Class / Patent application number | Description | Number of patent applications / Date published |
356460000 |
By fiber or waveguide interferometer (e.g., Sagnac effect)
| 143 |
356472000 |
Lock-in prevention
| 8 |
356469000 |
Cavity mirror details | 5 |
20100014091 | ENHANCED SCALE FACTOR RING LASER GYROSCOPE - An embodiment of the invention enhances the rotation sensitivity and decreases the dead band width of a standard HeNe ring laser gyroscope (RLG), with the highest enhancement at low rotation rates. The addition of a gas with nuclear spin to the traditional HeNe gain medium is used to create the intracavity gain medium with an anomalous dispersive quality and thus enhanced rotation sensitivity. | 01-21-2010 |
20110235047 | Laser Gyro Having a Solid-State Amplifying Medium and an Optical Ring Cavity - A laser gyro having a solid-state amplifying medium and an optical ring cavity includes an assembly encompassing the optical cavity and able to experience an oscillating rotational motion, as well as at least one external optical device for longitudinal injection of energy into the solid-state amplifying medium. The laser gyro also includes a fixing assembly adapted for translationally and rotationally binding said assembly encompassing the optical cavity and said external optical device for longitudinal injection of energy. | 09-29-2011 |
20120033224 | INCREASING THE SCALE FACTOR OF GAS LASER BASED GYROSCOPES WITH AN EXTERNAL GAIN SATURATION BEAM - A ring laser gyroscope that includes a cavity containing a gain medium, a first plurality of reflective surfaces coupled to the cavity, a medium exciter operable to excite the gain medium, and a saturation beam source operable to emit a saturation beam. The first plurality of reflective surfaces includes a first reflective surface, a second reflective surface, and a third reflective surface. The first, second, and third reflective surfaces are positioned to reflect light along a path defined in the cavity between the plurality of reflective surfaces. The excited gain medium induces first and second laser fields within the cavity. The emitted saturation beam intersects with the first and second laser fields at a first interaction region of the cavity. The saturation beam interacts with the gain medium to reduce the gain of the first and second laser fields at a first range of frequencies. | 02-09-2012 |
20120033225 | NEON OR IODINE ABSORPTION ENHANCED HENE RING LASER GYROSCOPE - One embodiment of a ring laser gyroscope discussed herein includes a cavity containing a gain medium having a first linewidth, a first plurality of reflective surfaces coupled to the cavity, and at least one medium exciter operable to excite the gain medium. The first plurality of reflective surfaces includes at least first, second, and third reflective surfaces. The first, second, and third reflective surfaces are positioned to reflect light along a path defined in the cavity between the plurality of reflective surfaces. The excited gain medium induces first and second laser fields within the cavity. A portion of the cavity contains an absorption medium having a second linewidth that is narrower than the first linewidth of the gain medium. The absorption medium reduces the gain of the first and second laser fields at a first range of frequencies. | 02-09-2012 |
20130083328 | LASER BASED CAVITY ENHANCED OPTICAL ABSORPTION GAS ANALYZER WITH LASER FEEDBACK OPTIMIZATION - Optical feedback assisted cavity enhanced absorption spectroscopy systems and methods for measuring trace gases with improved long-term stability and reproducibility include a laser coupled with a resonant optical cavity containing a gaseous medium and having at least two cavity mirrors and a plurality of optical resonance cavity modes. The laser emits continuous wave laser light with a mean optical frequency of the laser being adjustable over a range of frequencies, and the laser is responsive to optical feedback light emerging from the cavity. The transmissivity of at least one of the cavity mirrors is selected such that the intensity of the optical feedback light impinging on the laser is below a threshold intensity value so as to ensure that a frequency hold interval range of the optical frequency of the laser is smaller than a free spectral range of the cavity. | 04-04-2013 |
356467000 |
Four frequency, multi-oscillator, non-planar cavity | 3 |
20100265513 | Solid-state multioscillator ring laser gyro using a <100>-cut crystalline gain medium - A multioscillator ring laser gyro includes an optical ring cavity, a solid-state amplifying medium and a measurement device arranged in such a way that a first linearly polarized propagation mode and a second linearly polarized propagation mode, perpendicular to the first mode, propagate in a first direction in the cavity and in such a way that a third linearly polarized propagation mode parallel to the first mode and a fourth linearly polarized propagation mode parallel to the second mode propagate in the opposite direction. The amplifying medium is a crystal of cubic symmetry having an entry face and an exit face, the crystal being cut so that said faces are approximately perpendicular to the <100> crystallographic direction, the various modes propagating in directions approximately perpendicular to said faces. | 10-21-2010 |
20110273720 | Multi-Oscillator Solid-State Laser Gyro Passively Stabilized by a Frequency-Doubling Crystal Device - A laser gyro for measuring the angular velocity or the angular position relative to a defined rotation axis includes: an optical ring cavity; a solid-state amplifying medium; and a non-reciprocal magneto-optic device; which are arranged so that four linearly polarized propagation modes can propagate within the cavity, the magneto-optic device introducing a frequency bias between the modes propagating in a first direction and the modes propagating in the opposite direction. In the device, the cavity also includes a stabilizer device for stabilizing the intensity of the four propagation modes at substantially equivalent levels, said device comprising at least one optical element made of a non-linear crystal of the frequency-doubling type. | 11-10-2011 |
20150098089 | OPTICAL PASSIVE RESONATOR GYRO WITH THREE BEAMS - The general field of the invention is that of passive resonator gyros comprising an injection laser emitting an initial optical beam at a first frequency and a fibre optic cavity. The gyro according to the invention operates with three optical beams at three different optical frequencies. A first beam is injected in a first direction of rotation, the second and the third beam are injected in the contrary direction. The gyro includes three slaving devices maintaining each optical frequency at a specific mode of resonance of the cavity. The gyro includes means for measuring the frequency differences existing between the different frequencies. Combined together, these differences are representative of the length of the cavity and the angular rotational velocity of the cavity along an axis perpendicular to its plane. | 04-09-2015 |
356468000 |
Cavity output beam combiner | 1 |
20130070253 | COUPLED CAVITY DISPERSION ENHANCED RING LASER GYROSCOPE - A ring laser gyroscope includes active cavity containing gain medium, first reflective surfaces coupled to active cavity, medium exciter to excite gain medium, second reflective surfaces coupled to first passive cavity, and third reflective surfaces coupled to second passive cavity. Excited gain medium induces first and second laser fields within active cavity. First plurality of reflective surfaces includes first, second, and third reflective surfaces that reflect light within active cavity. Second plurality of reflective surfaces includes first, fourth, and fifth reflective surfaces that reflect light within first passive cavity. Third plurality of reflective surfaces includes fourth, sixth, and seventh reflective surfaces that reflect light within second passive cavity. First and fourth reflective surfaces are partially transmissive such that they both transmit and reflect light. Second or third cavities induce frequency dependent phase shift on light traveling through ring laser gyroscope causing anomalous dispersion of first and second laser fields passing through gain medium. | 03-21-2013 |
356471000 |
Multi-axis cavity | 1 |
20120069346 | METHOD OF USING A UNIDIRECTIONAL CROW GYROSCOPE - A method for detecting rotation includes providing a plurality of resonant waveguides generally adjacent to one another and optically coupled to one another. Each resonant waveguide of the plurality of resonant waveguides is configured to allow light to propagate along the resonant waveguide in a planar path. The method further includes propagating light along each path in a clockwise direction or along each path in a counterclockwise direction. | 03-22-2012 |
Entries |
Document | Title | Date |
20080285046 | System and method for improving the resolution of an optical fiber gyroscope and a ring laser gyroscope - A system and method for improving the resolution of an optical fiber gyroscope and a ring laser gyroscope is provided. Entangled photons are introduced into an interferometer of a gyroscope. One or more detectors detect an interference pattern used to determine the angular velocity of a platform. The interference pattern may be a spatial and/or temporal interference pattern. The detectors may count the sub-wavelength interferometer fringes that indicate the direction and degree of angular rotation about the central axis of the apparatus. The detectors may measure a beat frequency. | 11-20-2008 |
20090021744 | LIGHT PATH CIRCUIT APPARATUS AND RING LASER GYRO - A light path circuit apparatus suited for a small sized ring laser gyro, includes a base having a standard plane, one or more substrates laminated parallel against the standard plane in a direction orthogonal to the standard plane, a light source, wherein on the base and/or the one or more substrates, 3 or more reflective surfaces, having normal lines within a prescribed one plane orthogonal to the standard plane, are constituted parallel or with tilt by a prescribed angle to the standard plane, the light source is disposed to emit light within the prescribed one plane, and the light emitted from the light source circulates within the one plane in a forward and backward direction by three or more reflective surfaces and constitutes a light path circuit that laser oscillates. | 01-22-2009 |
20090051922 | SEMICONDUCTOR RING LASER GYRO - A semiconductor ring laser gyro comprises: a semiconductor laser for emitting light from each of both ends thereof; a splitting means for splitting and guiding the light emitted from the semiconductor laser into two axis directions; a plurality of reflecting means for reflecting the light split and guided by the splitting means into the two axis directions; two optical circuits, in each of which the plurality of reflecting means cause the light to travel in a plane and to enter an end of the semiconductor laser opposite to the end from which the light is emitted; and a blocking means for blocking light traveling in one of the two optical circuits. | 02-26-2009 |
20090073452 | SEMICONDUCTOR SOLID-STATE LASER GYRO HAVING A VERTICAL STRUCTURE - The field of the invention is that of solid-state laser gyros used in particular in inertia control systems. This type of equipment is used for example for aeronautical applications. It is possible to produce a solid-state laser gyro from optically or electrically pumped semiconductor media. Currently laser gyros of the latter type are monolithic and small in size. They do not make it possible, on the one hand, to achieve the precision comparable to that of gas laser gyros and, on the other hand, to implement optical methods for eliminating frequency coupling at low rotation speeds or temperature drifts. One subject of the invention is a solid-state laser gyro comprising a semiconductor medium and consisting of assembled discrete elements, thus offering the possibility of producing large cavities for achieving the desired precision. More precisely, the laser gyro comprises an optical ring cavity and a semiconductor amplifying medium with an external cavity having a vertical structure, comprising a stack of plane gain regions that are mutually parallel, the dimensions of the cavity being substantially larger than those of the amplifying medium, said amplifying medium being used in reflection. | 03-19-2009 |
20090097035 | METHOD AND APPARATUS FOR OPTICAL FREQUENCY MEASUREMENT - A method and an apparatus for optical frequency measurement, using one or two frequency-stabilized mode-locked laser combs operating at different repetition rates to mix with a laser under measurement (LUM) respectively so as to generate two beat frequencies. The ordinal comb number where the beat frequency is generated is determined by measuring the ordinal comb number difference where the two beat frequencies are generated at different repetition rates so as to obtain the frequency of the LUM. The ordinal comb number difference is measured by using a dispersion device to offer an approximate ordinal comb number or by operating a mode-locked laser at three different repetition rates. | 04-16-2009 |
20090116031 | SOLID-STATE LASER GYRO HAVING ORTHOGONAL COUNTERPROPAGATING MODES - The field of the invention is that of solid-state laser gyros used in inertial control units. However, there are certain technical difficulties in producing laser gyros of this type that are due partly to the fact that the counterpropagating waves interfere with each other in the amplifying medium. A laser gyro according to the invention comprises at least one solid-state amplifying medium and an optical ring cavity comprising first optical means for imposing a first linear polarization state common to the two counterpropagating optical waves at the entrance and exit of the zone containing the amplifying medium and second optical means for imposing, within the amplifying medium, a second linear polarization state on the first optical wave and a third linear polarization state on the second optical wave, these polarization states being perpendicular. Thus, all the drawbacks associated with interference are eliminated. | 05-07-2009 |
20110051144 | INTEGRATED RESONATING GYRO ACCELEROMETER IN A SEMICONDUCTOR SUBSTRATE - An integrated interferometric gyroscope and accelerometer device. An example device includes a cantilever beam, a package having a post connected to one end of the beam, a piezoresistor driver, a piezoresistor sensor, and a semiconductor interferometric optical gyro. The piezoresistor driver is incorporated within the beam at a first area proximate to the post. The driver electro-thermally resonates the beam. The piezoresistor sensor is incorporated within the beam at the first area. The sensor piezoresitively senses a signal that relates to an acceleration force out-of-plane of the beam. The semiconductor interferometric optical gyro is also incorporated within the beam at a second area of the beam. The gyro senses rotational motion about an axis approximately equivalent to the acceleration force out-of-plane of the beam. The gyro includes a waveguide, a laser source and a light detector. The beam is formed from a semiconductor substrate. | 03-03-2011 |
20110249268 | ENHANCED RING LASER GYROSCOPE WITH DISPERSION CONTROLLED GAIN CONDITION - A ring laser gyroscope that includes a cavity containing a gain medium, a plurality of reflective surfaces coupled to the cavity, and at least one medium exciter operable to excite the gain medium. The gain medium has naturally dispersive properties associated with an index of refraction. The reflective surfaces include at least a first reflective surface, a second reflective surface, and a third reflective surface. The first, second, and third reflective surfaces are positioned to reflect light between the plurality of reflective surfaces. The excited gain medium induces first and second laser fields within the cavity. The first and second laser fields operate at a lasing frequency corresponding to a negative slope of the index of refraction associated with the dispersive properties of the gain medium. The gain medium causes anomalous dispersion of the first and second laser fields passing through the gain medium. | 10-13-2011 |
20120099111 | Laser Gyro Comprising a Cylindrical Solid Amplifier Bar, and Associated Method for Exciting a Cylindrical Solid Amplifier Bar of a Laser Gyro - A laser gyro includes a cylindrical solid amplifier bar having an axis of revolution. The laser gyro also includes: an annular piezoelectric element for exciting said solid amplifier element at a predetermined frequency f, along said axis of revolution, said annular piezoelectric element being mounted fixed on one of the two end cross sections of the cylindrical solid amplifier bar so that its axis of revolution coincides with said axis of revolution of said cylindrical solid amplifier bar; and an annular dynamic counterweight mounted fixed on the free end cross section of said annular piezoelectric element so that its axis of revolution coincides with said axis of revolution of said cylindrical solid amplifier bar; said cylindrical solid amplifier bar being dimensioned so as to be considered nondeformable at said excitation frequency f. | 04-26-2012 |
20120170045 | Fixing System for the Optical Block of a Laser Gyroscope - In a laser gyroscope, an activation wheel has a polygonal cylindrical hub formed by continuous assembly of vertical walls, wherein two adjacent walls of the cylindrical hub between them form a dihedron. Each radial plate of the activation wheel is connected to the cylindrical hub along the edge of a dihedron. The walls are formed with bulging portions, serving for plane-to-plane fixing of one face of the tulip to an optical block, and thin parts allowing a radial displacement degree of freedom of the fixing parts relative to the rim when there is a differential thermal expansion between the tulip and activation wheel. The activation wheel may be produced in a material having a thermal expansion coefficient higher than the tulip, for example steel, with plane-to-plane fixing of the tulip to the activation wheel hub, advantageously by screws, the assembly effectively accommodating the thermal expansion differential between the two materials. | 07-05-2012 |
20120274944 | TITANIUM-DOPED AMORPHOUS ALUMINUM NITRIDE MICROLASER DEVICE AND METHOD FOR MAKING AND USING SAME - A microlaser system, including a microlaser, having an elongated generally cylindrical substrate, a thin dopant film encircling at least a portion of the substrate, and a pumping laser positioned to shine onto the thin film. The thin film is between about 2 and about 10 microns thick. When the pumping laser shines on the thin film, the thin film lases in whispering gallery mode. The dopant is preferably selected from the group including transition metals and rare-earth elements. In a most preferred embodiment, the thin film is titanium-doped amorphous aluminum nitride. | 11-01-2012 |
20130050708 | METHOD AND APPARATUS FOR MULTIPLEXING MULTIPLE SAGNAC INTERFEROMETERS WITH SINGLE INPUT FOR SOURCE LIGHT - A method and system for transmitting source light to a plurality of Sagnac interferometers includes a first directional coupler that splits the source light into a second light beam and a third light beam. The second light beam supplies light to a first Sagnac interferometer and the second light beam supplies light to a second directional coupler, and the first directional coupler also delivers light returning from the first Sagnac interferometer to a first detector that is used to indicate rotation of the first Sagnac interferometer. The second directional coupler splits the third light beam into a fourth light beam and a fifth light beam, and the fourth light beam supplies light to a second Sagnac interferometer. The second directional coupler delivers light returning from the second Sagnac interferometer to a second detector, and the second detector provides a signal indicative of rotation of the second Sagnac interferometer. | 02-28-2013 |
20130083326 | TEMPERATURE SENSOR ATTACHMENT FACILITATING THERMAL CONDUCTIVITY TO A MEASUREMENT POINT AND INSULATION FROM A SURROUNDING ENVIRONMENT - A temperature sensor package includes a temperature sensor having a first side and a second side, wherein the first side of the temperature sensor includes an active region configured for coupling with a target area for temperature measurement of an object. The temperature sensor package further includes a circuit board having a first side and a second side, the first side of the circuit board coupled to the second side of the temperature sensor, wherein the circuit board provides thermal insulation between the active region of the temperature sensor and an environment on the second side of the circuit board. | 04-04-2013 |
20130141732 | FRAME ELEMENT OF A LASER GYROSCOPE COMPRISING A SUBSTRATE COMPRISING MOBILE IONS AND AN ELECTRODE - The invention pertains to a frame element of a laser gyroscope comprising a substrate comprising mobile ions and an electrode fixed to the said substrate, comprising at least one electrically conducting element, connected electrically to the said electrode, and furnished with at least one distal part integrated into the said substrate and exhibiting at least one tip and/or at least one groove, forming at least one blind hole and/or at least one groove in the said substrate, of shape corresponding to that of the said distal part or parts, so as to obtain a tip effect. | 06-06-2013 |
20130329229 | LASER GYRO COMPRISING A DEVICE FOR PROTECTING FROM CORROSION - The invention relates to a laser gyro that comprises an optical block comprising a glass-ceramic first material comprising apertures, electrodes placed in the apertures of the optical block, and seals) ensuring the hermeticity of the optical block in the location of the apertures. The seal comprises indium of a first redox potential. The laser gyro furthermore comprises, making contact with the seal, at least one sacrificial electrode comprising a second material of a second redox potential, the second redox potential being lower than the first redox. | 12-12-2013 |
20140340687 | GYROLASER WITH OPTIMIZED IGNITION - A gyrolaser comprises: a ring-shaped optical cavity and a gaseous medium, and at least three electrodes in contact with the gas of the amplification medium, the electrodes generating charges when ignition voltage is applied; the cavity and distribution of the electrodes comprising at least one plane of symmetry perpendicular to the plane of the cavity and passing through the electrode of first type; at least one conductive ignition element set at a predetermined potential, the shape and arrangement being such that symmetry is maintained; the electrically conductive element generating an electric field locally for guiding the charges so they are distributed symmetrically in a first flow and second flow in the first and second discharge areas respectively when the ignition voltage is applied, in such a way that a first plasma and a second plasma are initiated simultaneously, respectively, in the first discharge area and in the second discharge area. | 11-20-2014 |
20150354960 | SYSTEMS AND METHODS FOR A GLASS-CERAMIC BARRIER COATING - Systems and methods for a glass-ceramic barrier coating are provided. In certain embodiments, a sensor comprises a sensor body, the sensor body enclosing a desired environment within a volume, wherein the sensor body is fabricated from a glass-ceramic; and a barrier coating formed on at least one surface of the sensor body, wherein the barrier coating vacuum seals the desired environment within the volume from an environment external to the volume. | 12-10-2015 |
20160010996 | DEVICES AND METHODS FOR A PATH LENGTH CONTROL DRIVER FOR A RING LASER GYROSCOPE | 01-14-2016 |
20160109239 | FLOATING CURRENT MIRROR FOR RLG DISCHARGE CONTROL - A ring laser gyroscope (RLG) assembly comprises an RLG block comprising: a first anode; a second anode; a cathode; and a cavity. The RLG assembly further comprises a current supply circuit coupled to the RLG block. The current supply circuit comprises a high voltage power supply to provide a high voltage signal; a first current path coupled between the high voltage power supply and the first anode to provide a first current to the first anode; and a second current path coupled between the high voltage power supply and the second anode to provide a second current to the second anode. The second current path is configured to mirror the first current such that the second current approximately matches the first current. Each component in the second current path is configured to operate based on power derived only from the high voltage signal. | 04-21-2016 |