Class / Patent application number | Description | Number of patent applications / Date published |
351233000 | Lens or filter selectively insertable in optical path | 24 |
20080246922 | Method and Apparatus for Correcting Vision Using an Electro-Active Phoropter - An electro-active phoropter and a method of using the electro-active phoropter to measure a patient's vision prescription is disclosed. The electro-active phoropter includes a series of individually addressable electro-active lenses. The lenses have either a positive or negative optical power when an electrical potential is applied across the lens and a neutral optical power when no electrical potential is applied across the lens. Each lens provides an optical power that is part of a net optical power of the series of lenses when a patient views through the phoropter. The optical power of the phoropter can be incrementally adjusted by changing the distribution of the electrical potential across the different lenses of the series to provide increasing or decreasing optical power until a patient achieves a desired level of clarity and a vision prescription has been determined. | 10-09-2008 |
20080266521 | Sphero Cylindrical Eye Refraction System Using Fluid Focus Electrostatically Variable Lenses - Optical devices, systems, and methods can produce and/or measure cylindrical (as well as spherical) lens shapes throughout a range of both powers and cylindrical axes. Fluid focus lenses employ electrical potentials to vary the shape of a fluid/fluid interface between two immiscible fluids having differing indices of refractions by controlling localized angles between the interface and a surrounding container wall. Spherical power, cylindrical power, and cylindrical access alignment may be varied with no moving parts (other than the fluids). | 10-30-2008 |
20080316427 | Ophthalmic Lens Simulation System and Method - A method of simulating an optical effect, and/or characteristic of a selected ophthalmic lens design for a wearer is disclosed. In an embodiment, the method includes retrieving simulation data for the selected ophthalmic lens design and processing the simulation data to generate output image data for an output image simulating the optical effect and/or characteristic of the selected ophthalmic lens design. The output image is displayed, using a head-mounted display worn by the wearer, for viewing by the wearer. | 12-25-2008 |
20090051875 | DIAGNOSTIC AND CORRECTIVE APPARATUS AND METHOD - This disclosure describes systems and methods which utilize outcomes analysis, empirical and on-eye diagnostic fitting outcomes, and similar patient data to determine and provide a relatively optimal corrective device for the patient, in a single-use and disposable set of devices. | 02-26-2009 |
20090128777 | ARTIFICIAL EYE AND MEASURING INSTRUMENT FOR MEASURING THE ACCOMMODATION OF AN EYE - A liquid lens system comprises a liquid drop 10 whose shape can be influenced by electrical fields. A plurality of electrodes are arranged annularly around the liquid drop. The liquid lens system may be employed in an artificial eye, an accommodation measuring instrument and a dioptric telescope. | 05-21-2009 |
20090251666 | Generalized presbyopic correction methodology - An adaptive optics phoropter is aligned with a Badal optometer and an adjustable aperture component to subjectively determine an optimal vision correction as a power profile for an ophthalmic lens or ablating a cornea. The optimal power profile is preferably determined in an iterative process by adjusting the vergence of the Badal optometer and aperture size of the adjustable aperture component for power profiles with presbyopic power zones having different amplitudes, shapes, widths, and/or de-centering. Also included is a method of recursively computing a refractive surface with a regular presbyopic power zone (e.g., according to the optimal power profile) and adding it onto an underlying irregular Zernike-basis-set aberration-corrected surface in a linear fashion for fabricating an ophthalmic lens. | 10-08-2009 |
20090262304 | EYEGLASS DISPENSING METHOD - A method of making corrective eyeglasses is disclosed. One embodiment is a method of making corrective eyeglasses. The method includes obtaining vision parameters of a patient's eyes, obtaining an eyeglass frame comprising at least one mounted optical element, and programming the optical element to define a pattern of refraction that is associated with the vision parameters. | 10-22-2009 |
20110080562 | MULTIFOCAL INTRAOCULAR LENS SIMULATOR AND METHOD OF SIMULATING MULTIFOCAL INTRAOCULAR LENS - A multifocal intraocular lens simulator includes an optical system enabling an object to be observed therethrough, and a test lens holder which holds a prescribed test intraocular lens. The intraocular lens holder is installed at a position optically conjugate with a position at which an eye of an observer is to be placed. The present invention also teaches a method of simulating a multifocal intraocular lens. | 04-07-2011 |
20120188512 | Lens Assembly for Improving Phoropter Performance - Aspects of the present invention provide systems, methods, and apparatuses for providing coarse vision correction tuning capability, fine vision correction tuning capability, and/or high-order aberration correction capability. An optical device or lens assembly of the present invention can include one or more conventional lenses, one or more fluid or liquid lenses, one or more electro-active lenses, or any combination thereof. The optical device or lens assembly can be mechanically, adhesively, or magnetically coupled to a phoropter or can be built into the phoropter as an integrated add | 07-26-2012 |
20120249965 | NEUROCHROMATIC REFRACTOR - An apparatus for use in determining a neurochromatic lens prescription. The apparatus includes an opening operable for use in a patient observing a visual target and a trial lens slot operable for use in inserting a trial lens into the patient's line of sight and the opening. The apparatus further includes a channel operable for sliding the trial lens into a centered position within the opening and a trial lens retainer operable for holding one or more trial lenses resulting in visual function improvement. The channel is coupled to the trial lens slot and the channel is operable for sliding the trial lens horizontally into the opening. The trial lens retainer is operable to retain the one or more trial lenses within the patient's line of sight. | 10-04-2012 |
20120249966 | NEUROCHROMATIC TRIAL LENS KIT - A trial lens kit for determining a neurochromatic lens prescription for the eye. The trial lens kit includes a first plurality of trial lenses wherein each of the first plurality of trial lenses is operable to filter a particular wavelength of light. The first plurality of trial lenses corresponds to a first type of visual function improvement. The trial lens kit further comprises a second plurality of trial lenses where each of the second plurality of trial lenses is operable to filter a particular wavelength of light. The second plurality of trial lenses corresponds to a second type of visual function improvement. The first plurality of trial lenses and the second plurality of trial lenses are operable for determining a neurochromatic prescription. | 10-04-2012 |
20130176536 | INTRA-OCULAR LENS OPTIMIZER - A vision testing method and apparatus are disclosed, the method including measuring the modulation to a wavefront of light that is imparted by an intra-ocular lens, determining the wavefront modulation necessary to emulate the optical properties of the IOL after it replaces the crystalline lens in a patient's eye, generating a static or dynamic image viewable by a patient, modulating the wavefront of the image remote from the patient to attain the wavefront that necessary to emulate the optical properties of the IOL after it is implanted, and relaying said wavefront to a plane nearby, on, or within the patient's eye. The apparatus includes devices for measuring the modulation to a wavefront of light that is imparted by an intra-ocular lens, determining the wavefront modulation necessary to emulate the optical properties of the IOL after implantation in a patient's eye, generating a static or dynamic image viewable by a patient, modulating the wavefront of the image remote from the patient to attain the wavefront necessary to emulate the optical properties of the IOL after it is implanted, and relaying said wavefront to a plane nearby, on, or within the patient's eye. | 07-11-2013 |
20150009474 | METHODS, SYSTEMS AND APPARATUSES FOR NIGHT AND DAY CORRECTIVE OPHTHALMIC PRESCRIPTION - One exemplary embodiment is a method for determining an ophthalmic prescription. An examination room is lighted to simulate daytime viewing and a conventional eye chart is used as a visual stimulus. A first corrective spherical lens power is determined by varying spherical lens power and identifying when perceived vision is best. The examination room is kept dark to simulate nighttime viewing conditions. The visual stimulus utilized is a white point source on a dark background, or a self illuminated symbol on a dark background. A second corrective spherical lens powered is determined by varying spherical lens power and identifying when perceived vision is best. An ophthalmic prescription such as one or more lenses, one or more surgical corrections or a combinations thereof is provided including a first corrective component including the first preferred spherical lens power, and a second corrective component including the second preferred spherical lens power. | 01-08-2015 |
20150374225 | SELF GUIDED SUBJECTIVE REFRACTION INSTRUMENTS AND METHODS - A refraction device determines a refraction end point to provide corrective optics for a test subject. The device includes an adjustable optical system providing corrective optics to the test subject and an adjustable viewing target disposed along an optical path such as to be viewable through the adjustable optical system by a test subject. The adjustable viewing target includes a directional indicator linked synchronously to at least two choices of corrective optics presented to the test subject. | 12-31-2015 |
20160135677 | MEANS AND METHOD FOR DEMONSTRATING THE EFFECTS OF LOW CYLINDER ASTIGMATISM CORRECTION - A new vision test, incorporating textual and non-textual elements in an image, is configured to demonstrate the effects of low cylinder astigmatism and other sources of blur on visual quality. The elements are designed to be noticeable, relevant, important and engaging. The new vision test may be utilized to supplement conventional vision testing. | 05-19-2016 |
20160192836 | Electro-Active Opthalmic Lens Having an Optical Power Blending Region | 07-07-2016 |
351234000 | Mounted on rotatable disc | 8 |
20120092620 | BINOCULAR GLARE TESTING DEVICES - The present invention is a glare tester attachment for use with a conventional ophthalmic instrument, comprising a pair of eye cups, both eye cups each comprising a wall partially enclosing a hollow interior chamber and having a viewing aperture defining a respective viewing line of sight axis for each eye cup, a portion of each wall being provided with a plurality of lights disposed around said line of sight axis. The invention may be incorporated into a phoropter or a hand-held device. | 04-19-2012 |
20120092621 | OPTOMETRIC APPARATUS - An optometric apparatus for examining visual functions of an examinee's eye includes: a memory for storing prism powers corresponding to the visual functions of the examinee's eye; an output unit; and a control unit for graphically displaying on the output unit normative areas being areas of normative prism powers in addition to information on prism powers of the examinee's eye based on the prism powers stored in the memory. | 04-19-2012 |
20130182224 | HOLOGRAPHIC ADAPTIVE SEE-THROUGH PHOROPTER - A phoropter having a line of sight for a viewer to see through comprises a lens system in the line of sight, wherein a shape or focal length of at least one lens in the lens system is controllable by means of an electrical signal, electrical field or current. Wavefront sensors of the phoropter detect local tilts of light wavefronts emerging from the eye and generate output signals that are used for controlling the shape or focal length of the at least one lens. Holographic or diffractive elements are used to collect light scattered from an eye of the viewer and image the scattered light to the wavefront sensors. Preferably one or more of the holographic or diffractive elements are away from the line of sight of the viewer. To use the phoropter, light is passed to the lens system, and light scattered by the eye is collected by the holographic or diffractive elements and imaged onto the wavefront sensors. | 07-18-2013 |
20130250245 | Method and System for Simulating/Emulating Vision Via Intraocular Devices or Lenses prior to Surgery - A method and system for simulating/emulating vision using intraocular devices or lenses prior to surgery, preferably using multifocal and monofocal intraocular lenses. The invention allows the patient, prior to surgery, to compare the differences in the perception of an image as seen with the intraocular lens and with normal vision, determining which type of lens the patient prefers, and in turn allows the ophthalmologist to measure which provides the better visual performance. The invention comprises a system containing the intraocular lens, called an artificial eye, a lens for transporting the image from the intraocular lens and eliminating the blur introduced by the artificial eye, and at least one telescope or optometer which transports the intermediate image from the intraocular lens onto the patient's pupil. In this manner, the patient is shown how he/she would see after surgery with each type of lens proposed by the ophthalmologist. | 09-26-2013 |
20140340643 | BINOCULAR GLARE TESTING DEVICES - The present invention is a glare tester attachment for use with a phoropter, comprising a pair of eye cups, both eye cups each comprising a wall partially enclosing a hollow interior chamber and having a viewing aperture defining a respective viewing line of sight axis for each eye cup, a portion of each wall being provided with a plurality of lights disposed around said line of sight axis. The invention may be incorporated into a phoropter or a hand-held device. | 11-20-2014 |
20160029885 | IMAGE REFRACTION SYSTEM AND METHOD - An image refractor, system and method are designed to improve refraction tests by allowing an examinee to compare, by viewing through at least one eye, at least two disparate images of the same acuity target, substantially side-by-side and simultaneously. The image refractor incorporates at least two prisms through which the acuity target is viewed. Embodiments may be attached to a standard phoropter and rotated into the visual axis so that the at least two images are produced by a combination of the lenses in the phoropter and the superimposed lenses of the image refractor. Embodiments determine the optimum correction for the sphere, cylinder, and axis of the refraction. | 02-04-2016 |
351235000 | Having plural disc carrier | 2 |
20100157249 | Vision tester - A subjective vision tester includes a pair of right and left lens chamber units ( | 06-24-2010 |
20150042957 | OBJECTIVE PHOROPTER SYSTEM - Systems for performing combined phoropter and refractive measurements to ascertain the aberrations present in the eye of a subject. The systems use a pair of phoropter wheel assemblies, one for each eye, each assembly comprising a number of lens wheels incorporating the series of lenses and wedges required to compensate for a range of refractive vision aberrations. The vision of each eye is corrected by a combination of a subjective phoropter measurement, iteratively performed with an objective wavefront analysis measurement to determine the residual aberrations existing after the initial phoropter correction. The system is able to automatically align the axes of each wavefront analyzer with is corresponding eye, by means of centering the pupil image in the wavefront analyzer camera, and to determine the pupil distance. By changing the focusing point on the wavefront analyzer of the light refleeted from the eye, the corneal profile can be measured. | 02-12-2015 |