Entries |
Document | Title | Date |
20080204750 | IMAGE ACQUISITION, PROCESSING, AND DISPLAY - Image data is acquired, processed, and/or displayed in accordance with an embodiment of the present disclosure to display, monitor, and/or demonstrate the progress of an experiment substantially in real-time and with high sensitivity. In one embodiment, at least one time-resolved value of spatially distributed polarization change data is provided and displayed. Advantageously, real-time processing and display of data is provided such that discussion and collaboration about the experiment may occur, time-resolved data is not lost, and resources are not wasted. | 08-28-2008 |
20080212095 | Optical Monitoring Apparatus and Method of Monitoring Optical Coatings - A beam is reflected and/or transmitted by a sample with a coating. The path of the beam has a unitary path part where the beam is affected by the coating but is split into parallel sub-paths in a fixed (sample independent) part of the apparatus, components of the beam with different directions of polarization being passed through the sub-paths. A spectrum is determined of ratio's between intensities of the components after they have been affected by the sample, and from the spectrum of the ratio's coating properties are determined. Typically a polarizing splitter is used to split the beam after it has been affected by the sample and the beam is chopped in the sub-paths. After chopping the beam may be recombined before being passed to a detector. The detector may be shared between different arrangements of splitters-choppers-combiners. The beam may be passed to and from the sample through the same splitter. | 09-04-2008 |
20080225293 | Photonic crystal sensor - A photonic crystal sensor for outputting an output signal using a light source. The photonic crystal sensor includes a photonic crystal structure and a defect member disposed adjacent the photonic crystal structure. The defect member defines an operative surface. An input light signal from the light source is inputted to the photonic crystal structure and defect member and is internally reflected to thereby output the output signal. Also, the output signal relates to a condition at the operative surface. | 09-18-2008 |
20080239315 | APPARATUS AND METHOD FOR DETERMINING STRESS IN SOLAR CELLS - A method and system as described herein provides for detecting certain anomalies in a wafer. According to one aspect, these anomalies relate to defects or stress that can lead to wafer breakage before, during or after further wafer processing. According to other aspects, the method includes passing polarized light through a wafer and analyzing the transmitted light for any changes in polarization. According to additional aspects, the method includes analyzing the entire wafer in one image capturing operation. According to still further aspects, the light passed through the wafer is below the bandgap for a material such as silicon that comprises the wafer, so that substantially all light will be transmitted through rather than absorbed or reflected by the material. According to still further aspects, the detection operation can be rapid and automatic, so that it can be easily included in an overall processing sequence. According to yet additional aspects, the detection includes analyzing different portions of the wafer differently, for example using different contrast ratios for edge and center portions of the wafer respectively. | 10-02-2008 |
20080239316 | Method and apparatus for quantitative 3-D imaging - Described is a method and apparatus for obtaining additional information from an object and a method for surface imaging and three-dimensional imaging. Single lens, single aperture, single sensor system and stereo optic systems are enhanced via selective filtering, use of defocusing information, use of an addressable pattern, image matching, and combinations thereof. | 10-02-2008 |
20080246966 | Surface-Inspecting Apparatus and Surface-Inspecting Method - Defect inspection of repeated pattern on a surface is executed by reducing influence of a base layer. Thus, surface-inspecting apparatus and method include unit irradiating repeated pattern on specimen's surface with illuminating light, units setting an angle formed by direction on an incidence plane's surface including irradiating direction of illuminating light and a normal to the surface and repeated direction of repeated pattern to predetermined value except zero, a light detecting unit detecting regular reflected light from repeated pattern when illuminating light is irradiated and outputs information about light intensity of regular reflected light, and a detecting unit detecting the repeated pattern's defect on information, from light detecting unit. Additionally, an angle formed by the direction on incidence plane's surface and repeated direction, an angle formed by irradiating direction of illuminating light and normal to surface, a wavelength of illuminating light, and a pitch of repeated pattern satisfy conditional expression. | 10-09-2008 |
20080273200 | MEASUREMENT METHOD, MEASUREMENT APPARATUS, EXPOSURE APPARATUS, AND DEVICE FABRICATION METHOD - A measurement method of measuring a wavefront aberration of an optical system to be measured, comprising a first measurement step of measuring wavefronts of the optical system to be measured with respect to linearly polarized light beams along at least three different azimuths, a first calculation step of calculating a wavefront of the optical system to be measured with respect to non-polarized light and a birefringent characteristic of the optical system to be measured, based on the wavefronts of the optical system to be measured, which are measured in the first measurement step, and a second calculation step of calculating a wavefront of the optical system to be measured with respect to arbitrary polarized light, based on the wavefront and the birefringent characteristic of the optical system to be measured, which are calculated in the first calculation step. | 11-06-2008 |
20080285033 | Method and Device for Characterizing Analyte using Electro-Optically Modulated Surface Plasmon Resonance Based on Phase Detection - A method and a device for detecting object properties using electro-optically modulated surface plasmon resonance (SPR) based on phase detection is disclosed. In the case of a surface plasmon resonance sensing device according to the present invention, the voltage is applied on the sensing device made of an electro-optic material to modulate the surface plasmon resonance condition by varying the wavevector of the incident lightwave. The relation between the phase of output optical wave and the applied voltage is measured, and the solution concentration or the material property is obtained by using the slope of a regression straight line of this relations. The invention can be used in the experimental arrangements of the attenuated-total-reflection (ATR) structure and the optical waveguide structure, and has advantages of high sensitivity, high stability, small bulk, low equipment cost, etc. | 11-20-2008 |
20080285034 | Single-lens 3-D imaging device using a polarization-coded aperture maks combined with a polarization-sensitive sensor - A device and method for three-dimensional (3-D) imaging using a defocusing technique is disclosed. The device comprises a lens, at least one polarization-coded aperture obstructing the lens, a polarization-sensitive sensor operable for capturing electromagnetic radiation transmitted from an object through the lens and the at least one polarization-coded aperture, and a processor communicatively connected with the sensor for processing the sensor information and producing a 3-D image of the object. | 11-20-2008 |
20080291447 | Optical Chromatic Aberration Correction and Calibration in Digital Cameras - Methods and the corresponding device are presented for the correction of lateral chromatic aberration within a digital camera or other imaging device, using calibration approaches that do not require previously acquired lens data to effect the correction. An in-camera auto-calibration procedure is performed on the attached lens, such as when a lens is exchanged, and extracts parameters required for chromatic aberration correction, respecting zoom and focus, from one or more captured images. Based on image data extracted as a plurality of channels of a chromatic decomposition of the image, the chromatic aberration information for the lens is extracted. From the chromatic aberration information, the correction factors for the lens are determined. | 11-27-2008 |
20080309937 | Method and System for Identification of Changes in Fluids - Method and system for identification of a changed state of a fluid with respect to a reference state of the same fluid, the fluid having an optical parameter changing with the change of the state of the fluid. The method comprises: a) providing an optical arrangement including a transparent enclosure with a portion of the fluid, and an object observable through the optical arrangement, the arrangement being designed such that an image of the object in the changed state of the fluid is optically distinctive from an image of the object in the reference state of the fluid due to change of the optical parameter, at least one of the images being predetermined; b) illuminating the object with diffuse light; c) observing a current image of the object though the optical arrangement along an optical axis; and d) comparing the current image to the predetermined image to identify the changed state of the fluid. The comparison and the identification may be performed by eye or by a sensor with a logical circuit. | 12-18-2008 |
20080309938 | Apparatus And Method Of Non-Sampling-Based Q-Factor Measuring - A non-sampling-based Q-factor measuring apparatus and method use a power conversion module to transform the power variation of inputted optical signals in time domain into the variation in other domains, such as optical wavelength, optical polarization and different output ports of optical elements. Taking optical wavelength as an example, different levels of power variation respond different outputs of wavelength variation through the use of a power-to-wavelength conversion module. An optical filter then separates the inputted optical signals with different wavelengths. The power average of a wavelength for its corresponding optical signals is further calculated by a photo detector. Thereby, the information of the power variation for the inputted optical signals at levels 1 and 0 can be obtained, and the Q-factor for the inputted optical signals is easily measured. | 12-18-2008 |
20080316486 | TARGET SUBSTANCE-DETECTING APPARATUS AND TARGET SUBSTANCE-DETECTING METHOD - A target substance-detecting apparatus comprises a target substance-detecting element comprising metal structures, a light irradiation section for irradiating the target substance-detecting element with a light, a light-polarizing section which polarizes the irradiating light and separates an output light emitted from the target substance-detecting element into a first polarized light and a second polarized light, first and second light-receiving sections for outputting first and second signals according to intensity of the first and second polarized lights, respectively; and a control section which determines peaks of absorbances of the first and second polarized lights by measuring the absorbances from the first and second signals respectively, and controls the target substance-detecting element so that the peak values of the first and second absorbances can be maximized and minimized respectively by controlling a incidence angle of formed by a vibration direction of the incident light and a main axis of the target substance-detecting element. | 12-25-2008 |
20090015833 | DEVICE AND METHOD FOR IMPROVING THE MEASUREMENT ACCURACY IN AN OPTICAL CD MEASUREMENT SYSTEM - A method and a device are disclosed, with which an improvement of the measurement accuracy for the determination of structure data is possible. There is provided a device having a support table ( | 01-15-2009 |
20090033936 | Optical characteristic measuring apparatus and optical characteristic measuring method - An optical characteristic measuring apparatus including a carrier retarder of which the retardation is known and a quarter-wave plate without wavelength dependence, wherein light emitted from a light source (light-emitting device) is incident on a measurement target through a first polarizer (polarizer), the carrier retarder, and the quarter-wave plate, and the light which has passed through the measurement target is incident on a photodetector through a second polarizer (analyzer). A spectral peak is extracted from a frequency spectrum obtained by analyzing a light intensity signal detected by the photodetector. The optical characteristic element of the measurement target is calculated based on the extracted spectral peak and the retardation of the carrier retarder. | 02-05-2009 |
20090051916 | Measuring Apparatus, Measuring Method, and Characteristic Measurement Unit - A measuring apparatus includes a light intensity information acquisition section | 02-26-2009 |
20090059227 | METHOD AND SYSTEM FOR THE POLARMETRIC ANALYSIS OF SCATTERING MEDIA UTILISING POLARIZATION DIFFERENCE SENSING (PDS) - A method for polarmetric analysis of scattering media. A first step involves directing stimulus from a linearly polarized stimulus source at a sample. A second step involves directing the stimulus coming from the sample through a collimating system into a polarization segregation unit which causes the stimulus to be segregated into a linearly polarized unscattered component and a depolarized scattered component. A third step involves quantification of scattering processes through computationally comparing the unscattered component and the scattered component. | 03-05-2009 |
20090066951 | Method for Evaluating an Optical Imaging Process - A method includes calculating destructive interference conditions between two linearly s-polarized waves and between two linearly p-polarized waves, respectively, in dependence on varying parameters of the s- and p-polarized waves, representing the destructive interference conditions in a diagram, setting an optical radiation field to be used in the optical imaging process, and comparing the optical radiation field with the diagram. | 03-12-2009 |
20090073441 | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method - There is disclosed a polarization-modulating element for modulating a polarization state of incident light into a predetermined polarization state, the polarization-modulating element being made of an optical material with optical activity and having a circumferentially varying thickness profile. | 03-19-2009 |
20090079982 | METHOD AND SYSTEM FOR STOKES POLARIZATION IMAGING - A device and a method for high-speed linear polarization imaging of a scene are disclosed. The device comprises a polarization modulator for modulating the polarization of light emitted from the scene in order to obtain at least three linear polarization states of the light. The polarization modulator comprises a polarizer, a first polarization rotation block comprising a fixed quarter-wave plate and a first liquid crystal operating as a quarter-wave plate, and a second polarization rotation block comprising a second liquid crystal operating as a half-wave plate. Each of the first and second liquid crystals arc switchable between two states, thereby providing the at least three polarization states to the polarization modulator. The device further comprises a sensor adapted to capture image frames of the light from the scene at each polarization state of the polarization modulator. | 03-26-2009 |
20090109437 | METHOD AND DEVICE FOR MEASURING POLARIZATION STATE AND POLARIZATION MODE DISPERSION IN PHOTONIC TRANSMISSION SYSTEMS - A method and device capable of evaluating the specific values of the polarization state of the signal transmitted in a photonic transmission system for a number of frequencies of one or more of the pulses extracted from the optical signal by means of the translation of the frequential components of polarization state of one or more pulses to the time domain by means of the use of an optical Fourier transformer, and their sampling, quantification and subsequent analysis. | 04-30-2009 |
20090116012 | APPARATUS AND METHODS FOR CONCENTRATION DETERMINATION USING POLORIZED LIGHT - Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes. | 05-07-2009 |
20090128814 | Modulated polarizer-based polarimeter, and method for determining the polarization state of an optical signal - In one embodiment, a polarimeter includes a modulated polarizer, a detector and a processing system. The modulated polarizer is modulated at a modulation frequency and is configured to transmit a portion of an optical signal based on its modulation. The detector is configured to generate a time-varying output signal related to a time-varying power of the transmitted portion of the optical signal. The processing system is configured to i) detect at least three frequency components of the time-varying output signal, and ii) determine the polarization state of the optical signal based on the at least three frequency components. | 05-21-2009 |
20090128815 | REMOTE CONTROL POINTING TECHNOLOGY WITH ROLL DETECTION - A roll detection system is disclosed for detecting a roll angle of a light emitting apparatus around a longitudinal axis thereof. The light emitting apparatus preferably is a pointing device ( | 05-21-2009 |
20090135422 | Visualizing Birefringent Structures in Samples - Apparatus and methods are disclosed for viewing low-birefringence structures within samples directly, with the eye, in real-time. The sample is placed between an entrance polarizer and analyzer polarizer, the transmission state of one of which is changed dynamically to create a modulated view of the scene; against this background, birefringent structures are visible because of their different appearance when modulated. Modulation rates of 4 or more states per second; use of 4 or more states, or even a continuum of states, which lie substantially on a latitude line on the Poincare sphere; and orientation of the polarization components to produce a uniform background; produce a clear view that does not produce operator fatigue. Broad-band wavelength operation spanning 50 nm or more, or the whole visible range, is achieved, and it is compatible with integration into other microscopy modes such as Hoffman relief contrast. | 05-28-2009 |
20090141274 | Polarization Dependent Loss Analyzer - A polarization dependent loss measuring device and the method of using the same are disclosed. The device includes a light source, a sensor, and a controller. The light source generates a polarization modulated light signal, and is adapted to apply the polarization modulated light signal to a device under test. The sensor generates an electrical output signal representing an intensity of an output light signal leaving the device under test as a function of time. The controller measures an amplitude and phase of the electrical output signal at a first frequency and generates an output indicative of a polarization dependent loss in the device under test. | 06-04-2009 |
20090147257 | Low-Loss Polarized Light Diversion - An optical sensor that provides lateral viewing while maintaining light polarization is disclosed according to one embodiment of the invention. The sensor includes a sensor body, at least one waveguide and at least one refractive optical element. The sensor body may includes proximal end and a distal end. The waveguide includes a proximal end coincident near the proximal end of the sensor body and a distal end coincident at a point near the distal end of the sensor body. The waveguide may include one or more fiber optic. The waveguide may be positioned within the sensor body. The refractive optical element may be positioned within the sensor near the distal end of the waveguide and may be configured to refract light received from the distal end of the waveguide outward from the sensor. The refractive optical element may include one or more prisms. | 06-11-2009 |
20090153858 | Method and apparatus for colour imaging a three-dimensional structure - A device for determining the surface topology and associated color of a structure, such as a teeth segment, includes a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided. | 06-18-2009 |
20090168062 | Inspection Method and Apparatus, Lithographic Apparatus, Lithographic Processing Cell, and Device Manufacturing Method to Measure a Property of a Substrate - A system is configured to measure two separately polarized beams upon diffraction from a substrate in order to determine properties of the substrate. Circularly or elliptically polarized light sources are passed via a fixed phase retarder in order to change the phase of one of two orthogonally polarized radiation beams with respect to the two beams. The relative phases of the two radiation beams and other features of the beams are measured in a detector to provide information on the properties of the substrate surface. | 07-02-2009 |
20090207408 | System and method of aligning a sample - A system and method of use thereof that enables determining and setting sample alignment based on the location of, and geometric attributes of a monitored image formed by reflection of an electromagnetic beam from a sample and into an image monitor, which beam is directed to be incident onto the sample along a locus which is substantially normal to the surface of the sample. | 08-20-2009 |
20090213374 | Optical Characteristic Measuring Apparatus and Optical Characteristics Measuring Method - An optical characteristic measuring apparatus includes an optical system | 08-27-2009 |
20090213375 | Optical method for the characterization of laterally-patterned samples in integrated circuits - Disclosed is a method for characterizing a sample having a structure disposed on or within the sample, comprising the steps of applying a first pulse of light to a surface of the sample for creating a propagating strain pulse in the sample, applying a second pulse of light to the surface so that the second pulse of light interacts with the propagating strain pulse in the sample, sensing from a reflection of the second pulse a change: in optical response of the sample, and relating a time of occurrence of the change in optical response to at least one dimension of the structure. | 08-27-2009 |
20090213376 | OPTICAL EQUIPMENT - Optical equipment for detecting beams emitted from a sample by irradiating the sample with linear polarization according to an aspect of the present invention includes a wavelength-independent optical path division element arranged at a position of coupling of a illumination optical path of the linear polarization and a detection optical path of the beams, and the linear polarization is reflected by the interface of the optical path division element entered as S polarization and led to the sample, and the beams pass through the optical path division element and are detected. | 08-27-2009 |
20090231582 | METHOD AND SYSTEM FOR DETERMINING POSITION AND ORIENTATION OF AN OBJECT - The invention relates to a positioning method for determining the position and orientation of a mobile unit having a receiver ( | 09-17-2009 |
20090237660 | Reading Machine With Camera Polarizer Layers - A reading machine includes an image input device including a lens and a polarizer disposed over the lens, a flash and a second polarizer disposed over the flash. The image input device also includes a computing device coupled to the image input device for capturing images, the computing device, including a processor to execute instructions and a computer program product residing on a computer readable medium, the computer program product comprising instructions for causing the processor to process the captured images to recognize features in the captured images. | 09-24-2009 |
20090237661 | LASER DEVICE AND MICROSCOPE - A laser device is equipped with an exciting optical system having a GaN semiconductor laser and a condensing lens; and a resonator having of a dichroic mirror and an output mirror, and a solid laser medium is disposed within the resonator. The solid laser medium is disposed in the resonator such that the c axis of a crystal is parallel to the x axis. The exciting optical system is disposed such that the direction in which excitation light emitted from the GaN semiconductor laser is polarized is parallel to the y axis, and is formed so as to absorb excitation light in the crystal axis perpendicular to the c axis. The direction in which the oscillation light emitted from the solid laser medium is polarized coincides with a direction parallel to the c-axis direction, and also coincides with a direction along the x axis. | 09-24-2009 |
20090237662 | REAL-TIME, HYBRID AMPLITUDE-TIME DIVISION POLARIMETRIC IMAGING CAMERA - This disclosure relates to a real-time, hybrid amplitude-time division polarimetric imaging camera used to derive and calculate Stokes parameters of input light. | 09-24-2009 |
20090244537 | OPTICAL SYSTEM, METHOD, AND COMPUTER READABLE MEDIUM - An optical system includes a light sending section that sends light to an object having a scattering medium and a lower medium positioned below the scattering medium, where the scattering medium scatters light and the lower medium feeds back polarized light in response to light incident thereon, a light receiving section that receives (i) light that is sent from the light sending section and then scattered by the scattering medium and (ii) light from the lower medium, and a thickness calculating section that calculates a thickness of the scattering medium, by referring to at least one of a non-polarization component and a polarization component of the light received by the light receiving section. | 10-01-2009 |
20090257058 | Method and Its Apparatus for Inspecting Defects - A defect inspection apparatus is capable of inspecting an extremely small defect present on the top and edge surfaces of a sample such as a semiconductor substrate or a thin film substrate with high sensitivity and at high speed. The defect inspection apparatus has an illumination optical system, a plurality of detection optical units and a signal processor. One or more of the detection optical units receives either light diffracted from an edge portion of the sample or light diffracted from an edge grip holding the sample. The one or more of the detection optical units shields the diffracted light received by the detection optical unit based on a signal obtained by monitoring an intensity of the diffracted light received by the detection optical unit in order to inspect a sample portion located near the edge portion and a sample portion located near the edge grip. | 10-15-2009 |
20090262348 | METHOD OF MODIFYING LIGHT WITH SILICONE (METH)ACRYLATE COPOLYMERS - A method of modifying light is disclosed and includes: providing an optical element having an oriented polymer network of a silicone (meth)acrylate copolymer and exhibiting a first phase and a second phase, the first phase and the second phase being chemically connected and having different refractive indices, the first phase being continuous, and the second phase comprising a plurality of structures dispersed within the first phase; illuminating the optical element with light from a light source; and detecting polarized or directionally diffused light transmitted by the optical element. Optical elements including the polymer network and a variety of additional layers are also disclosed, as are optical devices such as prisms, display panels, lenses, and the like. | 10-22-2009 |
20090262349 | ELECTROOPTIC PROBE FOR VECTOR MEASUREMENT OF AN ELECTROMAGNETIC FIELD - A device for measuring two components of an electromagnetic field in an analysis zone includes a light source for sending a polarized light beam into a polarization-maintaining optical fiber. The beam is directed along one axis of the fiber. An isotropic electrooptic material is placed in the zone for receiving the beam from the optical fiber via a substantially quarter-wave plate, which has its axes oriented at an angle of substantially 45° to the axes of the optical fiber and for sending a beam into the fiber. The plate is slightly detuned in regard to its characteristics or its orientation. The device further includes a phase-shifter for phase-shifting the beam sent into the fiber, wherein the phase-shifter is set so as to impose a phase shift equal and opposite to that imposed by the fiber and mechanism for analyzing the orientation and ellipticity of the wave exiting the phase-shifter. | 10-22-2009 |
20090279088 | SYSTEMS AND METHODS FOR MEASUREMENT OF A SPECIMEN WITH VACUUM ULTRAVIOLET LIGHT - Various systems for measurement of a specimen are provided. One system includes a first optical subsystem, which is disposed within a purged environment. The purged environment may be provided by a differential purging subsystem. The first optical subsystem performs measurements using vacuum ultraviolet light. This system also includes a second optical subsystem, which is disposed within a non-purged environment. The second optical subsystem performs measurements using non-vacuum ultraviolet light. Another system includes two or more optical subsystems configured to perform measurements of a specimen using vacuum ultraviolet light. The system also includes a purging subsystem configured to maintain a purged environment around the two or more optical subsystems. The purging subsystem is also configured to maintain the same level of purging in both optical subsystems. Some systems also include a cleaning subsystem configured to remove contaminants from a portion of a specimen prior to measurements at vacuum ultraviolet wavelengths. | 11-12-2009 |
20090316152 | Spectrometric analyzing device and spectrometric analyzing method - A spectrometric analyzing device is capable of analyzing a thin film with high accuracy by using light having an arbitrary wavelength, such as not only infrared light but also visible light, ultraviolet light and X-ray, and using whatever refractive index of a supporting member of the thin film. A spectrometric analyzing device comprises a light source ( | 12-24-2009 |
20090316153 | DETERMINING IN-BAND OPTICAL SIGNAL-TO-NOISE RATIOS IN OPTICAL SIGNALS WITH TIME-VARYING POLARIZATION STATES USING POLARIZATION EXTINCTION - A method and apparatus for improving the accuracy of in-band OSNR measurements using a conventional polarization extinction or polarization-nulling method. In particular, the severe degradations of the polarization extinction that result from slow and fast polarization fluctuations in the optical signal components during the in-band OSNR measurement are substantially mitigated by rapidly and/or randomly changing the state of polarization prior to conventional polarization control and filtering. | 12-24-2009 |
20100002230 | APPARATUS FOR MEASURING LIGHT PROCEEDING BACKWARD WITH PLASMONIC DEVICE - An apparatus for measuring light proceeding backward to which a plasmonic device is applied is disclosed. A disclosed optical apparatus according to the present invention includes: a plasmonic device including a thin metal film having apertures having a nano-sized diameter, disposed close to an object, and generating a near field in front of the apertures; a polarization modulation unit for adjusting the polarized state of light entering through the apertures of the plasmonic device, and making the light reflecting the strength of the near field proceed backward through the nano-apertures of the plasmonic device, and a measuring unit detecting properties of the object from the light proceeding backward from the polarization modulation unit. | 01-07-2010 |
20100007881 | SCATTERFIELD MICROSCOPICAL MEASURING METHOD AND APPARATUS - The present invention provides a scatterfield microscopical measuring method and apparatus, which combine scatterfield detecting technology into microscopical device so that the microscopical device is capable of measuring the sample whose dimension is under the limit of optical diffraction. The scatterfield microscopical measuring apparatus is capable of being controlled to focus uniform and collimated light beam on back focal plane of an objective lens disposed above the sample. By changing the position of the focus position on the back focal plane, it is capable of being adjusted to change the incident angle with respect to the sample. | 01-14-2010 |
20100014083 | Method and Apparatus for Inspecting Defects - An apparatus for inspecting a substrate surface is provided, which includes illumination optics for irradiating the substrate surface linearly with rectilinearly polarized light from an oblique direction, detection optics for acquiring images of the substrate surface, each of the images being formed by the light scattered from the light-irradiated substrate surface, and means for comparing an image selected as an inspection image from the plurality of substrate surface images that the detection optics has acquired to detect defects, and another image selected from the plural images of the substrate surface as a reference image different from the inspection image; the illumination optics being formed with polarization control means for controlling a polarizing direction of the light according to a particular scanning direction of the substrate or a direction orthogonal to the scanning direction. | 01-21-2010 |
20100027008 | On-Chip Polarimetry for High-Throughput Screening of Nanoliter and Smaller Sample Volumes - A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate ( | 02-04-2010 |
20100053615 | ROTATION DETECTION KIT - A rotation detection kit, comprising: a beam source; a receiver comprising at least one beam intensity sensor; a polariser device for location in the path of a beam emitted from the beam source and received by the beam sensor; and a modulator. The modulator is configured to modulate at least one of i) the beam source and ii) a beam emitted by the beam source to create a discretely varying polarisation orientation thereby defining first and at least second temporally spaced beam portions. The temporally spaced beam portions are incident on the polariser device and the beam sensor and have substantially identical profiles and at least an initial common propagation axis toward the polariser device. | 03-04-2010 |
20100067008 | METHOD AND APPARATUS FOR EVALUATING SAMPLES - For detecting and storing information on optical properties analytical samples are digitally scanned with filters put in front of and behind the samples. A device for performing this method has means for putting filters on each side of the analytical samples. The filters may be polarizers, fluorescence filters etc. | 03-18-2010 |
20100085570 | REAL-TIME PCR MONITORING APPARATUS - The present invention relates to a real-time PCR monitoring apparatus for real-time monitoring production of reaction product produced during the reaction while performing nucleic acid amplification such as PCR for various kinds of trace samples. Specifically, the present invention relates to an apparatus for real-time monitoring biochemical reaction for efficiently dividing interference between an excitation light and a fluorescence, which includes a polarizer, a polarizing beam splitter, a polarization converter and so on. | 04-08-2010 |
20100091281 | METHOD FOR DETECTING EDGE ON TRANSPARENT SUBSTRATE, APPARATUS FOR DETECTING EDGE ON TRANSPARENT SUBSTRATE, AND PROCESSING APPARATUS - An apparatus for detecting an edge of a transparent substrate includes a light source provided on a rear side of the edge of the transparent substrate, a first polarizer provided between the transparent substrate and the light source and arranged to convert light from the light source to linearly polarized light, a light receiving unit provided on a front side of the edge of the transparent substrate, and a second polarizer provided between the transparent substrate and the light receiving unit, and having a polarization axis that is perpendicular or substantially perpendicular to a polarization axis of the first polarizer. The light receiving unit is configured to observe, through the second polarizer, the linearly polarized light that is converted by the first polarizer and is transmitted through the edge of the transparent substrate, the linearly polarized light that is converted by the first polarizer and passes outside the transparent substrate, and emitted light that is converted by the first polarizer, and is propagated through inside of the transparent substrate and emitted from a side surface of the edge of the transparent substrate. | 04-15-2010 |
20100103417 | Optical Characteristic Measuring Apparatus, Optical Characteristic Measuring Method, and Optical Characteristic Measuring Unit - An optical characteristic measuring device includes: an optical system ( | 04-29-2010 |
20100103418 | APPARATUS AND METHODS FOR CONCENTRATION DETERMINATION USING POLORIZED LIGHT - Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes. | 04-29-2010 |
20100103419 | Defect inspection apparatus, defect inspection method and method of inspecting hole pattern - A defect inspection apparatus for inspecting a defect of a substrate as an object to be inspected comprises an illumination optical system for illuminating the substrate, a receiving optical system for receiving diffracted light from the substrate and a polarizing element provided in either one of the illumination optical system or the receiving optical system. | 04-29-2010 |
20100118304 | METHOD FOR MEASURING POLARIZATION CHARACTERISTICS AND MEASUREMENT APPARATUS - In a measurement method for measuring polarization characteristics in which an image of a mask pattern is projected onto an image plane, a first and second slit having a width less than or equal to the wavelength of a light source are displaced on the image plane and light passing through the first and second slit is detected to obtain a first and second light intensity distribution with respect to the direction of displacement of the first and second slit. The positions at which the first light intensity distribution takes a maximum and a minimum value are determined. An index value is calculated using the respective light intensities in the second light intensity distribution at positions corresponding to the determined maximum and minimum positions. Polarization characteristics corresponding to the calculated index value are obtained by using information expressing the relationship between the index value and the polarization characteristics. | 05-13-2010 |
20100128267 | AUTOMATIC BREWSTER ANGLE REFRACTOMETER - An improved refractometer for automatically determining the refractive index of a test subject by using principles embodied in Brewster's Angle, the refractometer comprising a light source, a light detector, a subject mount for securing the test subject to the device, a positioning device to orient the light source and light detector to the subject such that the angles of the light source and light detector to the subject are substantially identical, a data gathering device to automatically retrieve relevant data regarding the angles of the light source and light detector to the subject and the light intensity of the reflected light, and a computational device to process the data using algorithms taking into account the principles embodied in Brewster's Angle and/or Fresnel Equations in order to arrive at the refractive index of the test subject. | 05-27-2010 |
20100157297 | Apparatus and method of testing liquid crystal display device - A liquid crystal display (LCD) device testing apparatus that comprises a stage configured in an air-floating structure to feed a liquid crystal panel including combined upper and lower substrates, a backlight unit configured to include a light source for an emission of light disposed under the stage, a protective film formed to encompass and protect the light source, and a lower polarizing plate formed on the protective film to firstly polarize light emitted from the light source in a fixed axis direction, an upper polarizing plate separated from the upper surface of the liquid crystal panel by a fixed distance to secondarily polarize light from the liquid crystal panel in the fixed axis direction; and a charge couple device (CCD) camera disposed on the upper polarizing plate to scan an image on the liquid crystal panel using light secondarily polarized by the upper polarizing plate. | 06-24-2010 |
20100165343 | REGISTER MARK DTECTION APPARATUS - A register mark detecting apparatus detects a transparent register mark printed on a conveyed transparent web. The register mark detecting apparatus includes a light source, a parallel light flux irradiation optical system, a collective optical system, a knife-edge, and a light receiving element. The parallel light flux irradiation optical system converts a light flux from the light source into a parallel light flux to irradiate a transparent web with the parallel light flux. The collective optical system collects the light flux transmitted through the transparent web. The knife-edge is disposed near a back focus of the collective optical system. The knife-edge interrupts the light flux going straight in the transparent web and causes only the light flux refracted by being transmitted through the transparent register mark to pass by. The light receiving element receives the light flux transmitted through the knife-edge. | 07-01-2010 |
20100171955 | DISPLACEMENT SENSOR - This invention provides a displacement measurement device, a displacement measurement method, and a thickness measurement device capable of easily ensuring a conjugate relationship between the light source and the diaphragm and capable of accurately measuring the change in distance with the testing target. In the displacement measurement device, the light from the laser diode is collected towards the pin hole of the diaphragm plate at the collective lens, and then sent to the objective lens through the pin hole. The light is reflected at a surface of work, and detected by a photodiode through the objective lens, the pin hole, the collective lens, and the half mirror. That is, the pin hole becomes a substantial light source, and becomes a diaphragm with respect to the incident light on the work. The spot diameter collected on the pin hole by the collective lens is greater than the diameter of the pin hole. The light receiving quantity signal of the return light component on a diaphragm plate, shown with an outlined arrow, is removed by a high-pass filter. | 07-08-2010 |
20100177312 | SURFACE INSPECTION METHOD AND SURFACE INSPECTION DEVICE - A surface inspection method inspects a surface of a wafer having a repeated pattern formed by double patterning. The method includes: a first step (S | 07-15-2010 |
20100195101 | Method and Apparatus for Determining Concentration Using Polarized Light - An apparatus and method for determining the concentration of chiral molecules in a fluid includes a first polarizer configure to polarize light in substantially a first plane to provide initially polarized light. A second polarizer is capable of polarizing the initially polarized light in a plurality of planes, at least one of the plurality of planes being different from the first plane, to provide subsequently polarized light. One or more receivers are included for measuring an intensity of the subsequently polarized light in one or more of the plurality of planes. | 08-05-2010 |
20100220324 | DOWNHOLE SENSORS USING MANUFACTURED ANISOTROPIC PERMITTIVITY - A apparatus for use in a borehole in an earth formation. The apparatus may include: an electromagnetic source; an anisotropic permittivity material, either natural or manufactured, receiving electromagnetic radiation from the electromagnetic source; and a detector for estimating the electromagnetic radiation transmitted through the anisotropic permittivity material as an indication of a parameter of interest. Also, a method of estimating a parameter of interest using the aforementioned apparatus. | 09-02-2010 |
20100225914 | METHOD FOR MONITORING AND MEASURING OPTICAL PROPERTIES OF DEVICE IN POLARIZATION MAINTAINING FIBERS BY USING REFERENCE FIBER BRAGG GRATING AND FIBER COMPONENTS MANUFACTURED THEREBY - This invention provides a method for measuring and monitoring the state of polarization (SOP) of a polarization maintaining (PM) fiber and the like using a narrowband fiber Bragg grating (FBG) written on the same. The PM fiber therefore comprises a first narrowband reference FBG which is used as a reference to measure and monitor the SOP of the PM fiber. Due to the birefringence properties of the PM fiber, the reference FBG will generally reflect two narrowband spectra, each having a central wavelength; one in the slow axis and one in the fast axis. By measuring the intensity of the reflected spectra in each axis and by tuning the fiber with a polarization controller, it is possible to adjust the fiber to a predetermined SOP. After having adjusted the PM fiber to a predetermined SOP, it is possible to accurately measure the optical properties of a second grating, or of another optical device, according to the predetermined SOP. The method of the present invention can also be advantageously used for accurate measurement of reflectivity. | 09-09-2010 |
20100231911 | Circular Birefringence Refractometer: Method And Apparatus For Measuring Optical Activity - A system and method for detection and measurement of circular birefringences in materials, such as optically active (chiral) liquids and materials that exhibit the Faraday effect. The method and apparatus permit the detection of optical activities via the difference in the directions of propagation the left- and the right-circularly polarized light (components). A beam of light is directed at an interface formed by the optically active medium and another medium such that a difference in the angles of refraction and/or reflection and/or diffraction between the left- and the right-circularly polarized components of the light beam can be detected. The difference in the propagation directions between the two circularly polarized light components is measured on a position sensitive detector and/or is detected as an intensity difference. The circular birefringence in isotropic liquids is a measure of their optical purity (enantiomeric excess) and hence the invention presents a method and apparatus to measure chirality. The invention is thus related to optical rotation (polarimetric) measurements, but has the advantage that it does not depend on path-length traversed through the sample. | 09-16-2010 |
20100265504 | OPTICAL DEVICE WITH SUPERIMPOSED PHOTONIC CIRCUITS FOR COUPLING TO ONE OR MORE OPTICAL WAVEGUIDES - Said device comprises a substrate ( | 10-21-2010 |
20100309469 | System and method for entangled photons generation and measurement - Apparatus and method for producing quantum entangled signal and idler photon pairs is provided. The apparatus makes use of a nonlinear optical fiber to generate the entangled photons. The use of an external broad band light source for alignment of any downstream measurement apparatuses is disclosed. One or more polarized output signals can be generated at both the signal and idler wavelengths using the alignment source, allowing the downstream measurement apparatuses to be aligned using classical light. Multiple signal and idler wavelengths can be generated and aligned using such a system. | 12-09-2010 |
20100315640 | POLARIZATION CONTROLLER - A feedforward controller for controlling the polarization state of an optical signal. The feedforward controller includes an optical input for receiving an optical input signal having an input polarization state, an optical output for transmitting an optical output signal having an output polarization state, a polarization controller coupled to the optical input and the optical output, and a transfer function determiner for determining a characteristic polarization transfer function of the feedforward controller from the input and output polarization states. The polarization controller is adapted to modify the polarization state of light passing therethrough in dependence on the characteristic polarization transfer function of the feedforward controller. | 12-16-2010 |
20110001971 | ELECTROMAGNETIC FIELD MEASUREMENT DEVICE - There is provided an electromagnetic field measurement apparatus capable of achieving correct and timely circuit operation detection in an area where electronic devices are mounted at high density. An electromagnetic field measurement apparatus includes: a laser light source; a polarized wave controller that linearly polarizes laser light; an optical fiber probe that has an electrooptic material or a magnetooptic material at its leading end and in which the laser light reflected at the leading end is subjected to polarization modulation in accordance with an electric field intensity or a magnetic field intensity; and an analyzer that converts the laser light reflected by the optical fiber probe into intensity modulated light. The laser light source emits time-multiplexed laser light of a plurality of wavelengths different from one another. The electromagnetic field measurement apparatus further includes: an optical circulator that outputs the laser light linearly polarized by the polarized wave controller to a multiplexer/demultiplexer and outputs the laser light input from the multiplexer/demultiplexer to the analyzer; and a multiplexer/demultiplexer that outputs the laser light to different optical fiber probes according to the wavelength of the laser light and outputs the laser light to the optical circulator. | 01-06-2011 |
20110013186 | OPTICAL DISPLACEMENT METER - An optical displacement meter includes: a broadband light source; a spatial filter configured to extract light under measurement of a wavelength focused on a measurement target and specify the wavelength of the light under measurement; a polarizer configured to divide the light collimated and caused to propagate in one direction into linearly polarized beams of two directions orthogonal to a propagating direction; a wavelength plate that allows passage of the linearly polarized beams to produce elliptically polarized light having a phase difference commensurate with a light wavelength; a polarized light separation element configured to divide the elliptically polarized light into polarized light components with respect to the two directions; a light receiving element configured to detect quantities of the respective polarized light components; and a computing circuit configured to perform computation of (A−B)/(A+B) by use of light quantity signals A and B detected by the light receiving element. | 01-20-2011 |
20110032523 | GLASS CONTAINER WALL THICKNESS MEASUREMENT USING FLUORESCENCE - An apparatus and method for measurement of the stress in and thickness of the walls of glass containers is disclosed that uses fluorescence to quickly and accurately ascertain both the thickness of the stress layers and the wall thickness in addition to the stress curve in glass containers. The apparatus and method may be used to quickly and accurately measure both the stress in and the thickness of the side walls of glass containers throughout the circumference of the glass containers. The apparatus and method are adapted for large scale glass container manufacturing, and are capable of high speed measurement of the stress in and the thickness of the side walls of glass containers. | 02-10-2011 |
20110032524 | Glass Thickness Measurement Using Fluorescence - An apparatus and method for measurement of the stress in and thickness of flat glass or curved glass segments is disclosed that uses fluorescence to quickly and accurately ascertain both the thickness of the stress layers and the wall thickness in addition to the stress curve in flat glass or curved glass segments. The apparatus and method may be used to quickly and accurately measure both the stress in and the thickness of flat glass or curved glass segments at a plurality of various locations therein. The apparatus and method are adapted for large scale flat glass or curved glass segment manufacturing, and are capable of high speed measurement of the stress in and the thickness of the flat glass or curved glass segments. | 02-10-2011 |
20110058169 | LINE SCANNING MEASUREMENT SYSTEM - A line scanning measurement system includes an illumination apparatus, a support, a telecentric optical element and a processor. The illumination apparatus is utilized for providing an extended polarized light beam. The support is utilized for mounting a sample, and the extended polarized light beam is directed at the sample. The telecentric optical element is utilized for directing a measurement light beam that has interacted with the sample toward a line scanning detector. The processor is utilized for obtaining the characteristic information of the sample in accordance with the signal measured by the line scanning detector. | 03-10-2011 |
20110075144 | VISUAL APPEARANCE MEASUREMENT METHOD AND SYSTEM FOR RANDOMLY ARRANGED BIREFRINGENT FIBERS - Methods and apparatus to measure visual appearance of randomly arranged birefringent fibers are disclosed. One method comprises emitting light, creating N | 03-31-2011 |
20110090501 | Assembly For Monitoring Power of Randomly Polarized Light - A unit for measuring a power of randomly polarized light beam is configured with spaced first and second beam splitters having respective reflective surfaces which face one another and configured to sequentially reflect a fraction of randomly polarized beam which is incident upon the first splitter. The beam splitters are dimensioned and shaped so that an output beam, reflected from the second beam splitter, has a power independent from the state of polarization of the randomly polarized beam. | 04-21-2011 |
20110090502 | APPARATUS AND METHOD FOR DETECTING ARRAY SUBSTRATE - An apparatus for detecting an array substrate, comprising: a transparent carrier for supporting an array substrate to be detected thereon; a light source disposed on one side of the transparent carrier; a modulator disposed on the other side of the transparent carrier in parallel with the transparent carrier, and comprising a liquid crystal layer and two transparent substrate layers disposed on both sides of the liquid crystal layers, wherein one transparent substrate layer away from the transparent carrier is a first transparent conductive substrate layer, and a second polarizer is disposed on the first transparent conductive substrate layer; a first polarizer, disposed between the light source and the transparent carrier, so that the light emitted from the light source is transmitted through the first polarizer to radiate on the transparent carrier; and a light receiver receiving the light emitted from the light source and then transmitted through the transparent carrier, the array substrate to be detected and the modulator. | 04-21-2011 |
20110096328 | Multi-Signal Determination of Polarization Dependent Characteristic - A method of determining polarization dependent characteristic of an optical device under test ( | 04-28-2011 |
20110134429 | BIREFRINGENCE MEASURING DEVICE AND BIREFRINGENCE MEASURING METHOD - The present invention is a birefringence measuring device that requires only three types of light intensity information and thus, can measure birefringence characteristics of an object to be measured with relatively inexpensive device configuration and comprises a light source | 06-09-2011 |
20110149282 | Polarimeter and Polarimetry Method - A polarimeter and polarimetry method are disclosed of the type in which light polarization rotating properties of a sample are measured by interposing the sample in the path of a light beam having base plane polarization in a plane of known orientation; along the beam path, compensating or nulling the rotation introduced by the sample, and determining the optical rotational properties of the sample based on the amount of compensation introduced to the light beam. In accordance with one aspect of the present invention, the light beam is subjected to plural compensations along its path the compensations being of at least two different types. Preferably, one of the types of compensation is mechanical, introduced through a device in which polarization rotation is adjusted mechanically, and the second type of compensation is provided through a device in which polarization rotation is controlled electrically. In accordance with another aspect of the invention, a first polarization rotation compensation is performed with the sample in the beam path, the sample is removed, and compensation is restored by performing a second polarization rotation compensation, the second compensation being used to determine the polarization rotation introduced by the sample. | 06-23-2011 |
20110164250 | Apparatus and Methods For Concentration Determination Using Polarized Light - Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes. | 07-07-2011 |
20110170100 | Single-Lens 3-D Imaging Device Using Polarization Coded Aperture Masks Combined with Polarization Sensitive Sensor - A device and method for three-dimensional (3-D) imaging using a defocusing technique is disclosed. The device comprises a lens, at least one polarization-coded aperture obstructing the lens, a polarization-sensitive sensor operable for capturing electromagnetic radiation transmitted from an object through the lens and the at least one polarization-coded aperture, and a processor communicatively connected with the sensor for processing the sensor information and producing a 3-D image of the object. | 07-14-2011 |
20110181882 | METHOD AND APPARATUS FOR DETERMINING CONCENTRATION USING POLARIZED LIGHT - An apparatus and method for determining the concentration of chiral molecules in a fluid includes a first polarizer configure to polarize light in substantially a first plane to provide initially polarized light. A second polarizer is capable of polarizing the initially polarized light in a plurality of planes, at least one of the plurality of planes being different from the first plane, to provide subsequently polarized light. One or more receivers are included for measuring an intensity of the subsequently polarized light in one or more of the plurality of planes. | 07-28-2011 |
20110205539 | DEVICE AND METHOD FOR TAKING SPECTROSCOPIC POLARIMETRIC MEASUREMENTS IN THE VISIBLE AND NEAR-INFRARED RANGES - A spectroscopic polarimetric system of broad spectral range, includes a light source suitable for emitting an incident light beam over a wavelength range, a polarization state generator (PSG), a polarization state analyzer (PSA), and a detector. The PSG and the PSA have respective elements for modulating the polarization of the light beam. The elements of the PSG for modulating polarization are suitable for generating a sequence of m polarization states with m>4 at each measurement wavelength, the elements of the PSA for modulating polarization are suitable for determining a sequence of n polarization states with n>4 for each measurement wavelength, and the detector elements are suitable for acquiring a sequence of N measurements with 1608-25-2011 | |
20110292388 | Optically Active Functional Fluid Markers - The present invention relates to a method of identifying in a fluid by measuring the amount of optical rotation the fluid causes in a beam of polarized light. The invention further provides for the use of an optional optically active marker in the fluids in order the impact the amount of rotation the fluid will cause. The invention provides a convenient and reliable means for identifying the fluid before, during and/or after the fluid's use. | 12-01-2011 |
20110299080 | CHARACTERIZING OPTICAL ANTENNA NEAR FIELD TRANSDUCERS - An apparatus and associated method for characterizing a near field transducer (NFT) is provided that has computer instructions stored in memory and executable to perform computational logic that, in response to a selected electromagnetic radiation excitation of resonant collective oscillations on a surface of the NFT, compares a magnitude of a depolarization field associated with the excited resonant collective oscillations to a predetermined threshold to characterize the NFT in terms of demonstrated radiant efficiency performance. | 12-08-2011 |
20110299081 | Optically Active Functional Fluid Markers - The present invention relates to a method of identifying in a fluid by measuring the amount of optical rotation the fluid causes in a beam of polarized light. The invention further provides for the use of an optional optically active marker in the fluids in order the impact the amount of rotation the fluid will cause. The invention provides a convenient and reliable means for identifying the fluid before, during and/or after the fluid's use. | 12-08-2011 |
20120081707 | SHEAR FLOW DEVICE AND METHODS OF USE - The present invention relates to shear flow device | 04-05-2012 |
20120092668 | Patterned polarization converter - The present invention provides a patterned polarization converter having multiple domains that can be used to convert input linear polarized light to output light with spatially varying polarization states, including domains that produce linearly polarized light and domains that produce circular polarized light based on the patterning of the domains. A patterned polarization converter having multiple domains may be used in a polarization sensor application capable of detecting the polarization state of input light. The present invention further provides patterned radial and azimuthal polarization converters, which have utility in applications such as optical tweezers. Additionally, patterned polarization converters may be used to fabricate more patterned polarization converters having the same pattern using one-step photoalignment to copy the pattern of an existing patterned polarization converter to an unpatterned photoalignment layer. | 04-19-2012 |
20120099106 | Sealing inspection device and sealing inspection method of flat panel display apparatus by using the sealing inspection device - A sealing inspection device for detecting a bonding error at a sealing region of an upper and a lower plate in a flat panel display apparatus in which the upper and lower plates are bonded to each other by a sealing member, the sealing inspection device includes a light source configured to emit light, a polarizer configured to polarize the light emitted from the light source, the polarized light being incident on and reflected from the sealing region of the flat panel display, an optical spectrum analyzer configured to analyze the light reflected from the sealing region with respect to wavelength ranges and to determine whether a bonding error exits at the sealing region, and a beam splitter configured to change a path of the reflected light toward the optical spectrum analyzer. | 04-26-2012 |
20120105850 | CASSETTE-BASED METHOD AND APPARATUS FOR MEASURING THE PRESENCE AND CONCENTRATION OF PHARMACEUTICAL SUBSTANCES IN A MEDICAL FLUID - A medical fluid delivery system includes a medical fluid delivery machine including a light source configured to generate a light beam; a polarizer configured to receive the light beam and to allow a portion of the light beam within the medical fluid to be transmitted through the polarizer, a photodetector to provide a measurement of an intensity of the light beam transmitted through a medical fluid and the polarizer; a medical fluid cassette operating with the medical fluid machine to pump the medical fluid, the medical fluid cassette loaded onto the medical fluid delivery machine such that the light source resides on a first side of the cassette and the photodetector resides on a second side of the cassette; and a computer configured to use the measurement of the intensity to determine whether the medical fluid can be delivered to a patient. | 05-03-2012 |
20120133937 | IMAGING SYSTEM - A method of obtaining, in a single exposure, imaging information from an object ( | 05-31-2012 |
20120182551 | FREE SPACE SINGLE-MODE FIBERS AND FIBER COMPONENTS FOR FIBER SENSOR APPLICATIONS - This invention revealed and demonstrated a method of measuring and deriving a Jones Matrix of a fiber or fiber component, and to compensate the fiber or fiber component such that the fiber or fiber component plus the compensated optical circuit act as if an Unitary Matrix free space condition. In this way, all compensated fibers or fiber components act the same no matter what their original conditions are. It greatly enhances the fiber or fiber component repeatability and stability throughout the fiber or fiber component production line. The compensated circuit for Unitary Matrix can be applied externally or internally. | 07-19-2012 |
20120182552 | OPTICAL SENSOR AND METHOD FOR DETECTING MOLECULES - The invention relates to an optical sensor comprising an optical waveguide ( | 07-19-2012 |
20120206723 | DEVICE FOR DETECTING ELECTROMAGNETIC RADIATION COMPRISING A DIFFUSION JUNCTION AND A RESONANT GRATING IN A SINGLE LAYER - A photodiode device including a photosensitive diffusion junction within a single layer. The photodiode device further includes a resonant grating located within the single layer. The photosensitive diffusion junction is located within the resonant grating. | 08-16-2012 |
20120212741 | METHOD AND INSPECTION DEVICE FOR BRIGHT SPOT DEFECT DETECTION OF A POLARIZER - A method of bright spot defect detection for a polarizer is to be performed by an inspection device and includes the steps of: a) obtaining gray values for pixels of an image of a detected region, that contains a target spot, on the polarizer; b) obtaining a gray value variation score from the gray values obtained for the detected region, the gray value variation score being indicative of gray value variation among the pixels of the image of the detected region; and c) comparing the gray value variation score obtained for the detected region with a threshold value to obtain a comparison result, and determining whether the target spot is a bright spot according to the comparison result. | 08-23-2012 |
20120212742 | OPTICAL PARAMETER MEASURING APPARATUS AND OPTICAL PARAMETER MEASURING METHOD - An optical parameter measuring apparatus for measuring optical parameters of an object includes a light source, a polarizing module, a Stokes polarimeter and a calculating module. The light source emits a light which is polarized by the polarizing module and received by the Stokes polarimeter. According to the light information generated by the Stokes polarimeter, Mueller matrixes of linear birefringence, circular birefringence, linear dichroism, circular dichroism and linear/circular depolarization of the object, and Stokes vector established according to the Mueller matrixes, the calculating module calculates the optical parameters. | 08-23-2012 |
20120236306 | Cuvette and Optical Measurement Apparatus - A cuvette comprising a cuvette wall for limiting a sample reception space for receiving a fluid sample is disclosed. The cuvette wall is adapted to allow a traversal of measurement radiation through the fluid sample situated within the sample reception space. An information presenter is fixed at the cuvette wall. The information presenter wirelessly provides data to be transferred to an external data reception module. The data to be transferred relates to the cuvette. Further, an optical measurement apparatus is described. | 09-20-2012 |
20120268742 | APPARATUS AND METHOD FOR INSPECTING PATTERN DEFECT - Provided is a pattern defect inspecting apparatus wherein inspection performance is stabilized. The defect inspecting apparatus, which has a plurality of configuration units and inspects defects on the surface of a sample, is provided with a means for monitoring time-dependent changes and failures of some of or all of the configuration units, and a means for notifying the user of the results of the monitoring. Furthermore, a unit which can perform correction is provided with a correcting means, and also a means for replacing a failure component with a spare component which has been prepared in the device. | 10-25-2012 |
20120274939 | AUTOMATIC INSPECTION APPARATUS FOR DETECTING STAINS ON POLARIZING PLATE USING COLOR DIFFERENCE ANALYSIS AND INSPECTION METHOD THEREOF - There is provided an automatic inspection apparatus and method for detecting stains on a polarizing plate using color difference analysis. The automatic inspection apparatus includes an inspection unit including at least one reference polarizing plate and a target polarizing plate or polarizing element mounted on the at least one reference polarizing plate; a light source unit disposed on one surface of the inspection unit and irradiating the inspection unit with light; an imaging unit disposed on the other surface of the inspection unit, imaging the target polarizing plate or polarizing element, and transferring an image thereof; and an arithmetic operation unit performing color difference analysis for individual inspection regions of the image of the target polarizing plate or polarizing element transferred by the imaging unit and detecting a blurred stain. | 11-01-2012 |
20120287436 | DEVICE AND PROCESS FOR MEASURING THE ANGLE OF ROTATION OF TWO OBJECTS ROTATING IN RELATION TO EACH OTHER - Measurement of the rotating angle of two objects rotating in relation to each other is achieved with a transmitter assigned to one of the objects. The transmitter emits light that is either polarized or becomes polarized by means of a polarization filter, and with a polarization-sensitive polarizer such that the transmitter and the polarizer rotate relative to each other as dependent on the rotating angle. A receiver measures the luminosity of light passing through the polarizer in order to create a signal that is dependent on the rotating angle, and where the receiver has at least two receiver elements which detect light of differing polarization. | 11-15-2012 |
20120293800 | DEVICE AND METHOD FOR DETECTING BIOLOGICAL MATERIAL - The invention relates to a device for detecting biological materials, comprising a light source ( | 11-22-2012 |
20120300207 | DEVICE FOR DETERMINING THE VOLUME FRACTION OF AT LEAST ONE COMPONENT OF A MULTI-PHASE MEDIUM - A device for determining the volume fraction of at least one component of a multi-phase medium on the basis of the running time of an electromagnetic desired signal emitted in the multi-phase medium, having at least one emitting device for emitting the desired signal into the multi-phase medium, having at least one receiving device for receiving the desired signal, and having an evaluation device for determining the running time of the desired signal between the emitting device and the receiving device, and at least one polarization device arranged between the emitting device and the receiving device. The desired signal is emitted at least indirectly from the emitting device through the multi-phase medium to the polarization device, the polarization device influences the polarization of the desired signal and the polarization-influenced desired signal is emitted at least indirectly from the polarization device to the receiving device which receives it. | 11-29-2012 |
20120314215 | Measurement of small wavelength difference in coherent light using faraday effect - An apparatus is provided for determining a target wavelength λ of a target photon beam. The apparatus includes a photon emitter, a pre-selection polarizer, a prism composed of a Faraday medium, a post-selection polarizer, a detector and an analyzer. The photon emitter projects a monochromatic light beam at the target wavelength λ substantially parallel to a magnetic field having strength B. The target wavelength is offset from established wavelength λ′ as λ=λ′+Δλ by wavelength difference of Δλ<<λ. The Faraday prism has Verdet value V. After passing through the pre-selection polarizer, the light beam passes through the prism and is incident to an interface surface at incidence angle θ | 12-13-2012 |
20120327413 | CHIP-SCALE OPTICS MODULE FOR OPTICAL INTERROGATORS - A method is disclosed for manufacturing a chip-scale optics module for an optical interrogator. The method includes aligning a polarization axis of a linear polarizer to an angle of 45 degrees from a fast axis of a quarter wave plate to enable circular polarization of a beam, when a beam is introduced to the linear polarizer, coupling the linear polarizer to the quarter wave plate after the aligning to form a circular polarizing filter sheet and then dicing the circular polarizing filter sheet to obtain a plurality of chip-scale circular polarizing filters. Each of the chip-scale circular polarizing filters is diced to have an edge that defines a polarization location index for the linear polarizer. A linear polarizer plate face of one of the chip-scale circular polarizing filters is then positioned so that the linear polarizer plate face is aligned with and parallel to an output face of a laser, whereby the polarization axis of the linear polarizer is not orthogonal to a polarization axis of the laser. The chip-scale circular polarizing filter is coupled to a frame after the positioning step. | 12-27-2012 |
20130010295 | SYSTEM AND METHOD FOR POLARIZATION MEASUREMENT - A system and method are presented for use in measuring polarization of an optical beam. The system is configured and operable for determining polarization profile along a cross section of the input optical beam, and comprises an optical system and a pixel matrix. The optical system comprises a polarization beam splitting assembly configured and operable for splitting said input optical beam into a predetermined number of beam components with a predetermined polarization relation between them, the polarization beam splitting assembly comprising a first polarization beam splitter in an optical path of the input optical beam splitting said input optical beam into a first plurality of beam components with a certain polarization relation between them and a birefringent element in an optical path of said first plurality of the beam components for splitting each of them into a pair of beams having ordinary and extraordinary polarizations, thereby producing said predetermined number of output beam components. The pixel matrix is located in substantially non intersecting optical paths of said output beam components and generates a corresponding number of output data pieces indicative of intensity distribution within said output beam components, respectively, data contained in said data pieces being indicative of the polarization profile along the cross section of the input optical beam. | 01-10-2013 |
20130027703 | Luminous Unit - A luminous unit for an optical gas detector, an optical gas detector including the luminous unit, and a method of recording an absorption spectrum in an optical gas detector include a light source for linearly polarised light radiation and a housing with an exit window. A wavelength of the light radiation radiated from the light source is tunable. The light source is arranged in the housing such that the main emission direction (OA) of the light source encloses an inclination angle (φ) of between 10° and 50° with a normal (N) to the main extension plane (HE) of the exit window. The direction of polarisation (P) of the light radiation encloses a rotation angle (θ) of between 22.5° and 67.5° with the plane of incidence on the exit window. | 01-31-2013 |
20130033707 | POLARIZATION STATE MEASUREMENT APPARATUS AND POLARIZATION STATE MEASUREMENT METHOD - An optical apparatus has a light detecting section which detects light and emits transmitted light where linearly polarized light, which is converted by a polarizing section, is transmitted through a subject. In addition, the optical apparatus has an orthogonal separating section which orthogonally separates the emitted light from the light detecting section and a light reception section which receives light which is orthogonally separated by the orthogonal separating section. A calculation apparatus outputs a rotation control signal to a rotation apparatus and rotation controls the light detecting section so that the rotation plane is orthogonal with regard to an optical path of the transmitted light. Then, the calculation apparatus measures the polarization state of the transmitted light, which is transmitted through the subject S using the intensity with which the light, is received by the light receiving section. | 02-07-2013 |
20130038875 | DEVICE AND METHOD FOR DISTRIBUTING ILLUMINATION LIGHT AND DETECTED LIGHT IN A MICROSCOPE - A device for distributing illumination light and detected light in a microscope includes a distributor optic configured to guide illumination light onto a sample and guide detected light proceeding from the sample onto a detector. The distributor optic includes a polarization unit disposed in a first light path and configured to convert the illumination light directed onto the sample into a first polarization state, a beam splitter disposed in the first light path and having the polarization dependence so as to guide the converted illumination light onto the sample, a first portion of the detected light back into the first light path, and a second portion of the detected light into a second light path separated from the first light path. A beam combiner is configured to combine the first portion and the second portion of the detected light and guide the first portion and second portion onto the detector. | 02-14-2013 |
20130083323 | PHOTOELECTRIC AUTOCOLLIMATION METHOD AND APPARATUS BASED ON BEAM DRIFT COMPENSATION - Photoelectric autocollimation methods and apparatuses based on beam drift compensation are provided. The methods and apparatuses can be used to achieve a high autocollimation angle measurement accuracy. The apparatuses includes an autocollimator, a measurement mirror ( | 04-04-2013 |
20130107257 | MULTICHANNEL POLARIZATION STABILIZATION EMPLOYING SYNCHRONOUS PHASE-LOCKING METHODS | 05-02-2013 |
20130114078 | DEFECT INSPECTION METHOD AND DEVICE THEREFOR - Disclosed is a defect inspection method which makes it possible to scan the entire surface of a sample and detect minute defects without causing thermal damage to the sample. A defect inspection method in which a pulse laser emitted from a light source is subjected to pulse division and irradiated on the surface of a sample which moves in one direction while the divided-pulse pulse laser is rotated, reflection light from the sample irradiated by the divided-pulse pulse laser is detected, the signal of the detected reflection light is processed to detect defects on the sample, and information regarding a detected defect is output to a display screen, wherein the barycentric position of the light intensity of the divided-pulse pulse laser is monitored and adjusted. | 05-09-2013 |
20130114079 | OPTICAL PHASE DEVICE, METHOD AND SYSTEM. - The invention provides an optical phase device, method and system. The optical phase device consists of a transparent dielectric substrate, a multilayer stack of dielectrics and a buffer layer. The refractive index of the transparent dielectric substrate, the multilayer stack of dielectrics and the buffer layer are all larger than that of the external medium. For the wavelength of the incident beam, the optical phase device has a phase variation in the angular range [α, β] and the critical angle for total reflection on the interface between the buffer layer and the external medium adjacent to the buffer layer is γ, γ<β. The optical device has both low loss and large phase variation, which leads to a large Goos-Hanchen shift. As a dispersion compensation component, it can produce larger, tunable dispersions, and different dispersion compensations can be obtained by adjusting the operating angle or parameters in the structure. | 05-09-2013 |
20130120750 | OPTICAL PHASE DEVICE, METHOD AND SYSTEM - The invention provides an optical phase device with its application method and system. The optical phase device consists of a transparent dielectric substrate, a multilayer stack of dielectrics and a buffer layer. The refractive index of the transparent dielectric substrate, the multilayer stack of dielectrics and the buffer layer are all larger than that of the external medium. For the wavelength of the incident beam, the optical phase device has a phase variation in the angular range [α, β] and the critical angle for total reflection on the interface between the buffer layer and the external medium adjacent to the buffer layer is γ, γ>β. Our invention of the optical device has both low loss and large phase variation, which leads to a large Goos-Hanchen shift. As a dispersion compensation component, it can produce bigger and tunable dispersion, and different dispersion compensations can be got by adjusting the operating angle or parameters in the structure. | 05-16-2013 |
20130128269 | Device for Measuring the Rotating Angle of Two Objects Rotating on a Rotating Axis Relative to Each Other - The disclosure conveys a device for measuring the rotating angle of two objects which rotate relative to each other around a rotating axis, with one transmitter, which is assigned to one of the objects and which emits light that is polarized, and with a polarization-sensitive polarizer, such that the transmitter and the polarizer rotate relative to each other, and such that the polarizer has a polarizing area and a non-polarizing area, where the non-polarizing area is positioned eccentric to the rotating axis, and such that the device has a first receptor and a second receptor which measure a portion of the luminosity passing through the polarizer producing signals that are dependent on the rotating angle, and where the first receptor has a first reception area, and the second receptor has a second reception area which is distinct from the first reception area. | 05-23-2013 |
20130169964 | System and Method for Error Correction in a Polarimeter - A system and method for polarimetry are disclosed in which a polarimeter may include a light source for transmitting a light beam through a sample within a container; a wavelength selector configured to specify a target wavelength at which the polarization rotation of the light beam emerging from the sample will be evaluated; a polarization rotator configured to be selectively moved into and out of a path of the light beam from the light source; and a detector for obtaining a first measurement of the light beam polarization rotation with the polarization rotator outside the path of the light beam, and a second measurement of the light beam polarization rotation with the polarization rotator within the path of the light beam, with both measurements occurring at the wavelength resulting from the configuration of the wavelength selector. | 07-04-2013 |
20130169965 | Depolarizer And Circular Dichroism Spectrometer Using The Same - A depolarizer includes a pair of wedge-shaped plates made of an optically isotropic material, laid one on top of another such that the total thickness is constant and wedge-plate holding means for holding the pair of wedge plates separately. The wedge-plate holding means includes a pressure-applying section for applying pressure to each of the pair of wedge plates in a direction perpendicular to the thickness direction of the pair of wedge plates. The pressure-applying direction for one of the pair of wedge plates and the pressure-applying direction for the other of the pair of wedge plates intersect at an angle of 45 degrees. | 07-04-2013 |
20130176566 | Method and Apparatus for Generating Three-Dimensional Image Information - A method and apparatus for generating three-dimensional image information is disclosed. The apparatus includes a lens having a single imaging path operable to direct light captured within a field of view of the lens to an aperture plane of the lens. The apparatus also includes a polarizer located proximate the aperture plane, the polarizer including a first portion disposed to transmit light having a first polarization state through a first portion of the single imaging path and a second portion disposed to transmit light having a second polarization state through a second portion of the single imaging path, the first and second portions of the single imaging path providing respective first and second perspective viewpoints within the field of view of the lens. The apparatus further includes a modulator disposed in the single imaging path, the modulator being operable to selectively change a polarization state of light passing through the modulator to alternate between forming a first image through the first portion of the single imaging path and forming a second image through the second portion of the single imaging path, the first image representing objects within the field of view from the first perspective viewpoint and the second image representing the objects from the second perspective viewpoint, the first and second images together being operable to represent three dimensional spatial attributes of the objects. | 07-11-2013 |
20130188184 | DEFECT INSPECTING APPARATUS AND DEFECT INSPECTING METHOD - A defect inspecting apparatus includes an irradiation optical system having a light source that emits illumination light and a polarization generation part that adjusts polarization state of the illumination light emitted from the light source, a detection optical system having a polarization analysis part that adjusts polarization state of scattered light from a sample irradiated by the irradiation optical system and a detection part that detects the scattered light adjusted by the polarization analysis part, and a signal processing system that processes the scattered light detected by the detection optical system to detect a defect presenting in the sample. The polarization generation part adjusts the polarization state of the illumination light emitted from the light source on the basis of predetermined illumination conditions and the polarization analysis part adjusts the polarization state of the illumination light emitted from the light source on the basis of predetermined detection conditions. | 07-25-2013 |
20130194572 | OPTICAL MEASUREMENT DEVICE AND OPTICAL MEASUREMENT METHOD - In a first optical measurement device, light which is output from a light source is subject to linear polarizing in a polarizing unit, and is input to a test object A. Transmitted light which has passed through the test object A is orthogonally separated in an orthogonal separation unit, and the light which is orthogonally separated in the orthogonal separation unit is received in two light receiving units. In addition, amount of light of the transmitted light is determined by a control unit, and a difference between received light levels which are received in the light receiving unit is normalized using the amount of light which is determined in a transmitted amount of light determination unit, and then the angle of optical rotation is calculated by the angle of optical rotation calculation unit. | 08-01-2013 |
20130258336 | Optical Device, Particularly a Polarimeter, for Detecting Inhomogeneities in a Sample - An optical device, particularly a polarimeter, is provided for analyzing a liquid sample, having: a light-generating system for generating light for the surface irradiation of the sample; a detection system which is set up for the spatially resolved detection of light which originates from the transmission of the light provided for the surface irradiation through the sample; a telecentric optical system with a lens between the sample and the detection system and with an aperture diaphragm in the focal plane of the lens between the lens and the detection system. | 10-03-2013 |
20130293887 | Solution Sample Holding Method, Sample Cell, And Circular Dichroism Measuring Apparatus - A solution sample holding method between two light-transmitting plate-like members for measuring light passing through a minute amount of solution sample, comprises a dripping step and a covering step. The dripping step is to drip a minute amount of solution sample in a drip area of a sample mounting face of a first light-transmitting member. The sample mounting face also includes a liquid-repellent area surrounding the drip area. The covering step is to cover the solution sample with a second light-transmitting member and to maintain a predetermined distance between the first light-transmitting member and the second light-transmitting member. The liquid-repellent area of the sample mounting face is covered with a liquid-repellent substance. The minute amount of solution sample is held in contact with the two light-transmitting members. | 11-07-2013 |
20130314706 | SYSTEM AND METHOD FOR MEASURING A WAVELENGTH-RESOLVED STATE OF POLARIZATION OF AN OPTICAL SIGNAL - The present invention relates to a system and method for measuring a wavelength-resolved state of polarization, for calculating differential group delay of an optical signal under analysis ( | 11-28-2013 |
20130342839 | OPTICAL DETECTION SYSTEM - The present invention provides an optical detection system in which a first mirror of the control unit is used to receive light beam and redirect it into a first one-dimensional off-axis parabolic mirror. The first one-dimensional off-axis parabolic mirror then directs the light beam to a cylindrical lens. Through the mechanism of reflection, the cylindrical lens further directs the light beam to a second one-dimensional off-axis parabolic mirror. The second one-dimensional off-axis parabolic mirror then directs the light beam into a second mirror. The detection unit of the system is used to detect the light beam coming from the control unit, so as to convert the light signals into electric signals for the analysis in the process unit afterwards. | 12-26-2013 |
20130342840 | Optoelectronic sensor element - The invention relates to an optoelectronic sensor element ( | 12-26-2013 |
20140002821 | Tilted Grating Sensor | 01-02-2014 |
20140029005 | METHOD AND DEVICE FOR DETERMINING AN OPTICAL CLARITY THROUGH A CAR WINDOW - A method for determining a clarity of a window of a vehicle has a step of evaluating an information item of at least one light beam furnished with a predetermined polarization in order to determine the clarity of the window. | 01-30-2014 |
20140036264 | Apparatus and Methods for Concentration Determination Using Polarized Light - Methods and apparatus for concentration determination using polarized light. The apparatus includes a first polarized light source having a first light source polarization axis and a second polarized light source having a second light source polarization axis generally perpendicular to the first light source polarization axis. Also, a first polarized light receiver having a first polarized light receiver polarization axis and configured to measure an intensity of light transmitted from the first light receiver polarizer and a second polarized light receiver having a second polarized light receiver polarization axis substantially perpendicular to the first light receiver polarization axis and configured to measure an intensity of light transmitted from the second light receiver polarizer, wherein the first and second light receiver polarization axes are generally +/−45 degrees relative to the first and second light source polarization axes. | 02-06-2014 |
20140036265 | POSITION MEASURMENT APPARATUS FOR MEASURING POSITION OF MOBILE OBJECT ON THE BASIS OF REFELECTED WAVE - A reflector apparatus includes reflectors, which respectively radiate reflected waves in predetermined polarization directions. A polarized wave information reading circuit fixed to a moving body radiates a radio wave toward the reflecting apparatus from a transmitting antenna, receives reflected waves from the reflecting apparatus, and generates a received level difference signal that corresponds to a polarization direction of the received reflected waves. A position calculating circuit calculates a position of the polarized wave information reading circuit based on the received level difference signal. | 02-06-2014 |
20140043608 | Optical System Polarizer Calibration - An apparatus to calibrate a polarizer in a polarized optical system at any angle of incidence. The apparatus decouples the polarization effect of the system from the polarization effect of the sample. The apparatus includes a substrate with a polarizer disposed on the surface. An indicator on the substrate indicates the polarization orientation of the polarizer, which is in a predetermined orientation with respect to the substrate. | 02-13-2014 |
20140055785 | POLARIMETRIC CALIBRATION OF A REMOTE SENSOR - Described are methods and systems for vicarious polarimetric calibration and performance validation of a remote sensor. The system includes a plurality of reflective mirrors configured and arranged to reflect radiation from a source of radiation onto the remote sensor with accurately known polarimetric properties. Each of the reflective mirrors are located so that the target images do not overlap. The remote sensor is configured to receive the radiation reflected from the plurality of reflective mirrors and store the received radiation as image data (e.g., the image of each mirror appears as a point target). The system includes a processor configured to process the received data to provide direct calibration and performance validation for each polarimetric or spectral channel of the remote sensor. In addition, the calibration method removes all atmospheric effects except for transmittance and provides reference targets that have high polarimetric contrast, full spectrum performance and easy to deploy. | 02-27-2014 |
20140055786 | FREE SPACE SINGLE-MODE FIBERS AND FIBER COMPONENTS FOR FIBER SENSOR APPLICATIONS - This invention relates to a near real time optical compensation verification system for verifying a fiber or fiber component through internal or external compensation to achieve equivalently free space propagation of a broadband light when coupled into fiber. Preferably, no component is added to the fiber or fiber component, and the compensation method is realized through real time fiber bending, twisting or other means at either or both ends of a fiber or fiber component. The output optical characteristics of the compensated fiber or fiber component are measured by a polarimeter through changing the input light properties. The required multi-variable compensation to achieve Unitary Matrix free space condition is computed in near real time, and as the feedback to formulate the required compensation. The disclosed invention not only enhances yield in the fiber and fiber component, but also accelerates the optimization of optical fiber sensors employed free space fiber coil. | 02-27-2014 |
20140085636 | DEVICE AND METHOD FOR DETECTING LIQUID CRYSTAL DISPLAY PANEL - A device and method for detecting a liquid crystal display panel ( | 03-27-2014 |
20140104612 | METHOD FOR ALIGNING A PHASE RETARDATION PLATE WITH A DISPLAY PANEL - An embodiment of the present invention provides a method for aligning a phase retardation plate with a display panel comprising the following steps: S | 04-17-2014 |
20140111804 | Heterodyne Optical Spectrum Analyzer - A heterodyne optical spectrum analyzer ( | 04-24-2014 |
20140118740 | SYSTEMS AND METHODS FOR MEASURING A PROFILE CHARACTERISTIC OF A GLASS SAMPLE - Systems and methods for measuring a profile of a glass sample ( | 05-01-2014 |
20140152988 | SYSTEM AND METHOD FOR MEASURING THE ROTATION ANGLE OF OPTICAL ACTIVE SUBSTANCE - A system for measuring the rotation angle of optical active substances has a light source, a polarization generation unit; a polarization analyzing unit; a signal generating unit, respectively and electrically coupled to the polarization generation unit and the polarization analyzing unit; a signal processing unit, electrically coupled to the electric signal generating unit; wherein the light source is enabled to emit a beam toward the polarization generation unit for enabling the beam to be polarized into an incident polarized beam while being projected and traveled in an optical path passing through an optical active substance so as to be converted into a emerging beam; and the polarization analyzing unit is positioned to receive and analyze the emerging beam so as to generate a signal to be received and processed by the signal processing unit. | 06-05-2014 |
20140198315 | System and Method for Assessing Analytes Using Conformal Filters and Dual Polarization - A system and method for detecting at least one target of interest using at least two conformal filters in a dual polarization configuration. A plurality of interacted photons are collected from a sample comprising at least one analyte of interest. The plurality of interacted photons are separated into at least a first and second optical component. The first optical component is passed through a first conformal filter and the second optical component is passed through a second conformal filter. A Data set corresponding to each filtered optical component is generated and an optical computation is applied to assess at least one characteristic of the analyte. | 07-17-2014 |
20140268145 | HIGH-SPEED VOLUME MEASUREMENT SYSTEM AND METHOD - Disclosed is a volume sensor having first, second, and third laser sources emitting first, second, and third laser beams; first, second, and third beam splitters splitting the first, second, and third laser beams into first, second, and third beam pairs; first, second, and third optical assemblies expanding the first, second, and third beam pairs into first, second, and third pairs of parallel beam sheets; fourth, fifth, and sixth optical assemblies focusing the first, second, and third beam sheet pairs into fourth, fifth, and sixth beam pairs; and first, second, and third detector pairs receiving the fourth, fifth, and sixth beam pairs and converting a change in intensity of at least one of the beam pairs resulting from an object passing through at least one of the first, second, and third parallel beam sheets into at least one electrical signal proportional to a three-dimensional representation of the object. | 09-18-2014 |
20140268146 | LENSLET ARRAY WITH INTEGRAL TUNED OPTICAL BANDPASS FILTER AND POLARIZATION - A spectral radiation detector employs at least one lenslet with a circular blazed grating for diffraction of radiation at a wavelength at nth order to a focal plane A detector is mounted at the focal plane receiving radiation passing through the at least one lenslet for detection at a predetermined order. At least one order filter associated with the at least one lenslet passes radiation at wavelengths corresponding to the predetermined order. In additional embodiments a polarizing filter is associated with the lenslet for additional discrimination of the radiation. | 09-18-2014 |
20140268147 | APPARATUS AND METHOD FOR SUPPRESSION OF BACKGROUND NOISE IN MICROSCOPY IMAGING - An apparatus and method for imaging a section of a medium is disclosed. The apparatus or method receives and returns light from the section and from sites adjacent to the section. A microscope using this apparatus or method can be telecentric in pinhole space at the detection end of the system. | 09-18-2014 |
20140268148 | Dual-Modulation Faraday Rotation Spectroscopy - A dual-modulation Faraday rotation spectroscopic (FRS) system is disclosed. The FRS system uses an FRS sample cell configured to subject a sample to a low frequency modulated magnetic field. The system includes a polarized laser light source configured to generate a high frequency wavelength-modulated light beam incident on the sample, the high frequency wavelength-modulated light beam being modulated at a higher frequency than the low frequency modulated magnetic field. A polarizer is configured to receive from the sample a transmitted light beam having a modulated polarization having a polarization rotation and translate the modulated polarization of the transmitted light beam into an intensity modulated beam. A photodetector is configured to detect the intensity modulated beam and generate a photodetector signal. A dual demodulator is coupled to the photodetector and is configured to demodulate the photodetector signal. | 09-18-2014 |
20140285803 | SYSTEM AND METHOD OF ANALYSIS BY DETERMINING A DEPOLARIZING OR DICHROIC CHARACTER OF AN OBJECT - An analysis system comprises a transmitting device ( | 09-25-2014 |
20140300897 | SECURITY SCREENING SYSTEMS AND METHODS - The present disclosure describes security screening systems and methods for identifying a suspect material in a sample. In general terms, the system and method disclosed herein provide collection optics configured to collect a first plurality of interacted photons from an illuminated sample and generating a first optical signal. The first optical signal is separated into a plurality of optical components where the plurality of optical components are filtered by a plurality of filters. Each filter of the plurality of filters is configured to filter the plurality of optical components into a passband wavelength to generate a plurality of filtered components. The plurality of filtered components are detected by one or more detectors and one or more wavelength specific spectral images are generated. A processor is configured to analyze the one or more wavelength specific spectral images in order to identify the suspect material in the sample. The systems and methods disclosed herein may find particular use in a security setting. | 10-09-2014 |
20140313511 | ROTATING-ELEMENT ELLIPSOMETER AND METHOD FOR MEASURING PROPERTIES OF THE SAMPLE USING THE SAME - Provided is a real-time spectroscopic ellipsometer capable of obtaining information on properties of a sample, a nano pattern shape, and the like, in real time by measuring and analyzing, for a plurality of wavelengths, a change in a polarization state of incident light generated while being reflected or transmitted due to the sample when light having a specific polarization component is incident to the sample. The real-time spectroscopic ellipsometer according to the exemplary embodiment of the present invention have the improved structure and function to solve problems such as polarization dependency of a light source and a photometric detector, wavelength dependency of a compensator, a limitation of a change in integration time due to a fixing of a measuring frequency of exposure, in a rotating-element multichannel spectroscopic ellipsometers of the related art, thereby measuring more accurately, precisely, and rapidly measuring the characteristics of the sample than the related art. | 10-23-2014 |
20140347665 | DEVICE AND METHOD FOR MEASURING PHASE RETARDATION DISTRIBUTION AND FAST AXIS AZIMUTH ANGLE DISTRIBUTION IN REAL TIME - Device and method for measuring phase retardation distribution and fast axis azimuth angle distribution of birefringence sample in real time. The device consists of a collimating light source, a circular polarizer, a diffractive beam-splitting component, a quarter-wave plate, an analyzer array, a charge coupled device (CCD) image sensor and a computer with an image acquisition card. The method can measure the phase retardation distribution and the fast axis azimuth angle distribution of the birefringence sample in real time and has large measurement range. The measurement result is immune to the light-intensity fluctuation of the light source. | 11-27-2014 |
20140362378 | Method and Systems to Detect Matter Through Use of a Magnetic Field Gradient - Methods and systems for determining material composition of a test sample may be provided. The test sample may be placed in a magnetic region having a magnetic field. A light beam may be directed at the test sample in the magnetic region. A birefringence in the light beam that has passed through the test sample may be detected. The material composition of the test sample may be determined based on the detected birefringence in the light beam. | 12-11-2014 |
20150022812 | INSPECTION APPARATUS - An inspection apparatus comprising, a light source configured to illuminate a sample, a half-wavelength plate configured to transmit light transmitted through or reflected from the sample, a polarization beamsplitter, a first and second sensor configured to receive the light as a first and second optical image respectively transmitted through the beamsplitter, an image processor configured to obtain a gradation value of each pixel of the first sensor, a defect detector configured to detect a defect of the first optical image, using the gradation value, and a comparator configured to compare the second optical image to a reference image based on design data, and to determine that the second optical image is defective when at least one difference of position and shape between the optical image and the reference image exceeds a predetermined threshold, and an angle adjusting unit configured to adjust an angle of the half-wavelength plate. | 01-22-2015 |
20150062579 | Rotation Angle Measuring Device - A rotation angle measuring device provided with a fixed unit and a movable unit relatively rotating with respect to the fixed unit, comprising a light source installed on either one of the fixed unit or the movable unit and for emitting a detection light and a reference position signal light, a polarizing plate for converting a detection light emitted from the light source to a polarized light, a polarized light rotating unit for rotating the polarized light around an optical axis of the light source as the center, a reference position signal light emitted at a reference rotating position of the polarized light, a stationary polarizing plate provided on either one of the fixed unit or the movable unit and to stand still with respect to a rotation of the polarized light, a photodetection sensor provided on the fixed unit or on the movable unit and for receiving the polarized light passing through the stationary polarizing plate and the reference position signal light, and an arithmetic unit for calculating a detection waveform of a change of light amount based on a signal from the photodetection sensor, for detecting the reference position signal light and for calculating a relative rotation angle between the fixed unit and the movable unit from a phase of the detection waveform and a predetermined detection reference phase when the reference position signal light is detected. | 03-05-2015 |
20150062580 | POLARIMETRIC CALIBRATION OF A REMOTE SENSOR - Described are methods and systems for vicarious polarimetric calibration and performance validation of a remote sensor. The system includes a plurality of reflective mirrors configured and arranged to reflect radiation from a source of radiation onto the remote sensor with accurately known polarimetric properties. Each of the reflective mirrors are located so that the target images do not overlap. The remote sensor is configured to receive the radiation reflected from the plurality of reflective mirrors and store the received radiation as image data (e.g., the image of each mirror appears as a point target). The system includes a processor configured to process the received data to provide direct calibration and performance validation for each polarimetric or spectral channel of the remote sensor. In addition, the calibration method removes all atmospheric effects except for transmittance and provides reference targets that have high polarimetric contrast, full spectrum performance and easy to deploy. | 03-05-2015 |
20150077750 | ELLIPSOMETER FOR DETECTING SURFACE - An ellipsometer for detecting a surface including a light source irradiating a substrate with light, a polarization unit polarizing the light irradiated from the light source and analyzing the polarized light, a detector measuring a light quantity of the polarized light passing through the polarization unit, and a driver rotating the detector by an azimuth angle as the substrate rotates in a direction of the azimuth angle direction may be provided. | 03-19-2015 |
20150103347 | SAMPLE ANALYSIS ELEMENT AND DETECTION DEVICE - There is provided a sample analysis element capable of uniting a propagating surface plasmon resonance with a localized surface plasmon resonance while increasing the surface density of the hot spots. The sample analysis element is provided with a plurality of metal nanobody lines. Each of the metal nanobody lines includes a plurality of metal nanobodies arranged in a line on a dielectric surface at a first pitch smaller than a wavelength of incident light, and the plurality of metal nanobody lines is arranged in parallel to each other at a second pitch larger than the first pitch. | 04-16-2015 |
20150116712 | DEFECT DETECTION METHOD AND DEFECT DETECTION DEVICE AND DEFECT OBSERVATION DEVICE PROVIDED WITH SAME - The disclosed device, which, using an electron microscope or the like, minutely observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, can reliably insert a defect to be observed into the field of an electron microscope or the like, and can be a device of a smaller scale. The electron microscope, which observes defects detected by an optical appearance-inspecting device or by an optical defect-inspecting device, has a configuration wherein an optical microscope that re-detects defects is incorporated, and a spatial filter and a distribution polarization element are inserted at the pupil plane when making dark-field observations using this optical microscope. The electron microscope, which observes defects detected by an optical appearance-inspecting device or an optical defect-inspecting device, has a configuration wherein an optical microscope that re-detects defects is incorporated, and a distribution filter is inserted at the pupil plane when making dark-field observations using this optical microscope. | 04-30-2015 |
20150131096 | MEASURING APPARATUS, AND METHOD OF MANUFACTURING ARTICLE - The present invention provides a measuring apparatus which measures a shape of an object to be measured, comprising an emitting unit configured to emit pattern light, an optical system configured to irradiate the object with the pattern light emitted from the emitting unit, a deflection unit configured to deflect light emitted from the optical system, an image sensing unit configured to sense an image of the object irradiated with the pattern light, and a processing unit configured to determine the shape of the object based on the image of the object sensed by the image sensing unit, wherein the deflection unit includes a deflection element, wherein the measuring apparatus irradiates the object with light deflected by the deflection element, and a direction deflected by the deflection element differs depending on a polarization state of incident light in the deflection element. | 05-14-2015 |
20150345934 | OPTICAL METHOD AND SYSTEM FOR CRITICAL DIMENSIONS AND THICKNESS CHARACTERIZATION - Method and system for measuring one or more parameters of a patterned structure, using light source producing an input beam of at least partially coherent light in spatial and temporal domains, a detection system comprising a position sensitive detector for receiving light and generating measured data indicative thereof, an optical system configured for focusing the input light beam onto a diffraction limited spot on a sample's surface, collecting an output light returned from the illuminated spot, and imaging the collected output light onto a light sensitive surface of the position sensitive detector, where an image being indicative of coherent summation of output light portions propagating from the structure in different directions. | 12-03-2015 |
20150362369 | METHOD OF ELIMINATING SPURIOUS SIGNALS AND A RELATIVE NAVIGATION SYSTEM - A relative navigation system and a method of eliminating spurious signals that may be received by a relative navigation system having a first object and a second object including projecting polarized light having a first orientation to form at least one grid line projecting into space from the first object. | 12-17-2015 |
20150377708 | OPTICAL SYSTEM AND ARRAY SUBSTRATE DETECTING DEVICE - A optical system comprises: a light source; a first polarizer, configured to receive light emitted by the light source and convert it into first linearly polarized light; an optical prism group, configured to receive the first linearly polarized light and reflect it to a liquid crystal detecting head; the liquid crystal detecting head, configured to convert the first linearly polarized light into second linearly polarized light by using optical rotation characteristic of liquid crystal molecules, and emit the second linearly polarized light; a second polarizer, configured to receive the second linearly polarized light reflected by the liquid crystal detecting head and transmitted by the optical prism group, and convert the second linearly polarized light into third linearly polarized light; a light intensity detector, configured to receive the third linearly polarized light and calculate a light intensity thereof; wherein, the polarization directions of the first and second polarizers are opposite. | 12-31-2015 |
20150377800 | PATTERN TEST APPARATUS - According to one embodiment, a pattern test apparatus includes a light source configured to apply test light to a test sample, a polarizing beam splitter which reflects or transmits the test light, an imaging device which receives light which has been reflected by the test sample and transmitted through or reflected by the polarizing beam splitter, an optical system which forms a Fourier transform plane of the test sample between the test sample and the polarizing beam splitter, and a polarizing controller disposed in the Fourier transform plane. The polarizing controller includes a first region which lets the test light through, and a second region which is greater than the first region and lets the light reflected by the test sample through, and the each regions have different retardation quantities. | 12-31-2015 |
20160033259 | Method & System For Real-Time In-Process Measurement Of Coating Thickness - The present disclosure is generally directed to methods and systems for measuring the thickness of coatings or thin films on various substrates. For example, one disclosed method includes the steps of providing and directing light waves of varying wavelengths toward a moving substrate comprising a coating, linearly polarizing the light waves, converting the linearly polarized light waves to circularly polarized light waves, analyzing elliptically polarized light waves reflected by the moving substrate, capturing analyzed light waves, generating light wave data based on the captured light waves, and determining a thickness of the coating based on the light wave data. | 02-04-2016 |
20160033392 | STRUCTURE ASSESSMENT OF HETEROGENEOUS POLYPEPTIDE MIXTURE - Methods of analyzing glatiramer acetate (GA) to assess secondary structure, for example, alpha helical content and/or random coil content thereof are provided as are methods for preparing a composition comprising GA and methods for identifying a copolymer as GA. | 02-04-2016 |
20160045291 | CONFOCAL IMAGING APPARATUS WITH CURVED FOCAL SURFACE - A confocal imaging apparatus includes an illumination module to generate an array of light beams. Focusing optics perform confocal focusing of an array of light beams onto a non-flat focal surface and direct the array of light beams toward a three dimensional object to be imaged. A translation mechanism adjusts a location of at least one lens to displace the non-flat focal surface along an imaging axis. A detector measures intensities of an array of returning light beams that are reflected off of the three dimensional object and directed back through the focusing optics. Intensities of the array of returning light beams are measured for locations of the at least one lens for determination of positions on the imaging axis of points of the three dimensional object. Detected positions of one or more points are adjusted to compensate for the non-flat focal surface. | 02-18-2016 |
20160047711 | OPTICAL EVALUATION OF LENSES AND LENS MOLDS - A method for determining information about an object including a curved portion and a planar portion, the curved portion having a first curved surface having an apex and defining an axis of the object, includes: directing measurement light to the object; detecting measurement light reflected from the first curved surface of the curved portion; detecting measurement light reflected from at least one other surface of the object; and determining, based on the detected light, information about the apex of the first curved surface of the curved portion. | 02-18-2016 |
20160047712 | OPTICAL EVALUATION OF LENSES AND LENS MOLDS - A method for determining information about a transparent optical element including a lens portion and a plane parallel portion, the lens portion having at least one curved surface and the plane parallel portion having opposing first and second surfaces, includes: directing measurement light to the transparent optical element; detecting measurement light reflected from at least one location on the first surface of the plane parallel portion; detecting measurement light reflected from the second surface of the plane parallel portion at a location corresponding to the at least one location on the first surface; determining, based on the detected light, information about the plane parallel portion; and evaluating the transparent optical element based on the information about the plane parallel portion. | 02-18-2016 |
20160047752 | OPTICAL MODULE FOR SURFACE INSPECTION AND SURFACE INSPECTION APPARATUS INCLUDING THE SAME - An optical module for surface inspection includes a first light source unit that illuminates a substrate with first light produced by a first light source and a first beam splitter that changes the path of the first light, a second light source unit that illuminates the substrate with second light polarized in a first direction, a direction of polarization changing unit that illuminates the substrate with the third light polarized in a second direction perpendicular to the first direction, and a detection unit that detects fourth light which is a product of the first light reflecting from the substrate, fifth light which is a product of the second light scattered from the substrate, and sixth light which is a product of the third light scattered from the substrate. The third light is produced by changing the direction of polarization of the second light reflected from the inspected substrate. | 02-18-2016 |
20160061723 | FOCUSED BEAM SCATTEROMETRY APPARATUS AND METHOD - The capacity to measure nanoscale features rapidly and accurately is of central importance for the monitoring of manufacturing processes in the production of computer integrated circuits. It is known that far-field scattered light requires a priori sample information in order to reconstruct nanoscale information such as is required in semiconductor metrology. Parameters of interest include, for example, trench depth, duty cycle, wall angle and oxide layer thickness. We describe a scatterometry apparatus and method that uses unconventional polarization states in the pupil of a high NA objective lens, and refer to this as focused beam scatterometry, in which the illumination consists of a focused field with a suitably tailored, spatially-varying polarization distribution. We describe how four or more parameters can be measured and distinguished with an accuracy consistent with the needs laid out in the semiconductor roadmap. | 03-03-2016 |
20160069724 | HIGH-SPEED VOLUME MEASUREMENT SYSTEM AND METHOD - Disclosed is a volume sensor having first, second, and third laser sources emitting first, second, and third laser beams; first, second, and third beam splitters splitting the first, second, and third laser beams into first, second, and third beam pairs; first, second, and third optical assemblies expanding the first, second, and third beam pairs into first, second, and third pairs of parallel beam sheets; fourth, fifth, and sixth optical assemblies focusing the first, second, and third beam sheet pairs into fourth, fifth, and sixth beam pairs; and first, second, and third detector pairs receiving the fourth, fifth, and sixth beam pairs and converting a change in intensity of at least one of the beam pairs resulting from an object passing through at least one of the first, second, and third parallel beam sheets into at least one electrical signal proportional to a three-dimensional representation of the object. | 03-10-2016 |
20160069792 | METALLIC GRATINGS AND MEASUREMENT METHODS THEREOF - There is set forth herein in one embodiment, a structure including a metallic grating having a grating pattern, the metallic grating including a critical dimension. The metallic grating can output a spectral profile when exposed to electromagnetic radiation, the spectral profile having a feature. The grating pattern can be configured so that a change of the critical dimension produces a shift in a value of the feature of the spectral profile. A method can include propagating input electromagnetic radiation onto a metallic grating having a two dimensional periodic grating pattern and measuring a critical dimension of the metallic grating using output electromagnetic radiation from the metallic grating. | 03-10-2016 |
20160076942 | Imaging spectropolarimeter - An imaging spectropolarimeter for examining targets with polarized light, the spectropolarimeter including a light source adapted to produce polarized light directed at a target. Embodiments also include a three-camera camera system defining a three-camera camera axis with a first camera unit comprising a first analyzer set at 0°, a lens and a first multi-pixel sensor, a second camera unit comprising a second analyzer set at 45°, a lens and a second multi-pixel sensor, and a third camera unit comprising a third analyzer set at 90°, a lens and a third multi-pixel sensor. At least two beam splitters adapted to direct a portion of polarized light reflected from the target to each of the first, second and third camera units. Preferred systems include a processor adapted to produce polarimetric images of the target utilizing intensity information collected by the multi-pixel sensors. | 03-17-2016 |
20160076944 | LIGHT BEAM MEASUREMENT DEVICE, LASER APPARATUS, AND LIGHT BEAM SEPARATOR - A light beam measurement device includes: a polarization measurement unit including a first measurement beam splitter provided on an optical path of a laser beam and configured to measure a polarization state of the laser beam having been partially reflected by the first measurement beam splitter; a beam profile measurement unit including a second measurement beam splitter provided on the optical path of the laser beam and configured to measure a beam profile of the laser beam having been partially reflected by the second measurement beam splitter; and a laser beam-directional stability measurement unit configured to measure a stability in a traveling direction of the laser beam, while the first measurement beam splitter and the second measurement beam splitter are made of a material containing CaF | 03-17-2016 |
20160076994 | OPTICAL INTEGRITY DETECTION SYSTEM - Apparatus is described for determining the optical quality of an optical element, the optical element having proximal and distal end portions. The apparatus also includes at least one non-polarizing beam splitter; at least one polarizing beam splitter; at least a first detector operatively associated with the at least one non-polarizing beam splitter; at least a second detector operatively associated with the at least one polarizing beam splitter. The apparatus includes a mechanism to transmit at least one beam of coherent light energy through the at least one non-polarizing beam splitter and through the at least one polarizing beam splitter, the beam being directed to the proximal and distal end portions of the optical element; the beam of coherent light energy that is reflected from the proximal end portion of the optical element is directed back through the at least one polarizing and the at least one non-polarizing beam splitters to the first detector; the beam that is reflected from the distal end portion of the optical element is directed back through the at least one polarized beam splitter to the second detector; and, the energy level detected by the first and the second detectors provides a measure of optical quality of the optical element. | 03-17-2016 |
20160091416 | UNAMBIGUOUS RETARDANCE MEASUREMENT - This invention is directed to methods of unambiguously measuring the absolute retardance, δ | 03-31-2016 |
20160153774 | Tilt Detecting Device And Rotary Laser Apparatus | 06-02-2016 |
20160153894 | OPTICAL ELEMENT ROTATION TYPE MUELLER-MATRIX ELLIPSOMETER AND METHOD FOR MEASURING MUELLER-MATRIX OF SAMPLE USING THE SAME | 06-02-2016 |
20160154156 | CIRCULAR POLARIZING FILTER AND APPLICATION THEREOF | 06-02-2016 |
20160169792 | A Photo-Alignment Characteristics Testing Method, A Device And A System | 06-16-2016 |
20160170110 | THIN-FILM BROADBAND AND WIDE-ANGLE DEVICES FOR GENERATING AND SAMPLING POLARIZATION STATES | 06-16-2016 |
20160178516 | OPTICAL SENSOR BASED WITH MULTILAYERED PLASMONIC STRUCTURE COMPRISING A NANOPOROUS METALLIC LAYER | 06-23-2016 |
20160178531 | REMOTE CONNECTION SYSTEM FOR AN AIRCRAFT | 06-23-2016 |
20160187262 | INSPECTION DEVICE OF DISPLAY DEVICE AND INSPECTION METHOD OF DISPLAY DEVICE - An inspection device of a display device includes a first illumination unit providing a first incident light to the display device at a first incident angle, a second illumination unit providing a second incident light to the display device at a second incident angle, a third illumination unit providing a third incident light to the display device at a third incident angle, and a defect detector receiving at least one of a first reflection light obtained from the first incident light reflected by the display device at a first reflection angle, a second reflection light obtained from the second incident light reflected by the display device at a second reflection angle, and a third reflection light obtained from the third incident light reflected by the display device at a third reflection angle to detect defects of the display device. | 06-30-2016 |
20160187531 | INTENSITY-INDEPENDENT OPTICAL COMPUTING DEVICE - An intensity-independent optical computing device and method for performing multivariate optical computing based on changes in polarization of the reflected and/or transmitted electromagnetic radiation to thereby determine sample characteristics. | 06-30-2016 |
20160202177 | SYSTEM AND METHOD FOR SEMICONDUCTOR WAFER INSPECTION AND METROLOGY | 07-14-2016 |
20160252449 | Wavelength-Dependent Light Intensity Modulation in Multivariate Optical Computing Devices Using Polarizers | 09-01-2016 |
20180024048 | OPTICAL TECHNIQUE FOR COATING CHARACTERIZATION | 01-25-2018 |