Class / Patent application number | Description | Number of patent applications / Date published |
356313000 | By arc or spark | 14 |
20080198377 | Method for Operating an Optical Emission Spectrometer - The invention relates to a method for the spectral analysis of metal samples with the following steps:
| 08-21-2008 |
20100208255 | OPTICAL EMISSION ANALYZER - An optical emission analyzer is provided with a circuit-closing switch ( | 08-19-2010 |
20110026020 | ATOMIC ABSORPTION MERCURY ANALYSER - The invention relates to analytical chemistry. In the analyser, mercury placed in a spectral lamp is enriched with a mercury isotope having an even neutron number, wherein said isotope constitutes not less than 50% of the total mercury content in the spectral lamp. Moreover, the discharge cavity of the spectral lamp is connected to a ballast cavity, the volume of which is greater than the discharge cavity volume, and electrical discharge generating means, the discharge cavity and the ballast cavity are designed in such a way that the discharge generated in the discharge cavity does not penetrates into the ballast cavity. A buffer gas in the spectral lamp contains a noble gas in a quantity equal to or greater than 50%, the charge of the atomic core of said gas being not less than 36. Said invention makes it possible to lower the detection level of mercury in a carrier gas and to reduce a drift. | 02-03-2011 |
20110228269 | Apparatus and Methods for Optical Emission Spectroscopy - The invention provides a spark generator for generating a spark for optical emission spectroscopy (OES), wherein the spark has a current waveform comprising a first modulated portion which comprises a plurality of relatively high current and high gradient peaks of variable amplitude and/or inter-peak duration and a second modulated portion of relatively low current and low gradient which is substantially without modulated peaks. The spark is preferably generated from two or more programmable current sources. The invention also provides an optical emission spectrometer comprising the spark generator and a method of optical emission spectroscopy using the spark generator. | 09-22-2011 |
20120300204 | METHOD FOR DETERMINING CARBON IN CAST IRON - A method of determining the carbon content of an iron alloy may include starting of the measurement of a sample in a spark spectrometer, creation of a plasma in a pre-sparking phase, detection and recording of an intensity signal for the carbon, calculation and cutting out of an unstable plasma phase, calculation of an excessive rise in the carbon signal, and calculation of the content of dissolved and undissolved carbon. | 11-29-2012 |
20130148117 | METHOD AND APPARATUS FOR AEROSOL ANALYSIS USING OPTICAL SPECTROSCOPY - Particles of a flow of aerosol are collected and analyzed by passing them through a housing having an inlet area, an outlet area, and a collection and analysis area interconnecting the inlet and outlet areas. A collection electrode has a tip disposed in the collection and analysis area and particles are collected thereon. After collection, the particles are ablated and atomic emissions are collected for analysis of the particles. | 06-13-2013 |
20130148118 | SPARK CHAMBER FOR OPTICAL EMISSION ANALYSIS - A spark chamber for an optical emission analyser, comprising: a gas inlet located on a first side of the spark chamber for supplying a gas into the spark chamber; and a gas outlet located on a second side of the spark chamber arranged to convey the gas from the spark chamber; wherein an elongated electrode having an electrode axis generally along the direction of elongation is located within the spark chamber; and wherein: the first and second sides of the spark chamber lie at either side of the elongated electrode in directions generally perpendicular to the electrode axis; there is a gas flow axis through the spark chamber between the gas inlet and the gas outlet; and on passing along the gas flow axis from the gas inlet to the gas outlet the unobstructed internal cross sectional area of the spark chamber perpendicular to the gas flow axis remains constant to within a factor A, wherein A lies between 1.0 and 2.0. | 06-13-2013 |
20130265574 | SPARK EMISSION PARTICLE DETECTOR - Techniques and devices are disclosed for detecting particle composition. In one aspect, a method performed by a detector to detect particles includes receiving particles at an aerosol inlet of the detector. The method includes carrying the received particles within a stream of gas and charging the particles within the stream of gas using a charger to have a charge. The method includes transporting the charged particles to a location of a collection electrode. The method includes biasing the collection electrode to a voltage using a high-voltage supply to attract either negatively or positively charged particles, and analyzing the particles. | 10-10-2013 |
20130321803 | PLASMA SPECTROMETER - To improve detection sensitivity, detection accuracy, and reproducibility when electric discharge is caused in a sample solution to perform analysis with light emission in the plasma, a flow channel | 12-05-2013 |
20140118734 | Atomizing Furnace - An atomizing furnace, in particular for atomic absorption spectroscopy, includes a tube furnace apparatus and a sample carrier. The sample carrier is disposed within the tube furnace apparatus, and includes at least three supporting protrusions by which the sample carrier is punctually supported on an interior wall of the tube furnace apparatus. The supporting protrusions are disposed in a common plane running through a longitudinal axis of the sample material, wherein at least two supporting protrusions are formed on respectively opposite ends of the sample carrier. | 05-01-2014 |
20140313508 | METHOD FOR THE EMISSION ANALYSIS OF THE ELEMENTAL COMPOSITION OF LIQUID MEDIA - The proposed method is related to the field of technical physics, in particular, to spectral methods for determining elemental composition of liquid media using an electric discharge in the liquid as a source of spectra. The method can be implemented in devices for determining elemental composition of liquid media. The areas of application include water treatment systems at public water supply facilities, nuclear and thermal power industries, chemical industry, food industry processes (for water quality control), environment monitoring, etc. The technical result of the invention is higher stability and reproducibility of measurement results and better long-term operation reliability of the device. The proposed method for emission analysis of elemental composition of liquid media includes initiation of a local electric discharge in the liquid under analysis with the formation of a current-carrying channel in the volume of a diaphragm opening made in a member of the electrolytic cell structure, and detection of the generated emission spectra of the chemical elements being determined. | 10-23-2014 |
20140368818 | SPECTROMETER AND METHOD OF SPECTROSCOPY - A spark optical emission spectrometer comprising: a spark source for causing spark induced emission of light from a sample; a single entrance slit; a toroidal mirror for directing the light through the single entrance slit; a plurality of diffraction gratings for diffracting light that has been directed through the entrance slit by the mirror, whereby the plurality of diffraction gratings are simultaneously illuminated; and at least one array detector for detecting the diffracted light from the plurality of diffraction gratings, wherein the minor is for directing the light through the entrance slit such that light from different regions in the spark source is spatially separated in an image of the light at the gratings whereby a first diffraction grating is preferentially illuminated with light from a first region of the spark source and simultaneously a second diffraction grating is preferentially illuminated with light from a second region of the spark source. | 12-18-2014 |
20150029505 | Spark-Induced Breakdown Spectroscopy Electrode Assembly - A spark-induced breakdown spectroscopy apparatus can have a housing with an inlet and an outlet that define an analyte flow path. A laser can define a laser pathway generally transverse to an intersecting the analyte flow path. A pair of electrodes, which can have insulating shields, can be mounted within the housing and can define a spark path. An optical detection element defines an optical path. The apparatus can be used to identify an aerosolized analyte. | 01-29-2015 |
20150300878 | PULSE GENERATOR AND SYSTEMS AND METHODS FOR USING SAME - A pulse generator generates high voltage discharge pulses in a manner that may be controlled and monitored. Pulse generator operation may be monitored to measure characteristics associated with pulse generator operation and to produce pulse generator data representative of those characteristics. Pulse generator operation may be monitored by monitoring the discharge pulses produced by the pulse generator and/or the charging of energy storage elements within the pulse generator in preparation for a subsequent discharge pulse. The pulse generator data may be used, for example, to identify pulse generator wear or degradation, to identify problems with pulse generator operation, and/or to control pulse generator operation for improved performance. The pulse generator may also be configured and controlled to generate a high-voltage initiation pulse to initiate a subsequent discharge pulse while being contained within a relatively small form factor. The pulse generator may be used in spectroscopy systems or other systems using high voltage discharge pulses. | 10-22-2015 |