis and the light incident in parallel to the optical axis may pass through the focus while being reflected from the two quadratic parabolic concave mirrors. The optical cavity includes two quadratic parabolic concave mirrors, which are aligned in opposition to each other with different focus lengths such that they share the focus using the reflection characteristics thereof. | 11-19-2009 |
20090303486 | LIGHT SOURCE AND GAS MEASURING DEVICE - A light source is provided that realizes a single spectral linewidth having a half value width of 1 MHz or less and that is not influenced by the ambient temperature. A light source includes first laser ( | 12-10-2009 |
20090303487 | TUNABLE PHOTONIC CAVITIES FOR IN-SITU SPECTROSCOPIC TRACE GAS DETECTION - Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O | 12-10-2009 |
20090323068 | Gas Analyzer and Gas Analyzing Method - A gas analyzer capable of measuring a concentration of a gas component in gas at sensor units provided at a plurality of positions in real time by decreasing the number of signals input from the sensor units to an analyzer so as to reduce a data amount input to the analyzer and a gas analyzing method. The gas analyzing method includes the steps of: demultiplexing laser light by a demultiplexer into measurement laser light and reference laser light; letting the measurement laser light pass through gas to be received by a photoreceiver; finding an absorption spectrum absorbed by a gas component in the gas based on a light intensity of the received measurement laser light and of the reference laser light; and analyzing the absorption spectrum to measure a concentration of the gas component. | 12-31-2009 |
20100002235 | LASER DIODE ARRANGEMENTS AND METHOD FOR GAS DETECTION - A gas detection laser diode device and gas detection unit including the gas detection laser diode device having a hermetically sealed housing with electrical connectors at the bottom and a window, and inside the housing a laser diode and thermistor mounted on one stage of a thermo element. The thermo element is connected with the other stage to the base of the housing. Collimating means are arranged in the laser beam between the laser diode and the window. The window is tilted in respect to the axis of the laser beam such, that the ordinary reflection of the laser beam is steered off the laser beam axis and at least does not impinge on the laser diode. Preferably the collimating means and the laser diode are mounted on a same surface for holding them on the same temperature. The new device allows the detection of toxic gases with reduced detection limits over the prior art. The arrangement further claims a method to achieve reduced detection limits for gases. | 01-07-2010 |
20100007890 | ENERGY-EFFICIENT OPERATING METHOD FOR A GAS SENSOR - Energy-efficient operating method for a gas sensor. In a method for determining a gas concentration with the aid of a gas sensor having a radiation source, the radiation source
| 01-14-2010 |
20100014086 | CAVITY ENHANCED PHOTO ACOUSTIC GAS SENSOR - Devices and method for photo acoustically detecting a gas are disclosed. In one illustrative embodiment, a gas sensor includes an optical cavity defined by one or more optical segments separating at least two mirrors. A photo acoustic cell, configured to receive a gas from the surrounding environment, is provided at least partially within one or more of the optical segments of the optical cavity. One of the at least two mirrors is configured to couple electromagnetic radiation into the optical cavity and to interact with the gas. A detector is acoustically coupled to the photo acoustic cell to detect absorption of the electromagnetic radiation by the gas. | 01-21-2010 |
20100020326 | BACKGROUND ACOUSTIC SIGNAL SUPPRESSION IN PHOTOACOUSTIC DETECTOR - The present invention relates to a photo-acoustic device ( | 01-28-2010 |
20100027015 | Optical sensor - The invention relates to an optical device with at least one radiation source ( | 02-04-2010 |
20100027016 | Ozone Monitor with Gas-Phase Ozone Scrubber - The present invention provides a means of greatly reducing or eliminating the interferences of UV-absorbing compounds, mercury, water vapor and particulates in the UV absorbance measurement of ozone by replacing the internal solid-phase ozone scrubber with a gas-phase scrubber. Reagent gases well suited as a gas-phase scrubber of ozone include nitric oxide and bromine atoms. Nitric oxide may be supplied by a gas cylinder or by photolysis of either N | 02-04-2010 |
20100053621 | Apparatus and method for measuring the concentration of gases in a sterilization chamber - Accurate measurements of the concentration of a sterilant in a sterilization chamber are provided through the use of a light source, a first detector that receives light from the light source that has not passed through the sterilization chamber and a detector that receives light from the light source that has passed through the sterilization chamber. The light contains wavelengths known to be absorbed by the sterilant. A controller receives and processes signals received from the two detectors to cancel changes in the output of the light source and then apply a modified Beer-Lambert law to determine the concentration of the sterilant gas. | 03-04-2010 |
20100067012 | METHOD FOR THE AUTOMATED MEASUREMENT OF GAS PRESSURE AND CONCENTRATION INSIDE SEALED CONTAINERS - The device comprises a laser source which emits a beam of a predetermined wavelength towards an optically transparent closed container and detectors arranged to detect the laser beam which is attenuated by the gas absorption. The detectors provide the first data of absorption representative of a first absorption spectrum of the gas including distorted absorption lines and noise. The invention implements a method of calculation aimed at receiving and elaborating said first data. The output of the operation are parameters that represent a second absorption spectrum free of noise and distortion in the absorption lines. From these parameters we are able to determine the gas pressure and concentration in the container. | 03-18-2010 |
20100067013 | MULTI MODE FIBRE PERTURBER - An optical arrangement comprising a multi-mode fiber ( | 03-18-2010 |
20100067014 | PORTAL - A portal or gateway that includes a detector comprising a chirped laser; an open optical sample cell and a detector for detecting light from the chirped laser that has passed through the cell. The chirped laser may be a quantum cascade laser. | 03-18-2010 |
20100073679 | OPTICAL MEASURING HEAD FOR A DUCT GAS MONITORING SYSTEM - An optical measuring head for a duct gas monitoring system is provided, the measuring head being mounted to an outer wall of a gas duct through which the duct gas flows. The measuring head has a longitudinal chamber which at one end opens into the gas duct and at the other end contains an active optical component. The chamber is flushed with a purge gas which, after flushing the chamber, is discharged into the gas duct. A gas line is installed between the chamber and interior of the gas duct at a point upstream of a discharge point and the purge gas is a branch-off of the duct gas. | 03-25-2010 |
20100079760 | Multipass Optical Device And Process For Gas And Analyte Determination - A torus multipass optical device and method are described that provide for trace level determination of gases and gas-phase analytes. The torus device includes an optical cavity defined by at least one ring mirror. The mirror delivers optical power in at least a radial and axial direction and propagates light in a multipass optical path of a predefined path length. | 04-01-2010 |
20100079761 | FLUID ANALYSER SYSTEMS - Fluid analyzer systems are provided which can detect a multitude of fluids in a sample to a very high level of accuracy which includes the detection of the presence of very small amounts of fluids. The results are both qualitative and quantitative. The systems consist of a receptacle which is filled with the fluid sample to be analysed which is placed into a consistent light condition environment where its temperature is measured. Under a predetermined time duration, Charge-Coupled Device (CCD) detector(s) receive by absorbance, radiation from the fluid sample at known wavelengths and are matched against a databank of known wavelengths of fluids. Matching wavelengths within a pre-defined tolerance will determine whether an individual fluid is present or not. | 04-01-2010 |
20100091290 | SURFACE PREPARATION METHOD FOR ELIMINATING OPTICAL INTERFERENCE FROM ABSORPTION CAVITY MIRRORS - Optical mirror elements having a diffusive backing, methods for making such optical mirror elements, and devices incorporating such optical mirror elements. The optical mirror element typically includes a first, reflective surface, and a second surface having uneven or granular features, wherein light passing through the first surface is diffusely reflected by the uneven or granular features of the second surface. The optical mirror elements are particularly well suited for use in Herriott Cell arrangements in gas analyzers. | 04-15-2010 |
20100110437 | GAS ANALYZER - Gas analyzer systems and methods for measuring concentrations of gasses and in particular dry mole fraction of components of a gas. The systems and method allow for rapid measurement of the gas density and/or dry mole fraction of gases for a number of environmental monitoring applications, including high speed flux measurements. A novel coupling design allows for tool-free removal of a cell enclosing a flow path to enable in field cleaning of optical components. | 05-06-2010 |
20100110438 | HYBRID GAS ANALYZER - Gas analyzer systems and methods for measuring concentrations of gasses and in particular dry mole fraction of components of a gas. The systems and method allow for rapid measurement of the gas density and/or dry mole fraction of gases for a number of environmental monitoring applications, including high speed flux measurements. A novel coupling design allows for tool-free removal of a cell enclosing a flow path to enable in field cleaning of optical components and to enable re-configuration between open- and closed-path analyzer configurations. | 05-06-2010 |
20100149538 | OPTICAL MEASURING CELL AND GAS MONITOR - An optical measuring cell for measuring gas absorption with a light source for introducing light into a measuring volume and a light sensor located approximately opposite the light source in the direction of light propagation and relative to the measuring volume for receiving light that is guided through the measuring volume is provided. The concentration of one or multiple target gases in the measuring volume is detected by an evaluation unit. The measuring volume is constituted by an internal volume of a hollow fiber having an internal diameter less than 1 mm. | 06-17-2010 |
20100188661 | Multiple Beam Wide Band CRDS Cavity Sensor and Detector - A common multi-gas ring down detector incorporates a cavity that has a piezoelectric mirror and at least two displaced mirrors to define two different transit paths in the cavity. The two paths intersect at the piezoelectric mirror at different angles. Two different laser beams having first and second different wavelengths, can be coupled to the cavity, at different times, by driving the piezoelectric mirror axially. Beam outputs can be evaluated to establish the presence of selected gases in the cavity. | 07-29-2010 |
20100201989 | Reactive Gas Detection In Complex Backgrounds - A differential absorption spectrum for a reactive gas in a gas mixture can be generated for sample absorption data by subtracting background absorption data set from the sample absorption data. The background absorption data can be characteristic of absorption characteristics of the background composition in a laser light scan range that includes a target wavelength. The differential absorption spectrum can be converted to a measured concentration of the reactive gas using calibration data. A determination can be made whether the background composition has substantially changed relative to the background absorption data, and new background absorption data can be used if the background composition has substantially changed. Related systems, apparatus, methods, and/or articles are also described. | 08-12-2010 |
20100208268 | GAS ANALYZER - A gas analyzer is disclosed herein. The gas analyzer includes a light source for transmitting a radiation and a sampling chamber having a first opening for receiving a gas sample, a second opening for removing the gas sample, at least one optical window towards the radiation allowing the radiation to traverse the gas sample and also having a first wall and a second wall opposite to the first wall, the first wall and second wall edging the sampling chamber to guide the gas sample from the first opening to the second opening. The gas analyzer also includes at least one detector for receiving the radiation after traversing the gas sample. The first wall and the second wall of the sampling chamber is curved and at a predetermined distance from each other, an overall shape of the second wall being mostly similar to the first wall. | 08-19-2010 |
20100225917 | GAS CONCENTRATION-MEASURING DEVICE - A gas concentration-measuring device makes it possible to measure gas components in a gas sample. An interferometer, based on a dual-band Fabry-Perot interferometer ( | 09-09-2010 |
20100238446 | OPTICAL GAS-ANALYSIS SYSTEM AND A GAS FLOW CELL - A gas flow cell for an optical gas-analysis system encompasses a T-shaped configuration, the configuration is implemented by a single sample-gas introduction port provided at a location of a substantial center in a long axis direction, and the single sample-gas introduction port is aligned along a direction orthogonal to the long axis direction. | 09-23-2010 |
20100238447 | MATRIX FOR DETECTION/ANALYSIS OF RESIDUES - Provided is a device and method for detecting the presence of a material in a gaseous medium, including a reaction assembly including at least one detection unit including a matrix adapted for exposure to the gaseous medium, such that at least part of the gaseous medium comes into contact with the matrix; the matrix being configured for capturing a gas-borne particle of a material carried by the gaseous medium, and for permitting a liquid or solute reagent to come in contact with the matrix, thereby enabling said liquid reagent to react with said particle to yield an optically altered reaction product. | 09-23-2010 |
20100259756 | SENSOR HEAD FOR A DRY POWDER AGENT - A sensor head for a dry powder agent according to an exemplary aspect of the present disclosure includes a housing defined along an axis along which light is communicated, the housing defines a multiple of apertures transverse to the axis, the multiple of apertures in communication with a measurement volume along the axis. A mirror is within the housing to reflect the light through the measurement volume. | 10-14-2010 |
20100277737 | CAVITY ENHANCED TRACE GAS DETECTION GRADIOMETER - A method and device for measuring trace levels of particles in an air sample is described. A device operating in a gradiometer configuration with two cavities built from a monolithic structure and utilizing a single probe laser, provides common mode subtraction of acoustic, vibrational, laser intensity and other noise sources, which allows sensitivity more closely approaching the quantum limit. Differential measurements between the two cavities occur simultaneously, which reduces errors due to cavity drift. Absorptive gradiometry can therefore provide noise immune detection for trace gasses, including broad linewidth absorbers where frequency-noise immune schemes are not practical. Differential measurements can be used for background subtraction, sensing vapor plume gradients and determining vapor plume propagation direction. | 11-04-2010 |
20100284011 | Making and using Doppler shifted measurements in gas filter correlation radiometry - A method is provided for making and using measurements in gas filter correlation radiometry. A Gas Filter Correlation Radiometer (GFCR) instrument is moved in a region of space surrounding a heavenly body. An atmosphere of the heavenly body is viewed with the GFCR instrument along a first view direction with the atmosphere and the GFCR instrument experiencing a relative velocity of approximately zero. The atmosphere is also viewed with the GFCR instrument along at least one second view direction that is angularly separated from the first view direction such that atmospheric spectra associated with the second view direction appears Doppler shifted with respect to atmospheric spectra associated with the first view direction. A gas filter correlation radiometry application is performed using the measurement signals obtained from the different view directions. | 11-11-2010 |
20100302546 | OPTICAL MEASUREMENT OF SAMPLES - A portable device includes a base unit, an extension, and a mirror. The base unit includes a light source, a light detector, and at least one window through which light exits from, and is received by, the base unit. The extension is configured, during use, to be attached to the base unit and to extend from the at least one window, in a direction away from the base unit, the extension defining at least a portion of a sample volume in fluid communication with gases substantially surrounding one or more of the extension and the base unit. The mirror is attached to the extension at a distance from the at least one window. An optical path is defined between the mirror and the at least one window such that light from the light source moves through the sample volume along the optical path, and the mirror is aligned to reflect the light back to the at least one window for detection by the light detector. | 12-02-2010 |
20110013189 | Adjustable Interference Filter - The present invention relates to an adjustable interference filter, especially for use in gas detection with infrared light within a chosen range, comprising at least two essentially parallel reflective surfaces separated by a chosen distance defining a cavity delimited by the reflective surfaces between which the light may oscillate, and at least one of said surfaces being semitransparent for transmission of light to or from the cavity. The filter comprises a transparent material with a chosen thickness and having a high refractive index positioned in the cavity, and adjustable separation means for adjusting the cavity length between the reflecting surfaces, so as to obtain a cavity constituted by the transparent, high refractive index material and a an adjustable part. | 01-20-2011 |
20110090505 | Quantum Infrared Sensor and Quantum Infrared Gas Concentration Meter Using the Same - The present invention relates to a quantum infrared sensor and a gas concentration meter using the same, the quantum infrared sensor having a small and simple device shape and also being capable of performing stable measurement against disturbance changes such as changes in the flow amount and the temperature of gas to be measured. The quantum infrared sensor includes a pair of quantum infrared sensor elements, a pair of optical filters and a holding frame. The pair of optical filters is provided closer to an infrared light source than is the pair of quantum infrared sensor elements. The pair of optical filters is configured to selectively transmit infrared rays in specific different wavelength ranges, respectively. The pair of optical filters is housed in an upper level of the holding frame and provided while facing the pair of quantum infrared sensor elements through a pair of through holes, respectively. | 04-21-2011 |
20110134430 | METHOD FOR DETERMINING THE GAS QUALITY OF SYNTHESIS GAS - The invention relates to a method for determining the gas quality of a sample gas having the main components H | 06-09-2011 |
20110134431 | NON-DESTRUCTIVE INSPECTION DEVICE FOR OXYGEN CONCENTRATION IN BAG-SHAPED CONTAINER - A non-destructive inspection device for an oxygen concentration in a bag-shaped container includes: right and left affixing plates provided so as to be moved toward and away from the bag-shaped container; a laser emitting section for measuring an oxygen concentration that is provided on one of the affixing plates; and a laser receiving section on the other affixing plate, wherein the end faces of the emitting section and the receiving section have gas-filled chambers that include gas chambers with a constant length and are made of a translucent material. In the measurement of an oxygen concentration, the affixing plates are brought close to each other, the thickness of a gas phase portion is kept constant, and air is removed between the end faces of the emitting section and the receiving section and the surfaces of the container. | 06-09-2011 |
20110149288 | GAS MIXTURE MEASUREMENT SYSTEM AND METHODS THEREFOR - A system including at least one laser device extending a beam through an in-situ non-restrictive flow path of the gas mixture; and a measurer coupled to each laser device for obtaining a plurality of dynamic measurements over time of at least one species in the gas mixture. | 06-23-2011 |
20110149289 | APPARATUS FOR SENSING OF CHLORINE DIOXIDE - The instant invention provides apparatuses for measuring the level or concentration of chlorine dioxide gas in a sample and methods of using the same. One aspect of the invention provides an apparatus for measuring a concentration of a chlorine dioxide gas in a sample. The apparatus includes a light emitting diode (LED), a light sensor, and a flow path between the LED and the light sensor, and a filter configured to remove chlorine dioxide from a reference stream. The flow path is capable of containing a sample. The sensor is capable of measuring the level of chlorine dioxide in the sample and the reference stream. | 06-23-2011 |
20110199611 | Detector for cavity ring-down spectroscopy - A cavity ring-down spectroscope includes a ring-down cavity. A trigger detector is optically coupled within the ring-down cavity to generate a signal to indicate a desired radiation level in the ring-down cavity. A controller is coupled to the trigger detector to control light provided to the ring-down cavity. A ring-down time may then be measured. | 08-18-2011 |
20110222063 | APPARATUS FOR DETERMINING CONCENTRATION OF GASEOUS COMPONENT - A gaseous component concentration determination apparatus that can obtain a sufficiently large light detection value and determine a concentration of a target component in a desired section without using a laser emitter of a high laser intensity or a large light collector is provided. | 09-15-2011 |
20110228275 | FIBER OPTIC HYDROGEN PURITY SENSOR AND SYSTEM - A hydrogen purity sensing system includes a light source which provides an optical signal through a fiber optic cable. A hydrogen purity sensor is provided in the system which comprises a multilayered nanostructural film of high refractive index and low refractive index materials for receiving the optical signal. The system further includes a photodetector for receiving a reflected optical signal from the hydrogen purity sensor and a processing circuitry coupled to the photodetector for analyzing the reflected optical signal. | 09-22-2011 |
20110228276 | NITROGEN OXIDE SENSING ELEMENT, NITROGEN OXIDE SENSOR, NITROGEN OXIDE CONCENTRATION DETERMINATION DEVICE USING SAME, AND METHOD FOR DETERMINING NITROGEN OXIDE CONCENTRATION - The nitrogen oxide sensing element of the present invention is such that a sensing film ( | 09-22-2011 |
20110235041 | WIRELESS SENSOR SYSTEM FOR ENVIRONMENTAL MONITORING - A wireless sensor system is provided that utilizes reliable, small, inexpensive and low power-consuming sensor nodes for monitoring environmental parameters that can communicate through wireless transmitters to a base station. The sensor nodes preferably incorporate anti-biofouling protection, so as to withstand continuous field deployment in streams and/or riparian areas. | 09-29-2011 |
20110235042 | ARRANGEMENT ADAPTED FOR SPECTRAL ANALYSIS OF HIGH CONCENTRATIONS OF GAS - This invention comprises an arrangement adapted for spectral analysis having a transmitting means adapted for electromagnetic radiation, a delimited space, in the form of a cavity, serving as a measuring cell and intended to be capable of defining an optical measuring distance, a sensing means of said electromagnetic radiation passing said optical measuring distance from said transmitting means, and a unit at any rate connected to said sensing means performing the spectral analysis. Said sensing means for the electromagnetic radiation is opto-electrically adapted sensitive to the electromagnetic radiation, which is intended to fall within the spectral range whose chosen wavelength components or spectral elements are to become objects of an analysis in the unit performing the spectral analysis for determining in this unit, over calculations, the relative intensity of radiation of the spectral element. Said electromagnetic radiation is adapted to pass the space in which a sample of gas exists. Said optical measuring distance within the space is chosen to be very short, at any rate shorter than 15 millimeters, and therefore the sample of gas must exhibit a high concentration with regard to the portion of gas, which is being evaluated. | 09-29-2011 |
20110261359 | GAS MONITORING DEVICE, COMBUSTION STATE MONITORING DEVICE, SECULAR CHANGE MONITORING DEVICE, AND IMPURITY CONCENTRATION MONITORING DEVICE - [Object] To provide a gas monitoring device etc. with which gas monitoring can be preformed at high sensitivity by using an InP-based photodiode in which a dark current is reduced without a cooling mechanism and the sensitivity is extended to a wavelength of 1.8 μm or more. | 10-27-2011 |
20110273713 | CAVITY ENHANCED TRACE GAS DETECTION GRADIOMETER - A method and device for measuring trace levels of particles in an air sample is described. A device operating in a gradiometer configuration with two cavities built from a monolithic structure and utilizing a single probe laser, provides common mode subtraction of acoustic, vibrational, laser intensity and other noise sources, which allows sensitivity more closely approaching the quantum limit. Differential measurements between the two cavities occur simultaneously, which reduces errors due to cavity drift. Absorptive gradiometry can therefore provide noise immune detection for trace gasses, including broad linewidth absorbers where frequency-noise immune schemes are not practical. Differential measurements can be used for background subtraction, sensing vapor plum gradients and determining vapor plume propagation direction. | 11-10-2011 |
20110285998 | ADSORPTIVE GAS ANALYZER - This invention makes it possible to measure a concentration of a gas component having the adsorption even thought the concentration is low, and to improve a response speed of the measurement of the concentration, and comprises a body that has an introduction port to introduce a sample gas into a measurement cell, a laser light irradiation part that irradiates the laser light on the measurement cell, a heating pipe that applies heat to the sample gas introduced into the introduction port, a flow rate limit part that makes the sample gas at a negative pressure and that introduces the negative-pressurized heated sample gas into the body, and a negative pressure pump that keeps inside of the measurement cell and a flow channel from a downstream side of the flow rate limit part to the measurement cell at the negative pressure. | 11-24-2011 |
20110317164 | MULTIPLE WAVELENGTH CAVITY RING DOWN GAS SENSOR - An illustrative cavity ring down gas sensor includes an optical cavity for receiving a gas to be detected and at least two electromagnetic radiation sources. The first electromagnetic radiation source may emit a first beam of light having a wavelength corresponding to an absorption wavelength of the gas to be detected, and the second electromagnetic radiation source may emit a second beam of light having a second wavelength that is off of an absorption wavelength of the gas to be detected. The first beam of light may detect a cavity ring down time decay, which is related to the concentration of the gas to be detected. The second beam of light may be used to detect a baseline cavity ring down time decay, which may be used to help increase the accuracy of the sensor by, for example, helping to compensate the concentration of the gas detected by the first beam of light for sensor variations caused by, for example, sensor age, temperature or pressure changes, and/or other conditions. | 12-29-2011 |
20110317165 | BEAM INTENSITY DETECTION IN A CAVITY RING DOWN SENSOR - A cavity ring down gas sensor is disclosed. In one illustrative embodiment, the cavity ring down gas sensor includes an electromagnetic radiation source (e.g. laser) configured to emit an input beam of light having a wavelength corresponding to an absorption line of a gas to be detected. The input beam of light may be coupled into an optical cavity to amplify an internal beam of light that is reflected about the optical cavity. An optical element may be disposed in the optical cavity at an angled close to, but not at, the Brewster's angle to reflect a relatively small portion of the internal beam of light in the optical cavity to a detector for determining the intensity of the internal beam of light in the optical cavity. When a specified light intensity is reached in the optical cavity, the input beam of light may be shut off or otherwise prevented from entering the optical cavity, and a cavity ring down time decay may be measured. The cavity ring down time decay may be related to the gas concentration of a gas to be detected in the optical cavity. | 12-29-2011 |
20120002205 | OPTOELECTRONIC APPARATUS FOR GAS ANALYSIS AND METHOD - The invention relates to an improved optoelectronic apparatus for optical gas analysis by means of which the interfering influence of the particles contained in the gas is reduced with regard to the intended measurement. For this purpose the optoelectronic apparatus in accordance with the invention has a light transmitter and a light receiver which define an optical measurement path including a measurement volume between one another. The received signals of the light receiver can be evaluated in an evaluation unit, to ultimately obtain the desired information therefrom, for example, the concentration of a specific gas content. In accordance with the invention an ionizer is further provided which is arranged upstream of the optical measurement path. The ionizer causes an ionization of the undesirable particles, i.e. e.g. the dust particles, smoke particles or such like aerosols so that the ionized particles can be deflected by electric fields or also magnetic fields by means of an ion acceleration apparatus. In this respect the ion acceleration apparatus and/or its electromagnetic fields is/are aligned such that the generated ions experience a deflection to be able to flow past the measurement volume. | 01-05-2012 |
20120019829 | Oxygen Concentration Sensors and Methods of Rapidly Measuring the Concentration of Oxygen in Fluids - Provided are sensors and methods of measuring the oxygen concentration of a fluid. An excitation light source is in optical communication with a transducer for transmitting an excitation light that is at least partially absorbed by the transducer. The transducer has a property of photoluminescence, and enters a higher energy state by at least partially absorbing the excitation light and enters a lower energy state through radiation of emitted light, thus producing spectral indicia. A light detection system, which is also in optical communication with the transducer, processes the spectral indicia to determine the concentration of oxygen in the fluid. | 01-26-2012 |
20120057160 | GAS ANALYZER - Gas analyzer systems and methods for determining gas flux in a short intake tube configuration without using any Webb-Pearman-Leuning density correction. Gas analyzer systems and methods for measuring concentrations of gasses and in particular dry mole fraction of components of a gas. The systems and method allow for rapid measurement of the gas density and/or dry mole fraction of gases for a number of environmental monitoring applications, including high speed flux measurements. A novel coupling design allows for tool-free removal of a cell enclosing a flow path to enable in field cleaning of optical components. | 03-08-2012 |
20120057161 | OPTICAL GAS AND/OR PARTICULATE SENSORS - A gas or particulate sensor is provided for the detection of at least two target gases and/or particulates. The sensor comprises: a chamber for containing a gas sample under test; a first optical measurement channel configured for the detection of a first target gas or particulate within the gas sample, and a second optical measurement channel configured for the detection of a second target gas or particulate within the gas sample, each optical measurement channel comprising a respective optopair which comprises a radiation source adapted to emit radiation and a radiation detector adapted to output a signal in response to detected radiation; and focusing optics able to form an image of an object. At least the first optical measurement channel is configured such that the radiation detector of the respective optopair receives via the focusing optics an image of the corresponding radiation source, whereby the radiation received from the radiation source by the radiation detector is modified by the first target gas or particulate present in the gas sample such that the output signal from the radiation detector provides information as to the presence of the first target gas or particulate in the gas sample. | 03-08-2012 |
20120062895 | Method and Apparatus for the Detection of Trace Gas Species Using Multiple Line Integrated Absorption Spectroscopy - An apparatus and method are used to enhance the sensitivity of a spectrometer (sensor) for trace gas species detection by employing an external cavity continuously tunable CW quantum cascade laser and integrating the absorption spectra across multiple lines of the species. With this method the absorption spectra of NO | 03-15-2012 |
20120062896 | SYSTEMS AND METHODS FOR PERMEABILITY RATE TESTING OF BARRIER FILMS - The present invention is directed to systems and methods which utilize a cavity ring-down spectroscopy (CRDS) technique implemented for the measurements of vapor transmission rate. In one embodiment, the vapor content to be measured is contained within an optical cavity. Light is then injected into the cavity up to a threshold level and the delay time of the injected light is measured. When the wavelength of the injected light is resonant with an absorption feature of the vapor the decay time increases linearly as a function of vapor content. In this manner, vapor content causes a longer delay time and thus the amount of vapor passing through the film (film permeation rate) can be determined in real-time. | 03-15-2012 |
20120075632 | APPARATUS AND METHOD FOR MEASURING SO3 AND H2SO4 CONCENTRATIONS IN GASES - The invention relates to an apparatus for the continuous measurement of SO | 03-29-2012 |
20120099109 | DYNAMIC RECONSTRUCTION OF A CALIBRATION STATE OF AN ABSORPTION SPECTROMETER - A reference harmonic absorption curve of a laser absorption spectrometer, which can include a tunable or scannable laser light source and a detector, can have a reference curve shape and can include a first, second, or higher order harmonic signal of a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. The reference harmonic absorption curve can have been determined for the laser absorption spectrometer in a known or calibrated state. A test harmonic absorption curve having a test curve shape is compared with the reference harmonic absorption curve to detect a difference between the test curve shape and the reference curve shape that exceeds a predefined allowed deviation and therefore indicates a change in an output of the laser light source relative to the known or calibrated state. One or more operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape. | 04-26-2012 |
20120113426 | Method and Apparatus for Trace Gas Detection Using Integrated Wavelength Modulated Spectra Across Multiple Lines - An apparatus and technique are invented that enhance the sensitivity of a spectrometer for trace gas detection by employing wavelength modulation spectroscopy (WMS) and integrating the absolute value of the recorded spectra across multiple absorption lines (features) of the species. The sensitivity is further enhanced by conducting WMS with large modulation depths. This technique is implemented using a continuously tunable external cavity CW quantum cascade laser to record the second harmonic wavelength modulated spectra of NO | 05-10-2012 |
20120120397 | HYBRID GAS ANALYZER WITH THERMALLY INSULATED FLOW CELL - Gas analyzer systems and methods for measuring concentrations of gases and in particular dry mole fraction of components of a gas. The systems and methods allow for rapid measurement of the gas density and/or dry mole fraction of gases for a number of environmental monitoring applications, including high speed flux measurements. A novel coupling design allows for tool-free removal of a cell enclosing a flow path to enable infield cleaning of optical components and to enable re-configuration between open- and closed-path analyzer configurations. In closed path configurations, the sample flow path is thermally isolated from the remainder of the gas analyzer to provide more accurate temperature measurements. Composite plastic/metal sample cells are presented with achieve this thermal isolation without compromising analyzer performance. | 05-17-2012 |
20120120398 | MICRO-CAVITY GAS AND VAPOR SENSORS AND DETECTION METHODS - Micro-cavity gas or vapor sensors and gas or vapor detection methods. Optical energy is introduced into a resonant micro-cavity having a deformable coating such as a polymer. The coating swells or expands when it is exposed to or absorbs a gas or vapor, thereby changing the resonant wavelength of optical energy circulating within the micro-cavity/coating. Expansion or swelling of the coating may be reversible such that it contracts when gas or vapor diffuses from the coating. The coating deformation and/or a change of one or more optical properties of the optical energy circulating within the micro-cavity are used to detect the presence of the gas or vapor or molecules or particulates thereof | 05-17-2012 |
20120133942 | GAS SAMPLING DEVICE - The invention relates to a gas sampling device comprising a probe for sampling gas, an exploiting device for exploiting the gases sampled, a pipe for transmitting the gases sampled by the probe to the exploiting device, and means for lowering the pressure of the gases sampled in the pipe, to lower the dew point of the gases sampled, the means for lowering the pressure comprising an expansion nozzle arranged in the probe and communicating with the pipe, and a suction device for sucking the gases sampled in the pipe through the exploiting device. Application of the invention to the analysis of hot gases loaded with water vapor. | 05-31-2012 |
20120140229 | Apparatus And Method For Non-Intrusive Assessment Of Gas In Packages - A method and apparatus are disclosed for assessment of a sealed package. Light is emitted from a narrow-band laser source towards said package from outside of said package. An absorption signal of said light scattered in said package is measured, wherein said absorption is caused by said at least one gas when said light is scattered and travels in said sealed package. Measuring is made outside of said package, whereby said assessment is non-intrusive with regard to said package. It is determined if a deviation exists from a predetermined, expected gas composition and/or concentration of said at least one gas within said sealed package based on said measured absorption signal. Thus sealing of said package for said gas is detected. | 06-07-2012 |
20120147375 | DRYNESS FRACTION MEASURING DEVICE AND DRYNESS FRACTION MEASURING METHOD - The provision of a dryness fraction measuring device includes a light-emitting body for irradiating moist steam with light of a plurality of wavelengths; a light-receiving element for receiving light of the plurality of wavelengths that has traversed the moist steam; and a dryness fraction calculating device for calculating the dryness fraction of the moist steam based on the received light intensity at each of the plurality of wavelengths. | 06-14-2012 |
20120154813 | SYSTEM AND METHOD FOR REAL-TIME MEASUREMENT OF EQUIVALENCE RATIO OF GAS FUEL MIXTURE - A real-time monitoring of an equivalence ratio of a gas-fuel mixture of a gas turbine engine is provided. The system includes multiple optical probes arranged on a plurality of fuel nozzles for transmitting laser beams directly through a gas-fuel mixture or indirectly by reflecting the laser beams from a surface of a centerbody or burner tube of the fuel nozzle. The system also includes one or more detectors to measure the transmitted laser beams from the multiple optical probes. Further, the system includes a data acquisition subsystem for acquiring and processing signals from the one or more detectors to determine the equivalence ratio of the gas-fuel mixture of the nozzle. | 06-21-2012 |
20120162655 | GAS CONCENTRATION MEASURING APPARATUS - A gas concentration measuring apparatus for measuring a concentration of a measurement target substance contained in a sample gas includes a light source unit in which a light source is arranged, and a sensor unit that is arranged on an optical path of the light source. The sensor unit includes a concentration measuring sensor configured to receive light from the light source after the light has passed through a sample cell unit and measure a concentration of the measurement target substance. The apparatus further includes an introducing device configured to introduce the sample gas to a vicinity of concentration measuring sensor. Therefore, a vicinity of the concentration measuring sensor is filled with an atmosphere of the sample gas so that a concentration of a measurement target substance contained in the sample gas is measured stably and accurately regardless of fluctuations in an ambient atmosphere of a measuring environment. | 06-28-2012 |
20120170043 | Sensitive and Compact Sensor Employing a Visible Diode Laser and A High Finesse Optical Cavity for Trace Gas Detection (NO2) - A sensor with high sensitivity and selectivity for the detection of NO | 07-05-2012 |
20120176621 | GAS MIGRATION TEST METHOD - A method for performing a gas migration test in a test area surrounding a ground surface end of a wellbore, including providing an optical gas detector configured to selectively detect methane, establishing a pattern of test points including a plurality of test points at a ground surface in the test area, and using the optical gas detector at each of the test points to obtain an indication of methane concentration at each of the test points. | 07-12-2012 |
20120182555 | GAS DETECTOR FOR ATMOSPHERIC SPECIES DETECTION - A gas detector includes a receiver configured to receive light from a light source through gas, the light source having a bandwidth on the order of an absorption linewidth of the gas, the receiver including at least a first etalon having a transmission bandwidth on the order of the absorption linewidth of the gas, the transmission bandwidth of the first etalon being substantially smaller than the bandwidth of the light source. The gas detector further includes a first detector for detecting light transmitted through the first etalon, a second detector for detecting light reflected from the first etalon, and a processor that determines the quantity of gas based on the detected transmitted and reflected light. The gas detector can further include a second etalon with a transmission bandwidth approximately equal and adjacent to the transmission bandwidth of the first etalon. Alternatively, the gas detector can include a beam separator that separates the light from the light source into a first beam and a second beam, with a small deflection angle between the first beam and the second beam, thereby modifying the effective thickness of a single optical element for each beam and forming the first and second etalon in the optical element. | 07-19-2012 |
20120188548 | Gas filter correlation radiometry method and system using a dissimilar gas to detect a target gas - A Gas Filter Correlation Radiometer (GFCR) system and methods of using same are provided. The system's GFCR instrument includes a gas cell. A gas in the gas cell has a chemical composition that is different than that of a target gas in an atmospheric region being examined by the GFCR instrument. The gas included in the gas cell also possesses light absorption features with a portion thereof being at least partially correlated with light absorption features of the target gas. Measurement viewing(s) made with the GFCR instrument provide for at least one positive correlation for the portion of the at least partially correlated features so that the GFCR instrument generates a signal indicative thereof used in a gas filter correlation radiometry application. | 07-26-2012 |
20120188549 | Gas Concentration Measurement Device - A gas concentration measurement device which utilizes a TDLAS measurement method, and in which the phase-sensitive detection can be performed by digital processing using an integer-arithmetic device, is provided. In the gas concentration measurement device according to the present invention, AC components corresponding to integer multiples of a modulation frequency f contained in an input signal are removed by taking a moving average of data obtained from an output signal of a multiplier | 07-26-2012 |
20120188550 | Gas Concentration Measurement Device - In a gas concentration measurement device using a TDLAS measurement, the distortion of peak waves originating from absorption by target components is prevented by reducing a higher-frequency noise signal which occurs in an output of a digital phase-sensitive detection process at the moment of switching the wavelength in a saw-tooth-formed wavelength-sweep operation. A modulating current having a predetermined frequency for component detection and a drive current having a saw-tooth form for wavelength-sweep are superimposed and supplied to a first laser diode (LD) | 07-26-2012 |
20120194818 | Gas Analyzer for Measuring the Mercury Content of a Gas - The invention relates to a gas analyzer for measuring the mercury content of a gas having an Hg light source which transmits transmitted light having wavelengths of at least one spectral line of the mercury, a measuring cell in which the gas to be measured is present, a light receiver, an evaluation unit and a test cuvette which can be introduced into the beam path for checking the operability. To provide an improved gas analyzer which can be calibrated in a simple manner as well as a corresponding improved calibration method, provision is made that the test cuvette contains benzol as a test gas. | 08-02-2012 |
20120212744 | LASER GAS ANALYZER - A laser gas analyzer which can include a light source unit including a diode laser that irradiates a gas to be measured with laser light while varying a wavelength thereof; a detection unit including a light receiving element, a gain-variable amplifier into which an output signal of the light receiving element is input, an A/D converter into which the output signal of the amplifier is input, and an arithmetic processing unit that performs a concentration analysis of the gas to be measured; a peak-to-peak detector that detects a peak-to-peak value of the output data of the A/D converter each time the wavelength of the laser light irradiated from the diode laser changes; and a gain adjustment unit that, when the output signal of the peak-to-peak detector deviates from a preset threshold, adjusts the gain of the amplifier in a direction of bringing the output signal back to within the threshold. | 08-23-2012 |
20120218552 | DEVICE AND METHOD FOR DETERMINING A GAS CONCENTRATION IN A FLOWING GAS MIXTURE - The invention relates to a method for determining a gas concentration in a flowing gas mixture, wherein the flowing gas mixture includes solids having a defined size distribution, wherein by way of an optical spectrometer the concentration of a gas is measured in the flowing gas mixture, which includes a measurement beam of the optical spectrometer being conducted during the measurement through a measurement channel having walls made of a gas-permeable material. The invention also relates to a device for carrying out such a method. | 08-30-2012 |
20120236311 | METHOD FOR MONITORING AND/OR REGULATING FUEL CELLS - The invention relates to a method for monitoring and/or regulating fuel cells, in particular comprising determining the composition of the operating gases of the fuel cells. The method comprises the following steps: introducing the gas mixture to be analyzed into a measuring cell ( | 09-20-2012 |
20120281220 | ACTUATION AND EVALUATION CIRCUIT, MEASURING DEVICE AND METHOD FOR MEASURING THE CONCENTRATION OF A GAS - The invention relates to an actuation and evaluation circuit for a laser diode ( | 11-08-2012 |
20120281221 | PROCESS AND MEASURING EQUIPMENT FOR IMPROVING THE SIGNAL RESOLUTION IN GAS ABSORPTION SPECTROSCOPY - Process and measuring equipment for improving the signal resolution in gas absorption spectroscopy, wherein the measuring equipment includes a laser light source, a light detector and a measuring chamber arranged in between, and furthermore a light source control unit and a light detector evaluation unit. To improve the signal resolution, the noise intensity of the measuring equipment is reduced by averaging over time the interfering signal portions caused by back-reflections, etalons respectively self-mixing effects. This is accomplished by a light modulator arranged downstream the laser light source that continuously periodically influences the optical path length of the light beam. Thereto the light modulator includes an optical element with an adjustable refractory index that continuously cyclically alters the phase of the laser light of the light beam. | 11-08-2012 |
20120300210 | APPARATUS AND METHOD FOR ON-LINE, REAL-TIME ANALYSIS OF CHEMICAL GASES DISSOLVED IN TRANSFORMER OIL - An inspection probe for directly measuring a transmission spectrum of a solvent oil in a transformer includes a tube having a plurality of apertures spaced along a side of the tube to allow oil to pass therethrough, and first and second optical collimators disposed at opposing ends of the tube. The first and second collimators are aligned by the tube such that incident light is transmitted through the first collimator, the tube, and the second collimator to a spectrometer | 11-29-2012 |
20130016353 | ELECTRIC GATED INTEGRATOR DETECTION METHOD & DEVICE THEREOF - A cavity ring down system is optimized to precisely measure trace gases or particles in an air sample by using time sampling detection and multiple-sample averaging resulting in a high signal-to-noise ratio. In one embodiment, a cavity ring down system is programmed to measure the rise time and the fall time of the light level in an optical cavity. The cavity ring down system is programmed to integrate a plurality of sample portions during a rise time and a plurality of sample portions during a fall time (in alternate intervals) to obtain a time constant with no sample present and a time constant with sample present. The measurements are used to calculate trace gases in the air sample. | 01-17-2013 |
20130021612 | LASER GAS ANALYSIS APPARATUS - A timing generating circuit outputs, to a laser controller, a change pulse signal for changing an oscillation wavelength of the laser beam, and outputs, to a data acquisition circuit, a timing pulse signal for outputting data to a processor. An edge detection circuit detects an edge of a measurement signal outputted from a detector circuit. A delay measuring circuit receives a change pulse signal outputted from the timing generating circuit, receives an edge detection signal outputted from the edge detection circuit, and measures a delay of a time for which the laser beam with an oscillation wavelength changed based on the change pulse signal reaches the detector circuit after the change pulse signal is outputted from the timing generating circuit. The timing generating circuit delays a time for outputting data from the data acquisition circuit to the processor based on the delay of time outputted from the delay measuring circuit. | 01-24-2013 |
20130027708 | High-Energy, Broadband, Rapid Tuning Frequency Converter - An Optical Parametric Oscillator (OPO) capable of rapid or broadband frequency tuning by non-mechanical or mechanical means includes a resonant cavity with one or more non-linear crystals in an optical path thereof. The non-linear crystals may be driven by actuators. A pump laser pulse is transmitted into the resonant cavity with one or more seed beams having a desired wavelength. The output beam from the resonant cavity may have the same center wavelength as the one or more seed beams which may be modulated at a frequency larger than that of the pump laser, or the inverse of the pulse duration. The OPO may be used in Light Detection And Ranging (LIDAR) or Differential Absorption LIDAR (DIAL) analysis by intra-pulse modulation of output to measure absorption at multiple frequencies for each pulse of a pump beam. Sum Frequency Generator configurations may be suitable for narrow and broadband UV generation. | 01-31-2013 |
20130044323 | METHOD AND SYSTEM FOR DETECTING MOISTURE IN NATURAL GAS - A system includes a moisture analyzer configured to detect moisture in natural gas. The moisture analyzer includes an absorption cell that encloses and conducts the natural gas. The moisture analyzer also includes a pressure control device that may reduce a pressure of the natural gas inside the absorption cell. The moisture analyzer includes a light emitting device that may transmit light through the natural gas inside the absorption cell, as well as a photodetector that may detect an intensity of the light transmitted through the natural gas and exiting the absorption cell. | 02-21-2013 |
20130070248 | IMAGE FORMING APPARATUS HAVING OPTICAL SENSOR SYSTEM, OPTICAL SENSOR SYSTEM HAVING DETECTION MODULES, AND METHOD THEREOF - An optical sensor system is disclosed including a source module, a first detection module, and a second detection module. The source module includes a source housing unit having a source window member. The source module may emit a detection signal through the source window member. The first detection module and the second detection module are spaced apart from the source module. | 03-21-2013 |
20130077097 | Apparatus, system and method for using an LED to identify a presence of a material in a gas and/or a fluid and/or determine properties of the material - An apparatus, a system and a method use a light-emitting diode (LED) to identify the presence of a material in a gas and/or a fluid and/or to determine properties of the material. The LED and a light detector may be used to determine a chemical compound in the material. The gas and/or the fluid may be located in a chamber. A first light detector may be positioned on the opposite side of the chamber relative to the LED, a second light detector may be positioned on the same side of the chamber as the LED, and/or a third light detector may be positioned inside the chamber. Additional light detectors with coatings may enable measurements to be corrected for the effects of temperature. The light detectors may determine light reflection, light refraction, light transmission, light diffraction, light interference, light diffusion, light collimation, light absorption and/or light focusing of the material. | 03-28-2013 |
20130128271 | SYSTEM AND APPARATUS FOR MONITORING CONCENTRATION OF GREENHOUSE GAS - One or more embodiments of the present invention pertain to a system, method, and apparatus that accurately measures concentration of a greenhouse gas in narrow atmospheric columns above multiple sites utilizing a network of autonomous low-cost beacons that turn on for short unannounced time intervals and point to a receiving satellite. For example, each beacon can activate for short time intervals and transmit a laser beam at eye-safe low transmission power levels to a receiving satellite. The receiving satellite includes a sensor configured to receive the laser beam from one or more activated beacon and generate raw greenhouse gas concentration data based on measurement of the received laser beam intensity at selected wavelengths. | 05-23-2013 |
20130163000 | GAS MEASUREMENT APPARATUS AND THE SETTING METHOD OF WIDTH OF WAVELENGTH MODULATION IN GAS MEASUREMENT APPARATUS - A gas measurement apparatus measures a target gas. The gas measurement apparatus includes a light source, a first light receiving apparatus, a first phase-sensitive detection apparatus, an R calculation unit, and a setting unit. The light source oscillates a laser light that has a central wavelength determined by a main current and is modulated according to a modulation current, with the central wavelength being varied. The first light receiving apparatus outputs a detection signal according to an intensity of the laser light transmitted through a standard sample. The first phase-sensitive detection apparatus obtains a second harmonic component oscillated at a harmonic frequency ω | 06-27-2013 |
20130188189 | APPARATUS FOR SENSING OF CHLORINE DIOXIDE - The instant invention provides apparatuses for measuring the level or concentration of chlorine dioxide gas in a sample and methods of using the same. One aspect of the invention provides an apparatus for measuring a concentration of a chlorine dioxide gas in a sample. The apparatus includes a light emitting diode (LED), a light sensor, and a flow path between the LED and the light sensor, and a filter configured to remove chlorine dioxide from a reference stream. The flow path is capable of containing a sample. The sensor is capable of measuring the level of chlorine dioxide in the sample and the reference stream. | 07-25-2013 |
20130229658 | GAS DETECTOR - A gas detector ( | 09-05-2013 |
20130250304 | SEMI-OPEN-PATH GAS ANALYSIS SYSTEMS AND METHODS - A gas analyzer includes a detector section including a detector, a source section including a light source, and a support structure coupling the detector section with the source section and forming a flow channel defining an optical path measuring region. The gas analyzer also includes an air flow device configured to pull air through the flow channel from an intake region in the support structure to an exhaust region. Sampling is done by pulling air into the sampling cell via an intake opening or tube of wide diameter and short to medium at very fast flow rates (e.g., 10-3000 lpm or more) enabling rapid gas sampling. Fast flow rates enable the use of large volume cell for rapid gas sampling, which in turn, enables rapid measurements of many low-concentration trace gases and sticky/reactive gases (e.g., methane, ammonia, isotopes of CO | 09-26-2013 |
20130258345 | OPTICAL GAS SENSOR - In the optical gas sensor of the application, a three-dimensional reaction chamber structure is used to replace the traditional simple structure, so that the performance of the gas sensor can be enhanced in a wafer-level size. Besides, a light source, a reaction chamber and a light detector are integrated into one wafer in an exemplary embodiment, so as to achieve the wafer-level integration. In addition, the optical gas sensor can detect various gases simultaneously and has wide application in fields such as home environment monitoring, industrial safety, and disease diagnosis and treatment. | 10-03-2013 |
20130258346 | APPARATUS FOR THE NON-DESTRUCTIVE TESTING OF THE INTEGRITY AND/OR SUITABILITY OF SEALED PACKAGINGS - An apparatus for the non-destructive testing of the integrity and/or suitability of sealed packagings having at least one portion ( | 10-03-2013 |
20130265578 | INDEPENDENT-BEAM GAS FILTER CORRELATION RADIOMETRY WITH FIELD-OF-VIEW MATCHING - A GFCR system includes gas cells disposed to receive light energy associated with a field-of-view of an atmospheric region. Each gas cell has contents selected from the group consisting of a vacuum and a gas of unique composition. For each of the gas cells, the light energy passed therethrough is spectrally affected by the contents thereof and then output therefrom as a spectrally-affected beam of light energy associated with the field-of-view. An optical system disposed between the gas cells and an optical detector images each spectrally-affected beam on a unique region of the optical detector. One or more processors generate matched portions of each spectrally-affected beam so-imaged on the optical detector where each such matched portion corresponds to an identical portion of the field-of-view. GFCR computations can then be performed using the matched portions. | 10-10-2013 |
20130265579 | OPTICAL GAS SENSOR - An optical gas sensor with a light-emitting diode ( | 10-10-2013 |
20130286399 | Imaging Systems for Optical Computing Devices - Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element. | 10-31-2013 |
20130301052 | TEMPERATURE CALIBRATION METHODS AND APPARATUS FOR OPTICAL ABSORPTION GAS SENSORS, AND OPTICAL ABSORPTION GAS SENSORS THEREBY CALIBRATED - An optical absorption gas sensor has an LED light source and a photodiode light detector, a temperature measuring device for measuring the LED temperature and a temperature measuring device for measuring the photodiode temperature. The sensor is calibrated by measuring the response of photodiode current at zero analyte gas concentration and at a reference analyte gas concentration. From these measurement, calibration data taking into account the effect of photodiode temperature on the sensitivity of the photodiode and, independently, the effect of changes in the spectrum of light output by the LED on the light detected by the photodiode with LED temperature can be obtained. Calibration data is written to memory in the gas sensor and in operation of the gas sensor, the output is compensated for both LED and photodiode temperature. The LED and photodiode can therefore be relatively far apart and operate at significantly different temperatures allowing greater freedom of optical pathway design. | 11-14-2013 |
20130301053 | EXTRACTIVE CONTINUOUS AMMONIA MONITORING SYSTEM - Disclosed are methods and apparatus for treating and analyzing a gas stream to determine the ammonia concentration. A gas stream is continuously monitored to determine the ammonia concentration by extracting gas samples from one or more locations and sending it to a tunable diode laser absorption spectroscopy instrument for analysis. By proper placement of sampling probes within a duct, depending on the particular flow patterns that have been determined by suitable modeling, e.g., computational fluid dynamics or cold flow modeling, the valves can be operated manually or by a controller to take samples at predetermined locations within the duct. This will enable taking samples from particular locations, samples representative of the entire cross section, or samples that are an average of a particular cross section. It will be possible by judicious placement of the probes and operation of the valves to map the concentrations of ammonia at a plurality of load settings and will permit continuous control. | 11-14-2013 |
20130321815 | Gas Analysis Device - If the specific gas concentration is relatively high, controller sets 0 as the modulation amplitude in a modulation amplitude controlling voltage generator for frequency modulation of laser light, controls a switching unit to select the output of a second ADC, and causes a computation unit to compute according to the direct absorption detection method to calculate the water molecule volume concentration. If the specific gas concentration is relatively low, the modulation amplitude is set to A, not 0, controls switching unit to select the output of a first ADC, which digitizes a synchronized detection signal, and causes the computation unit to compute according to the harmonic synchronous detection method to calculate the water molecule volume concentration. The concentration calculated using either of the methods is compared against a threshold value, and if decided that an accurate result cannot be obtained, the method is switched as the measurements are continuously executed. | 12-05-2013 |
20140016134 | MINIATURIZED LASER HETERODYNE RADIOMETER FOR CARBON DIOXIDE, METHANE AND CARBON MONOXIDE MEASUREMENTS IN THE ATMOSPHERIC COLUMN - A method and apparatus for detecting trace gas concentrations in the atmosphere. An absorption signal is provided that includes collected sunlight that has undergone absorption by a trace gas. The absorption signal is mixed with laser light at a nearby frequency to the absorption signal. An amplitude of a resulting RF signal is proportional to the concentration of the trace gas. | 01-16-2014 |
20140029007 | NON-DESTRUCTIVE INSPECTION DEVICE FOR OXYGEN CONCENTRATION IN BAG-SHAPED CONTAINER - A laser emitting section | 01-30-2014 |
20140078504 | Optical Gas Detector - A gas detector including: an assembly of two coaxial parabolic reflective caps having opposite concavities, and a wafer arranged in the focal plane of the two caps, at the center of this focal plane, comprising, back-to-back: a diverging light emitter directed towards the first cap and a light receiver directed towards the second cap, wherein the two caps are distant substantially by the sum of their focal distances plus the thickness of the wafer. | 03-20-2014 |
20140176951 | MULTI-BAND MULTIPLEXING INTRA-CAVITY GAS SENSING SYSTEM AND METHOD - Disclosed is a multi-band multiplexing intra-cavity gas sensing system and method. The system consists of a laser resonant cavity subsystem, a gas sensing subsystem and a detection-demodulation subsystem. The laser resonant cavity subsystem consists of the first beam splitter, two ways of gain paths composed of a pump light source, a wavelength division multiplexer, a rare earth doped fiber, an optical isolator and a tunable optical attenuator, a beam combiner and an F-P tunable optical filter. The gas sensing subsystem consists of a gas cell and an optical reflective mirror. The detection-demodulation subsystem consists of an optical coupler, the second beam splitter, two optical detectors, a data acquisition module and a computer. In this invention, different rare-earth doped fibers are multiplexing into one system, in order to cover more maser bands of different rare earth, which greatly expands the scanning range of wavelength, and is capable of detecting various gases simultaneously. New gain paths can be added to the system, to further expand the scanning range of wavelength. Hence, the present invention has strong expandability. | 06-26-2014 |
20140204384 | OPTICAL FIBER CONTAINING GRAPHENE OXIDE AND REDUCED GRAPHENE OXIDE, AND METHOD FOR MANUFACTURING GAS SENSOR CONTAINING THE SAME - An optical fiber includes a graphene oxide and a reduced graphene oxide and a gas sensor includes the optical fiber. A method for manufacturing the optical fiber includes coating a graphene oxide layer and reducing a part of the graphene oxide layer, and a method for manufacturing the gas sensor includes coating a graphene oxide layer and reducing a part of the graphene oxide layer. | 07-24-2014 |
20140211208 | DIAGNOSTIC METHOD FOR HIGH SENSITIVITY DETECTION OF COMPONENT CONCENTRATIONS IN HUMAN GAS EMISSIONS - A method for detecting component concentrations in human gas emissions such as breath and gas emitted from skin. A gas sample containing a specified component is collected into a gas cell using a pump and a series of valves to draw the gas sample into the cell and control the gas pressure within the cell. A tunable optical radiation beam is passed through the gas cell and the amount of energy absorbed by the specified component may be measured indirectly by taking the difference between the incident and emerging beam energy or directly by optoacoustic methods. Concentrations of the specified component as small as 0.1 ppB may be determined. Additionally, the tunable optical radiation beam may be multiplexed for use with a plurality of systems utilizing the beam for medical purposes. | 07-31-2014 |
20140211209 | GAS ANALYSIS APPARATUS - A gas analysis apparatus includes: a first reflector that reflects measurement light from a light emitting unit disposed outside a gas flue wall and transmitted through a sample gas. A light receiving unit outside the gas flue wall receives measurement light reflected by the first reflector. A second reflector outside the gas flue wall reflects measurement light toward the light receiving unit. A computing unit analyzes sample gas by allowing the measurement light to be reflected by the first reflector and performs correction or calibration of the gas analysis apparatus using known substances within an associated containing unit along the light path between the light emitting unit and the second reflector by allowing measurement light to be reflected by the second reflector. A switching unit outside the gas flue wall selectively removes or inserts the second reflector from the light path during component concentration analysis and correction or calibration, respectively. | 07-31-2014 |
20140233034 | APPARATUS AND METHOD FOR ON-LINE, REAL-TIME ANALYSIS OF CHEMICAL GASSES DISSOLVED IN TRANSFORMER OIL - A method of providing real-time analysis of chemical gases in a transformer oil has been disclosed. The method includes the steps of providing an inspection probe adapted to measure a transmission spectrum of a solvent oil in a transformer, placing the probe inside a transformer, using the inspection probe to measure a transmission spectrum of the solvent oil, and determining the concentration of dissolved gases in the transmission oil. | 08-21-2014 |
20140253922 | Dynamic Reconstruction Of A Calibration State Of An Absorption Spectrometer - A reference harmonic absorption curve of a laser absorption spectrometer can have a reference curve shape derived from a reference signal generated by the detector in response to light passing from the laser light source through a reference gas or gas mixture. The reference gas or gas mixture can include one or more of a target analyte and a background gas expected to be present during analysis of the target analyte. A test harmonic absorption curve having a test curve shape is compared with the reference harmonic absorption curve to detect a difference between the test curve shape and the reference curve shape. Operating and/or analytical parameters of the laser absorption spectrometer are adjusted to correct the test curve shape to reduce the difference between the test curve shape and the reference curve shape. | 09-11-2014 |
20140268157 | OPEN-PATH GAS ANALYZER WITH ENVIRONMENTAL PROTECTION - An open-path gas analyzer is disclosed and is configured to prevent or reduce contamination of the analyzer over time. | 09-18-2014 |
20140293283 | AMMONIA SENSOR USING WAVELENGTH MODULATION SPECTROSCOPY - An ammonia sensor can include a laser detector configured to provide stable sample readings. | 10-02-2014 |
20140320860 | INSPECTION APPARATUS - An inspection apparatus comprising, a light source configured to emit an inspection light, a table configured to mount an inspection target thereon, an illumination optical system configured to direct the inspection light from the light source toward the target, an objective lens unit configured to gather transmitting or reflected light generated after the illumination optical system illuminates the target with the inspection light, a light receiving unit configured to capture an optical image formed from the light illuminated through the objective lens unit, a chamber configured to house the table, light receiving unit, illumination optical system and objective lens unit, a temperature adjustment unit configured to adjust a temperature in the chamber, and a gas supply unit configured to be connected to the objective lens unit to supply an inert gas at a predetermined temperature into the unit. | 10-30-2014 |
20150022816 | ATOMIC SENSOR PHYSICS PACKAGE HAVING OPTICALLY TRANSPARENT PANES AND EXTERNAL WEDGES - One embodiment is directed towards a physics package of an atomic sensor. The physics package includes a plurality of panes of optically transparent material enclosing a vacuum chamber and one or more wedges attached to an external surface of one or more of the panes. The physics package also includes at least one of a light source, photodetector, or mirror attached to the one or more wedges, the light source configured to generate an input light beam for the vacuum chamber, the photodetector configured to detect an output light beam from the vacuum chamber, and the mirror configured to reflect a light beam from the vacuum chamber back into the vacuum chamber, wherein the wedge is configured to oriented such a light source, photodetector, or mirror such that a respective light beam corresponding thereto transmits through a corresponding pane at an acute angle with respect to the corresponding pane. | 01-22-2015 |
20150049335 | SENSOR ARRANGEMENT FOR MEASURING THE CONCENTRATION OF A SUBSTANCE - A sensor arrangement for determining a concentration of a substance in an open sample in the presence of an interfering material is disclosed. The sensor arrangement comprises a first light source emitting pulsed light at a first wavelength being absorbed by said substance, a second light source emitting pulsed light at a second wavelength being transmitted through said substance, optical means for directing at least a part of the emitted pulsed light of said first and second wavelengths through the open sample along the same optical path, and a sample detector arranged at an end of the optical path for receiving the emitted light of said first and second wavelengths being transmitted through the sample. The interfering material is formed as deposits on at least one of said optical means being exposed to said substance, and said first wavelength and said second wavelength are absorbed by said interfering material. | 02-19-2015 |
20150055135 | METHOD OF SENSING NITROAROMATIC ELECTRON ACCEPTING COMPOUNDS USING A PHOTOVOLTAIC SENSOR - An organic diode operated in photovoltaic mode is used as a sensor for nitroaromatic electron accepting compounds. While illuminated by a light source with a wavelength within the organic materials absorption the device produces a small photovoltaic response due to inefficient separation of charges. Upon exposure to an electron accepting compound, the device produces an increase in photovoltaic activity due to more efficient charge separation, producing a larger measurable open circuit voltage. Upon removal of the compound the measured voltage decreases and returns to near its baseline value. | 02-26-2015 |
20150077754 | Process interface of a process gas analyzer operating by the transmitted light method - A process interface of a process gas analyzer operating by a transmitted light method includes a purging tube, which extends between an optoelectronic element and an interior of a plant part carrying a process gas, wherein the purging tube is closed off, at its end opposite from the optoelectronic element by a window, in the vicinity of which a purging gas feed enters the purging tube, where an annular part is arranged in the interior of the purging tube opposite the entrance of the purging gas feed and is coaxial in relation to the purging tube, and the part has a convex outer side, the vertex line of which divides the entrance of the purging gas feed into a smaller region, open toward the window, and a larger region, open toward the interior of the plant part. | 03-19-2015 |
20150085288 | Method and Gas Analyzer for Measuring the Concentration of a Gas Component in a Sample Gas - Gas analyzer and method for measuring the concentration of a gas component in a sample gas, wherein the wavelength of the light of a wavelength-tunable light source is varied within periodically successive sampling intervals and, in the process, additionally modulated with a frequency to perform wavelength dependent sampling of an absorption line of a gas component to be measured in the sample gas. | 03-26-2015 |
20150103350 | GAS DETECTION SYSTEM USING FIBER LASER WITH ACTIVE FEEDBACK COMPENSATION BY REFERENCE CAVITY - The present invention provides a fiber laser gas detection system using active feedback compensation by a reference cavity, said system comprising: an optical fiber laser consists of a laser diode pump source, a wavelength division multiplexer, an active optical fiber and a fiber Bragg grating connected successively; an optical isolator coupled with said wavelength division multiplexer for blocking a reverse light transmission in said active fiber; a coupler connected with said optical isolator for dividing the laser light after being isolated by the optical isolator into a reference beam, a detecting beam and an intensity measuring beam according a certain ration power. The gas detection system according to the present invention can take advantages of the unique superiority of compact structure and narrow linewidth of the laser output of the fiber laser, and achieve a gas detection method with high sensitive and high precision by feedback controlling. | 04-16-2015 |
20150138558 | CAVITY ENHANCED LASER BASED GAS ANALYZER SYSTEMS AND METHODS - Cavity enhanced absorption spectroscopy systems and methods for detecting trace gases using a resonance optical cavity, which contains a gas mixture to be analyzed, and a laser coupled to the cavity by optical feedback. The cavity has any of a variety of configurations with two or more mirrors, including for example a linear cavity, a v-shaped cavity and a ring optical cavity. The cavity will have multiple cavity resonant modes, or a comb of frequencies spaced apart, as determined by the parameters of the cavity, including the length of the cavity, as is well known. Systems and methods herein also allow for optimization of the cavity modes excited during a scan and/or the repetition rate. | 05-21-2015 |
20150300949 | DEVICE FOR THE REMOTE OPTICAL DETECTION OF GAS - A detector device for optically detecting a gas in a zone of space under observation, the device comprising a camera and means for continuously detecting at least one gas in the observed zone by analyzing absorbance in a plurality of different spectral bands. The device further comprises a matrix of micromirrors that are individually steerable between at least two positions, in a first of which they reflect the radiant flux coming from the observed zone to the camera for detecting gas in said spectral bands, and in a second of which they reflect the radiant flux coming from the observed zone to a Fourier transform infrared spectroscope. | 10-22-2015 |
20150316412 | FIBER OPTIC COUPLED MULTIPASS GAS MINICELL, DESIGN ASSEMBLY THEREOF - A method directs a gas of interest into a minicell and uses an emitting laser to produce laser emission light that is directed into the minicell and onto the gas of interest. The laser emission light is reflected within the cell to make multipasses through the gas of interest. After the multipasses through the gas of interest the laser light is analyzed to produces gas spectroscopy data. The minicell receives the gas of interest and a transmitting optic connected to the minicell that directs a beam into the minicell and onto the gas of interest. A receiving optic connected to the minicell receives the beam from the gas of interest and directs the beam to an analyzer that produces gas spectroscopy data. | 11-05-2015 |
20150316472 | INFRARED DETECTION DEVICE - Infrared detection device comprising a gas detection device comprising:
| 11-05-2015 |
20150323449 | SYSTEMS AND METHODS FOR DETECTING GAS LEAKS - The invention is directed to improved systems, methods, and computer readable media for detecting gas leaks. More particularly, the invention detects gas leaks or discharges, such as methane or any other suitable gases, by analyzing reflected or direct light that passes through a region of enhanced target gas concentration. The invention collects light and processes spectral data of the light. All molecules are subject to rotational motions, vibrational motions, and/or combinations thereof (rovibrational motions), in which the atoms in the molecule are vibrating with respect to each other and/or rotating around each other. When the light passes through the region of the target gas, a portion of the light with certain wavelengths will be absorbed by the target gas due to the rovibrational motions of the target gas molecules. By analyzing the magnitude of absorption at certain wavelengths, one can determine the concentration of certain target gas or gases. | 11-12-2015 |
20150323450 | ON-CHIP INTEGRATED GAS SENSOR BASED ON PHOTONIC SENSING - Techniques, systems, and devices are disclosed to provide on-chip integrated gas sensor based on photonic sensing. For example, a sensing device is provided to include an optical comb generator that produces an optical comb of different optical comb frequencies in a mid-infrared (MIR) spectral range to interact with a sample under detection, the optical comb generator including a substrate, an optical resonator formed on the substrate and an optical waveguide formed on the substrate and coupled to the optical resonator, and an optical detector that detects light from the sample at the different optical comb frequencies. | 11-12-2015 |
20150329267 | CONTAINER FOR FOOD PRODUCTS, A METHOD FOR MANUFACTURING OF A CONTAINER, METHOD FOR DETECTING INTERNAL GAS AND A PRODUCTION SYSTEM FOR FILLING CONTAINERS - The invention concerns a container for food products or other sensitive products, said container being made of a material that intends to provide the container with gas-tight properties and that comprises a layer that exhibits no or only a low translucence to light. The invention is characterized in that at least one opening is provided in the layer with no or low light translucence such as to allow light for non-destructive detection of gas inside the container to enter and exit through said at least one opening. The invention also concerns a method for detecting gas inside a sealed container of the above type and a method for manufacturing of a container of the above type from blanks of a cardboard based material. The invention also concerns a production system comprising an apparatus for filling containers of the above type with a product and an apparatus for sealing the filled containers, wherein the system further comprises an apparatus for carrying out the method for detecting gas inside the sealed container. | 11-19-2015 |
20150338339 | CO2 CONCENTRATION SENSOR - Device for measuring the concentration of a predetermined gas, in particular CO2, comprising a cavity, a light source emitting light rays within a basic spectral range including visible and infrared, a detector configured to receive a portion of the light rays within a first predefined spectral range corresponding to high absorption of the predetermined gas, a photodiode configured to receive a portion of the light rays within a second predefined spectral range corresponding to low absorption of the predetermined gas, a control unit configured to calculate the concentration of the predetermined gas by comparing the radiant power received by the detector to the radiant power received by the photodiode. | 11-26-2015 |
20150355082 | OPEN PATH GAS DETECTOR - In implementations, an open path gas detector is disclosed that can include imaging or non-imaging optical components. The detector can include components that allow for misalignment of radiation received by the detector of about 1 without causing false alarms. In implementations, the detector can include a beam splitter or a wavelength-division multiplexing filter to allow for more of the radiation received by the detector to be detected by the sensors. | 12-10-2015 |
20150362426 | DRYNESS FRACTION DISTRIBUTION MEASURING DEVICE AND DRYNESS FRACTION DISTRIBUTION MEASURING METHOD - A dryness fraction distribution measuring device, includes: a light-emitting body that illuminates a gas/liquid two-phase flow with light; an environment sensor that measures at least one of temperature or pressure in a gas/liquid two-phase flow; a plurality of photodetecting elements that receive respective lights that have traversed moist steam; a relationship storing portion that stores, for each temperature or pressure, a relationship between an intensity of light that has traversed the gas/liquid two-phase flow and a dryness fraction of the gas/liquid two-phase flow; and a dryness fraction identifying portion that identifies a dryness fraction of the gas/liquid two-phase flow for each position corresponding to the plurality of photodetecting elements, based on the relationships between the measured values for the detected light intensities of the lights detected by the respective photodetecting elements and the values for the temperatures and pressures measured by the environment sensor. | 12-17-2015 |
20150369693 | Systems for Detecting a Chemical Species and Use Thereof - Systems and methods for detecting chemical species including a lens, a beam splitter, first and second bandpass filters, and first and second electromagnetic radiation detectors. The first bandpass filter has a first transmittance window having a first width transmitting greater than 50% of the filtered first electromagnetic radiation beam within a first electromagnetic radiation wavelength range. The second bandpass filter includes a second transmittance window having a second width within a second electromagnetic radiation wavelength range. The second transmittance window has an upper limit wavelength value that is greater than an upper limit wavelength value of the first transmittance window. The second bandpass filter is configured to transmit a lesser percentage of the second electromagnetic radiation beam passing through the second transmittance window than the first bandpass filter transmits of the first electromagnetic radiation beam passing through the first transmittance window. | 12-24-2015 |
20150369736 | DRYNESS FRACTION DISTRIBUTION MEASURING DEVICE AND DRYNESS FRACTION DISTRIBUTION MEASURING METHOD - A dryness fraction measuring device, including a variability quantity measuring portion that measures the amount of variability in intensity of light that has been transmitted, or amount of light that has been absorbed, by moist steam that is the subject of measurement; and a dryness fraction measuring portion that measures the dryness fraction of the moist steam based on a correlation relationship between the dryness fraction and the amount of variability in the optical intensity or in the amount of light absorption. | 12-24-2015 |
20150377767 | OPTICAL CHAMBER FOR A GAS DETECTION DEVICE - An optical chamber for a gas detection device, which includes reflecting device for reflecting radiation issued from a radiation source and for redirecting the radiation toward a radiation detector, the reflecting device including a first series of adjacent mirrors and a second series of adjacent mirrors. The mirrors of the first series and the mirrors of the second series are of the truncated ellipsoid of revolution type. The first series of mirrors and the second series of mirrors are arranged relative to each other so that the radiation emitted by the radiation source is reflected alternatively by a mirror of the second series and by a mirror of the first series and defines an optical path extending from the radiation source to the radiation detector. | 12-31-2015 |
20150377772 | Aqueous Ozone Monitor Utilizing Gas Stripping - The present invention provides a means of measuring the concentration of ozone dissolved in water or another solvent. Small, discrete samples are sparged with air or another unreactive gas for a short period of time to measure a profile of ozone vs time in the sparge gas. The total amount of ozone in the original sample is obtained by integrating under the ozone vs time profile. A correction may be made for ozone remaining in the sample after a finite sparge time by integrating under the profile tail using a decay constant obtained from the measured ozone vs time profile. The method differs from previous methods based on sparging of the sample in that a Henry's Law equilibrium or constant ratio of ozone present in the gas and liquid phases is not assumed and the flow rates of sample and sparge gas are not continuous. Instead, discrete samples are analyzed by nearly complete sparging. The new method is applicable to dirty (impure) water because the ozone is measured in the absence of UV-absorbing and scattering impurities that may be present in the sample. The method applies to high purity water as well. | 12-31-2015 |
20160011047 | COLLISIONAL BROADENING COMPENSATION USING REAL OR NEAR-REAL TIME VALIDATION IN SPECTROSCOPIC ANALYZERS | 01-14-2016 |
20160011101 | SPECTROSCOPIC QUANTIFICATION OF EXTREMELY RARE MOLECULAR SPECIES IN THE PRESENCE OF INTERFERING OPTICAL ABSORPTION | 01-14-2016 |
20160033397 | RESONANT OPTICAL TRANSDUCERS FOR IN-SITU GAS DETECTION - Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10 | 02-04-2016 |
20160041031 | SYSTEMS AND METHODS FOR CONTROLLING THE OPTICAL PATH LENGTH BETWEEN A LASER AND AN OPTICAL CAVITY - Systems and methods for controlling the optical path length between a feedback enabled laser and a cavity, and hence the optical feedback phase. A phasor element, positioned along an optical path between the laser and the cavity coupling mirror, includes a gas medium within a volume defined by the phasor element. The phasor element is configured to adjust or control an optical path length of the laser light between the laser and the cavity coupling mirror by adjusting or controlling a density of the gas medium within the phasor volume. | 02-11-2016 |
20160069795 | ULTRA STABLE RESONANT CAVITY FOR GAS ANALYSIS SYSTEMS - Systems and methods for detecting trace gases utilize a resonance optical cavity and a coherent light source coupled to the cavity through a cavity coupling mirror. The cavity is constructed of a material having the same or a similar coefficient of thermal expansion as the mirror elements defining the cavity. The main (bulk) cavity material may be the same as the main (bulk) material that forms the mirror elements, or it may be different. Such resonant cavity configurations provide improved accuracy and stability as compared to existing cavity configurations based upon similar principles. | 03-10-2016 |
20160069797 | Gas Cell Assembly and Applications in Absorption Spectroscopy - A gas cell assembly and applications of the gas cell assembly in absorption spectroscopy. An example gas cell assembly includes a gas cell body with an inlet for receiving a gas sample from a gas source; a first and a second end portions that allow optical transmission into and out of the body, the second end portion being substantially opposite from the first end portion; and a channel providing a path for the gas sample and optical beam(s) between the first end portion and the second end portion. The gas cell assembly also includes reflective surfaces outside the body to receive versions of the optical beams from the body and to reflect each version of the incident beam towards the body. A detector, then, receives a last reflected beam and transmits a corresponding data signal to a processing unit for analyzing the gas sample based on the data signal. | 03-10-2016 |
20160084710 | OPTICAL REFLECTORS FOR SPECTROMETER GAS CELLS - A spectrometer cell can include a spacer, at least one end cap, and at least one mirror with a reflective surface. The end cap can be positioned proximate to a first contact end of the spacer such that the end cap and spacer at least partially enclose an internal volume of the spectrometer cell. The mirror can be secured in place by a mechanical attachment that includes attachment materials that are chemically inert to at least one reactive gas compound. The mechanical attachment can hold an optical axis of the reflective surface in a fixed orientation relative to other components of the spectrometer cell and or a spectrometer device that comprises the spectrometer cell. The mirror can optionally be constructed of a material such as stainless steel, ceramic, or the like. Related methods, articles of manufacture, systems, and the like are described. | 03-24-2016 |
20160084757 | ANALYTES MONITORING BY DIFFERENTIAL SWEPT WAVELENGTH ABSORPTION SPECTROSCOPY METHODS - The present invention relates to a method, apparatus and system for measuring the content of either one or more gas analytes that may be part of a gas. The present invention applies a spectroscopic method that utilizes an extremely narrow linewidth laser beam that is absorbed when its wavelength is swept across the interval containing the absorption line of the analyte. The method, apparatus and system of the present invention is applicable to any analyte in gas phase that is part of a gas mixture, or to any analyte in a plasma phase, as well as analytes in other environments. | 03-24-2016 |
20160091418 | OPTICAL GAS SENSING APPARATUS WITH EXPLOSION-PROOF ENCLOSURE - An optical gas sensing apparatus includes an explosion-rated device electronics enclosure. An explosion-rated sensing enclosure has a light transmitting element to allow light to pass out of and into the sensing enclosure. The sensing enclosure is operably coupled to the explosion-rated device electronics enclosure by a feed-through. In one aspect, an internal volume of the sensing enclosure is less than or equal to about one fiftieth of the volume of the explosion-rated device electronics enclosure. In another aspect, the thickness of the light transmitting element is less than or equal to about 3 millimeters. A light source is disposed within the sensing enclosure and is operably coupled to the device electronics. A detector is disposed within the sensing enclosure and is also operably coupled to the device electronics. | 03-31-2016 |
20160091420 | LASER BEAM STOP ELEMENTS AND SPECTROSCOPY SYSTEMS INCLUDING THE SAME - Laser-based spectroscopy systems and methods including a laser source that emits a beam of radiation, an optical resonant cavity having at least two cavity mirrors, and at least one beam filtering element positioned along a path of the beam external to the cavity and having a front surface, wherein the front surface is oriented such that an intersection of the beam and the surface is at an angle, such as the Brewster's angle or a pseudo-Brewster's, that reduces or eliminates reflection of a predominant polarization component of the beam by the filtering element. | 03-31-2016 |
20160123946 | SYSTEM FOR ANALYZING MERCURY - An analyzer system ( | 05-05-2016 |
20160153907 | PHOTONIC CRYSTAL SENSOR STRUCTURE AND A METHOD FOR MANUFACTURING THE SAME | 06-02-2016 |
20160169796 | System And Method For Determining A Concentration Of A Gas In A Container | 06-16-2016 |
20160195649 | OPTICAL FOCUSING DEVICE | 07-07-2016 |