Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Automatic following or aligning while indicating measurement

Subclass of:

356 - Optics: measuring and testing

356138000 - ANGLE MEASURING OR ANGULAR AXIAL ALIGNMENT

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
356139040 Automatic following or aligning while indicating measurement 14
20080259320APPARATUS AND METHOD FOR DETECTING OPTICAL SYSTEMS IN A TERRAIN - A method and an apparatus are used for detecting optical systems, for example a sniper within a terrain. The terrain is optically scanned by means of a movable mirror and the position of the optical system is determined from a measurement made by a laser unit and is optically displayed. The position of the optical system is directly determined from the measurement made by the laser unit by evaluating the intensity of a light beam from the laser unit, after having been reflected by an optical surface of the optical system. The position is optically reflected into the field of vision of a telescope. The apparatus comprises a laser unit having a movable mirror, a control unit for detecting the position of the optical system from a measurement made by the laser unit, and a device for optically displaying the position. The device for optically displaying is a telescope, and means are provided for optically reflecting the position of the optical system into the field of vision of the telescope.10-23-2008
20100060884ATTACHMENT ANGLE MEASURING DEVICE AND ATTACHMENT ANGLE MEASURING METHOD - The present invention provides an attachment angle measuring device and an attachment angle measuring method which realize accurate measurement of attachment angle between an axle carrier and an absorber. An attachment angle measuring device measures an attachment angle θ between an axle carrier and an absorber as in the following. A slit light is projected to a first reflection position on an outer peripheral surface of an absorber rod and a reflected light from the first reflection position is received. A slit light is projected to a second reflection position on the outer peripheral surface of the absorber rod different from the first reflection position and a reflected light from the second reflection position is received. A first optical path distance between a projection start position of the slit light and the first reflection position is calculated based on the reflected light. A second optical path distance between the projection start position of the slit light and the second reflection position is calculated based on the reflected light. Based on the first optical path distance and the second optical path distance, attachment angle θ is calculated.03-11-2010
20110181872TRACKING METHOD AND MEASURING SYSTEM COMPRISING A LASER TRACKER - A measuring system includes a laser tracker (07-28-2011
20120120391TRACKING METHOD AND MEASURING SYSTEM COMPRISING A LASER TRACKER - A measuring system includes a laser tracker (05-17-2012
20120170029LIDAR System Comprising Large Area Micro-Channel Plate Focal Plane Array - A sensor system is provided comprising a precision tracking sensor element and one or more acquisition sensor elements. The acquisition sensor elements may be mounted on a rotating base element that rotates about a first axis. The precision tracking sensor elements may be mounted on a hinged or pivoting element or gimbal on the housing and provided with drive means to permit a user to selectively manually or automatically direct it toward a scene target of interest detected by the acquisition sensor elements. At least one of the imaging elements in the precision tracking sensor or acquisition sensors is stacked micro-channel plate focal plane array element.07-05-2012
20130070239LASER SPOT TRACKING WITH OFF-AXIS ANGLE DETECTION - A laser spot tracker comprising a quadrant detector. A portion of a spot of laser light reflected from an object being illuminated (OBI) may be defocused to occupy a significant portion such as one-third of the field of view, while another portion remains focused, therefore allowing for quick calculation of the spot centroid. With such a “composite spot”, multiple target (OBI) positions may simultaneously be defined in elevation and azimuth with respect to null by analyzing the energy in each quadrant. The X and Y angle information (off null) for multiple targets (OBIs), and their codes may be displayed. For a large, defocused spot, two segmented multi-element detectors may be used, one in front of and the other behind the focal plane to reduce the effects of hot spots in a spot of laser light collected from an object being illuminated.03-21-2013
20150293229SIMULTANEOUS FORWARD AND INVERSE SYNTHETIC APERTURE IMAGING LADAR - Devices and techniques for combined forward and inverse synthetic aperture imaging LADAR (combined SAL) include scanning a non-stationary target with an optical signal emitted from a non-stationary laser source, receiving reflections of the signal on a receiver, and determining the combined synthetic aperture.10-15-2015
356139050 With optical elements moving relative to fixed housing to follow or align 2
20090161093Systems and Methods for Lithographic Illuminator Beam Deviation Measurement and Calibration Using Grating Sensors - Angular deviation of illumination beam is measured with high accuracy for an expanded continuous range of angles using grating sensors that are configured to exhibit Surface Plasmon Resonance effects at actinic wavelengths. The beam deviation measurement systems and procedures are applicable to both mask-based and maskless lithography tools. A control system adopts an appropriate calibration algorithm based on whether the SPR effect is detected or not. Relative intensity shift in an SPR-affected diffractive order, and/or relative position and slope change in non-SPR-affected diffractive orders are used as a basis of the adopted calibration algorithm.06-25-2009
20120026488Start-Up Methods for Frequency Converted Light Sources - Start-up methods for frequency converted light sources and projector systems comprising frequency converted light sources are described herein. The start-up methods generally comprise modulating the frequency converted light source over three degrees of freedom (two spatial dimensions and one wavelength dimension). Specifically, fast oscillation of an axis of an adjustable optical component is performed simultaneously with fast oscillation of a wavelength of the semiconductor laser while a second axis of the adjustable optical component is incrementally stepped and the output intensity of the frequency converted light source is monitored for each step. This start-up method allows for three linear searches to be used to rapidly locate the appropriate control settings for the frequency converted light source.02-02-2012
356139060 With optical housing moving to follow or align 1
20150009493LASER TRACKER WITH FUNCTIONALITY FOR GRAPHICAL TARGET PREPARATION - Some embodiments include a laser tracker having: a base defining a standing axis; a beam steering unit for emitting a measurement radiation; a distance measuring unit for determining the distance to the target; and angle measurement functionality for determining an alignment of the beam steering unit. The beam steering unit can swivel around the standing axis and a tilt axis relative to the base. A measurement axis is defined by an emission direction of the measurement radiation. The laser tracker may include a target-seeking unit having lighting means and at least one target-seeking camera having a position-sensitive detector. The one target-seeking field can be illuminated by means of the lighting means. A search image for the position dependent identification of the target can be detected with the target-seeking camera and at least part of the lighting beam reflected on the target can be determined as a search image position.01-08-2015
356139070 With photodetection of reflected beam angle with respect to a unidirectional source beam 4
356139080 With source beam moving to follow or align 4
20090051906Optical tracking device employing a three-axis gimbal - An optical tracking device, includes an azimuth sub-assembly providing a 360-degree range of motion and a transducer sensing the azimuth position within this range of motion; and an elevation sub-assembly coupled to the azimuth sub-assembly and providing at least a −30-degree to +100-degree range of motion and a transducer sensing the elevation position. A cross-elevation sub-assembly is coupled to the elevation sub-assembly and provides at least a ±14-degree optical range of motion and a transducer sensing the cross-elevation position. An elevation gyroscope is affixed to the elevation sub-assembly and generates an elevation rate signal; and a cross-elevation gyroscope is affixed to the elevation sub-assembly and generates a cross-elevation rate signal. A controller receives the azimuth, elevation, and cross-elevation position signals, and the elevation and cross-elevation rate signals and sends command signals to the sub-assemblies to initiate movement to allow inertially stabilized tracking of an object.02-26-2009
20140368814COUNTERMEASURE SYSTEM - A countermeasure system for protecting a target against a threat comprising a sensing system including a first sensor(s) for detecting a threat within a wide-angle sector and producing a first directional signal indicative of a first angular zone of the threat location, and a second sensor(s) for detecting the threat within a narrow-angle sector narrower than the wide angle sector and for producing a second directional signal indicative of a relatively narrower second angular zone of the threat location; an illumination source for emitting a beam for neutralizing a threat; a controller for receiving signals from the sensors and for outputting tracking signals; a drive arrangement for moving the second sensor responsive to the first tracking signal to orient the second sensor to face towards the first zone, and beam directing means for directing the beam from the illumination source towards the second zone based on the second tracking signal.12-18-2014
20160187125Non-Adjustable Pointer-Tracker Gimbal Used For Directed Infrared Countermeasures Systems - In a directed infrared countermeasure system, to assure parallelism between the line-of-sight to a target and the output beam, the input and output mirrors are fixedly attached to a uni-construction arm mounted to a rotatable azimuth platter to which internal mirrors are also fixedly attached. A system is provided for zeroing out alignment errors by developing an aim-point map for the gimbal that records initial alignment errors induced by manufacturing tolerances and uses the aim-point map error values to correct the output mirror orientation. The system also corrects for alignment errors induced by thermal gradients.06-30-2016
20160187126Non-Adjustable Pointer-Tracker Gimbal Used For Directed Infrared Countermeasures Systems - In a directed infrared countermeasure system, to assure parallelism between the line-of-sight to a target and the output beam, the input and output mirrors are fixedly attached to a uni-construction arm mounted to a rotatable azimuth platter to which internal mirrors are also fixedly attached. A system is provided for zeroing out alignment errors by developing an aim-point map for the gimbal that records initial alignment errors induced by manufacturing tolerances and uses the aim-point map error values to correct the output mirror orientation. The system also corrects for alignment errors induced by thermal gradients.06-30-2016

Patent applications in all subclasses Automatic following or aligning while indicating measurement

Website © 2025 Advameg, Inc.