Class / Patent application number | Description | Number of patent applications / Date published |
349152000 | With detail of terminals to external circuit | 39 |
20080212011 | Display device having a board for a connector for inputting of video data and a board for mounting a display control circuit and manufacturing method thereof - In a display device forming a board for mounting a connector which allows inputting of video data thereon and a board for mounting a display control circuit to be connected to the connector thereon on a surface of a display module opposite to an observation side, the board for mounting the connector thereon and the board for mounting the display control circuit thereon are physically separated from each other and, further, an area of the board for mounting the display control circuit thereon is set smaller than an area of the board for mounting the connector thereon. | 09-04-2008 |
20080239229 | CIRCUIT BOARD AND LIQUID CRYSTAL DISPLAY INCLUDING THE SAME - A liquid crystal display (“LCD”) includes a circuit board including a first connector which receives a data signal and a second connector which is separated from the first connector and receives a power supply voltage, a timing controller mounted on the circuit board, the timing controller receiving the power supply voltage from the second connector and the data signal from the first connector, and processing the data signal received from the first connector, and a liquid crystal panel displaying an image using the data signal processed by the timing controller. | 10-02-2008 |
20080246911 | Display device - A display device includes a display panel, and a semiconductor chip having plural bump electrodes and mounted on a substrate constituting the display panel. The plural bump electrodes include a first bump electrode arranged in the vicinity of a center for a longitudinal direction of the semiconductor chip, and a second bump electrode arranged in the vicinity of an end portion in the longitudinal direction of the semiconductor chip. The semiconductor chip has one or more than one conductive layer inside. Assuming that a surface of the semiconductor chip having the bump electrodes formed thereon is a lower side, the number of the conductive layers formed on the second bump electrode is greater than the number of the conductive layers formed on the first bump electrode. The conductive layer formed on the first and the second bump electrode includes a dummy conductive layer. Further, the plural bump electrodes are electrically connected to a wiring layer formed on a substrate constituting the display panel through an anisotropic conductive film. | 10-09-2008 |
20080266508 | Liquid Crystal Display and Method for Manufacturing The Same - Disclosed are a liquid crystal display (LCD) and a method for manufacturing the same, in which connection stability is improved when connecting a COG, A COF, or an FPC to a driving circuit. A substrate of the LCD has a display region and a non-display region at a peripheral area thereof. Terminals are provided to electrically connect an external circuit and a circuit of the display region and the non-display region. A flat protective layer is formed on the terminals. A plurality of pads are respectively formed of a first contact region and a flat second contact region, and each of the pads contacts a corresponding terminal, which is formed through a pad contact hold formed on the protective layer, at the first contact region, and each of the pads is electrically connected through an anisotropic conductive resin to a terminal of the external circuit by a pressing process at the flat second contact region. | 10-30-2008 |
20080284969 | THIN FILM TRANSISTOR ARRAY PANEL AND METHOD OF MANUFACTURING THE SAME - A thin film transistor array panel including a substrate, a plurality of first signal lines formed on the substrate, a plurality of second signal lines, insulated from the first signal lines, which are formed on the substrate and which define an area of a display area by traversing the first signal lines, a driver disposed on a peripheral area, a plurality of connection lines, disposed on the peripheral area, which couple the driver to each of the first signal lines, and an insulating layer which insulate the first signal lines from the connection lines. The insulating layer includes a plurality of contact holes, portions of the first signal lines and the connection lines are connected through the contact holes, and sizes of exposed portions of the first signal lines exposed through the contact holes increase as respective distances from the contact holes to the driver increase. | 11-20-2008 |
20080297713 | Circuit Signal Connection Interface, a Manufacture Method Thereof, and an Electronic Device Using the Same - A circuit signal connection interface, a manufacturing method thereof, and an electronic device using the same are provided. The circuit signal connection interface includes a first signal line and a second signal line juxtaposed to each other, an insulation layer, and a first conductive pad. The first conductive pad electrically connects to the first signal line, and crosses the second signal line. The insulation layer is disposed between the second signal line and the first conductive pad. The electronic device further includes a circuit device including a first conducting bump and a second conducting bump connected to each other in a parallel manner. The first conducting bump electrically connects to a first portion of the first conductive pad while the second conducting bump electrically connects to a second portion of the first conductive pad. | 12-04-2008 |
20090002624 | Pad of liquid crystal display device and method for manufacturing the same - A pad of a liquid crystal display and a method for manufacturing the same are disclosed. The pad of the liquid crystal display includes an IC substrate and a lower substrate opposite each other, an IC pad metal formed on the IC substrate, a bump formed on the IC substrate to come into contact with the IC pad metal, a first transparent electrode electrically connected with the IC pad metal, an interlayer insulating layer formed between the IC pad metal and the first transparent electrode, a gate pad metal formed on the lower substrate, a second transparent electrode electrically connected with the gate pad metal, a gate insulating layer formed between the gate pad metal and the second transparent electrode, and a conductive ball to electrically connect the first transparent electrode and the second transparent electrode to each other. | 01-01-2009 |
20090015778 | LIQUID CRYSTAL DISPLAY AND MANUFACTURING METHOD THEREOF - The present invention is related to a liquid crystal display (“LCD”) and a method thereof. The LCD includes a liquid crystal (“LC”) panel assembly including a plurality of pixels, a backlight unit providing light to the LC panel assembly, a printed circuit board (“PCB”) mounted with a plurality of circuit elements that control the backlight unit and includes a plurality of pads connected to the backlight unit, and a plurality of metal pieces attached to the pads. The metal pieces are attached when mounting the circuit elements. | 01-15-2009 |
20090033857 | LIQUID CRYSTAL DISPLAY DEVICE - The present invention provides a liquid crystal display device which mounts a back-surface conductive film on one substrate, wherein a reference potential is surely supplied to the back-surface conductive film. The liquid crystal display device includes a first substrate, a second substrate, and liquid crystal sandwiched between the first substrate and the second substrate, wherein the second substrate includes a back-surface conductive film on a surface thereof opposite to the liquid crystal, and the first substrate includes a pad electrode which is formed on the first substrate and is electrically connected with the back-surface conductive film via a conductive member, a conductive film which is formed on the first substrate and below the pad electrode, a first connection line which connects the conductive film and a reference voltage terminal, and at least one contact hole which connects the pad electrode and the conductive film. The conductive film of the first substrate is formed of a metal film or a transparent conductive film. | 02-05-2009 |
20090040450 | CIRCUIT BOARD, A LIQUID CRYSTAL DISPLAY MODULE HAVING THE SAME, AND A DISPLAY DEVICE HAVING THE SAME - A circuit board capable of preventing driver ICs and electronic and electrical components from being affected by static electricity, a liquid crystal display module having the same, and a display device having the same. The liquid crystal display module includes a liquid crystal display panel, gate side common circuit boards including FPC connector bonding lands placed at both ends in longitudinal directions of the gate side common circuit boards, and source side common circuit boards, wherein the FPC connector bonding lands adjacent to the source side common circuit boards are mounted with FPC connectors and are electrically connected with the source side common circuit boards, and surfaces of the FPC connector bonding lands placed at the other ends are covered with an electrical insulating coating. | 02-12-2009 |
20090059153 | DISPLAY DEVICE - A display device includes a first substrate having a group of terminal electrodes on one side thereof, at least one of the terminal electrodes forming a branched electrode with an isolation region extending along an elongating direction of each the terminal electrode and a second substrate opposing the first substrate such that the terminal electrodes are exposed from an overlapping area of the first substrate and the second substrate. | 03-05-2009 |
20090066902 | Liquid crystal display for equivalent resistance wiring - A liquid crystal display having an electrode pad for compensating for differences in resistance of electrode links. A pad portion in contact with a driving circuit includes a transparent electrode pattern having a length that depends on the length of an associated electrode link that is connected between the pad portion and a corresponding signal line at a pixel area on which a plurality of liquid crystal cells are arranged. Accordingly, resistance differences that depend on the length of the electrode links are compensated for using electrode pads, thereby making signal conductors with substantially equal resistances. | 03-12-2009 |
20090185127 | DISPLAY DEVICE - A display device includes a curved insulative substrate. A substrate line includes first input substrate lines electrically connected to first driving elements and first output substrate lines electrically connected to first lines and the first driving elements. The first output substrate lines are provided so as to be closer to the displaying region than are the first input substrate lines. Each first driving element has a rectangular shape with two longer sides and two shorter sides, the first driving element being mounted so that the longer sides are parallel or substantially parallel to the direction in which the first lines extend. | 07-23-2009 |
20090207369 | PERIPHERAL CIRCUIT - A peripheral circuit disposed on a substrate having an active device array is provided. The peripheral circuit includes first test pads, second test pads, first lines, and second lines. The first and the second lines are electrically connected to the active device array. Each first test pad includes a first conductive layer and a second conductive layer electrically connected to the first conductive layer. The first conductive layer electrically connects at least two of the adjacent first lines. The second test pads are interposed between the first test pads and the active device array. Each second test pad includes third conductive layers and a fourth conductive layer electrically connected to the third conductive layers. The first lines pass through the third conductive layers and are insulated from the fourth conductive layer. Each third conductive layer is electrically connected to one of the adjacent second lines respectively. | 08-20-2009 |
20090231533 | Semiconductor Device and Manufacturing Method Thereof - A wiring line is electrically connected in parallel to an auxiliary wiring line via a plurality of contact holes. The contact holes are formed through an insulating film and arranged in vertical direction to the wiring line. Since the auxiliary wiring line is formed in the same layer as an electrode that constitutes a TFT, the electric resistance of the wiring line can be reduced effectively without increasing the number of manufacturing steps. | 09-17-2009 |
20090273753 | LIQUID CRYSTAL DISPLAY - A liquid crystal display comprises: a first substrate; a display area disposed on the first substrate; subpixels disposed in the display area; a scan driver for supplying a scan signal to scan lines connected to the subpixels; a data driver for supplying a data signal to data lines connected to the subpixels; first transistors disposed on the first substrate adjacent to one side of the display area and connected to the data lines; second transistors disposed on the first substrate adjacent to the other side of the display area and connected to the scan lines; and a test pad connected to the first transistors and second transistors. | 11-05-2009 |
20100007841 | DISPLAY PANEL AND MANUFACTURING METHOD OF THE SAME - A method of manufacturing a display panel includes forming a first display substrate including a plurality of pixel electrodes, a plurality of test signal lines, and a plurality of test pads, forming a second display substrate including a common electrode, forming a short point at a position corresponding to the test pads, dividing the second display substrate into a plurality of regions insulated from each other, aligning and attaching the first display substrate and the second display substrate to each other, removing an edge portion of the first display substrate to expose an edge portion of the second display substrate, and applying a voltage to the first display substrate and the second display substrate through a voltage application portion of the exposed edge portion of the second display substrate. | 01-14-2010 |
20100039604 | LIQUID CRYSTAL DISPLAY FOR EQUIVALENT RESISTANCE WIRING - A liquid crystal display having an electrode pad for compensating for differences in resistance of electrode links. A pad portion in contact with a driving circuit includes a transparent electrode pattern having a length that depends on the length of an associated electrode link that is connected between the pad portion and a corresponding signal line at a pixel area on which a plurality of liquid crystal cells are arranged. Accordingly, resistance differences that depend on the length of the electrode links are compensated for using electrode pads, thereby making signal conductors with substantially equal resistances. | 02-18-2010 |
20100073618 | LIQUID CRYSTAL DISPLAY - A liquid crystal display includes: a liquid crystal panel assembly including pixels, gate lines, data lines and a first gate driver; and a driving chip disposed on the liquid crystal panel assembly. A shape of the liquid crystal panel assembly is rectangular and the liquid crystal panel assembly includes a long edge and short edge. The gate lines extend in a same direction as the short edge, and the data lines extend in a same direction as the long edge. The pixels are disposed in pixel rows and are connected to the gate lines and the data lines. The first gate driver is disposed on a peripheral area of the long edge, and the driving chip is connected to the data lines. | 03-25-2010 |
20100079717 | LIQUID CRYSTAL DISPLAY DEVICE - An LCD device preventing a short-circuit of adjacent link lines is disclosed. The LCD device includes a pixel area in which a plurality of gate lines and a plurality of data lines crossing the plurality of gate lines at a right angle are formed, a pad area formed at a side of the pixel area, a gate pad portion and a data pad portion formed in the pad area and respectively connected to the plurality of gate lines and the plurality of data lines, first, second, third, and fourth gate link lines connected to the plurality of gate lines and the gate pad portion and alternately arranged with an insulation layer interposed between the first, second, third, and fourth gate link lines, and first and second auto probe pads electrically connected to the first, second, third, and fourth gate link lines. The first and second gate link lines are connected to the first auto probe pad and the third and fourth gate link lines are connected to the second auto probe pad. | 04-01-2010 |
20100085526 | LIQUID CRYSTAL DISPLAY PANEL - A liquid crystal display panel includes a first transparent substrate, a second transparent substrate opposite to the first transparent substrate, and a sealant disposed therebetween. The first transparent substrate includes a peripheral region, and a plurality of conductive lines disposed in the peripheral region. The conductive lines include a plurality of transparent conductive lines and non-transparent conductive lines. The sealant is disposed in the peripheral region. | 04-08-2010 |
20100118252 | ACTIVE DEVICE ARRAY SUBSTRATE AND LIQUID CRYSTAL DISPLAY PANEL - An active device array substrate includes a substrate, a pixel array, a peripheral circuit, and a number of marks. The substrate has an active area and a peripheral circuit area that is connected to the active area. The pixel array is disposed on the active area of the substrate. The peripheral circuit is disposed on the peripheral circuit area of the substrate. Besides, the peripheral circuit includes a number of driver bonding pads, a number of fan-out lines, and a number of connecting lines. The fan-out lines are electrically connected to the pixel array. Each of the connecting lines connects one of the driver bonding pads and one of the fan-out lines. Additionally, the connecting lines are arranged in different pitches. Each of the marks is disposed between two adjacent connecting lines. | 05-13-2010 |
20100141888 | LIQUID CRYSTAL DISPLAY AND METHOD FOR MANUFACTURING THE SAME - Disclosed are a liquid crystal display (LCD) and a method for manufacturing the same, in which connection stability is improved when connecting a COG, A COF, or an FPC to a driving circuit. A substrate of the LCD has a display region and a non-display region at a peripheral area thereof. Terminals are provided to electrically connect an external circuit and a circuit of the display region and the non-display region. A flat protective layer is formed on the terminals. A plurality of pads are respectively formed of a first contact region and a flat second contact region, and each of the pads contacts a corresponding terminal, which is formed through a pad contact hold formed on the protective layer, at the first contact region, and each of the pads is electrically connected through an anisotropic conductive resin to a terminal of the external circuit by a pressing process at the flat second contact region. | 06-10-2010 |
20100195039 | DISPLAY APPARATUS AND METHOD OF MANUFACTURING THE SAME - In a method of manufacturing a display apparatus, an opposite substrate on which a conductive pattern is formed is coupled with a display substrate to face the display substrate, and the opposite substrate is cut to partially expose the display substrate. Since the conductive pattern is cut with the opposite substrate during the cutting of the opposite substrate, an electric resistance of the conductive pattern is changed. The change in electric resistance of the conductive pattern is detected to determine whether the opposite substrate is cut or not. | 08-05-2010 |
20100253900 | LIQUID CRYSTAL MODULE - A liquid crystal module includes a liquid crystal cell, a board and a base film mounted on the board. Electrodes are aligned on an edge of the liquid crystal cell. Terminals are aligned on an edge of the base film. The terminals include first terminals and a second terminal. The first terminals, is connected to the electrodes by a thermally compression bond, and is disposed so as to be applied a correction before the thermally compression bond. The correction is a offset by which the first terminals correspond to the electrodes after the thermally compression bond. The second terminal is disposed so as to correspond to first one of the electrodes before the thermally compression bond. | 10-07-2010 |
20100309421 | DISPLAY DEVICE - In a liquid crystal display device it is desirable to test in the state of TFT substrates, without reducing the number of TFT substrates to be obtained from one mother TFT substrate, and without increasing the overall size of the TFT substrates. Test terminals are formed on the outside of terminals for driving the liquid crystal display device. The test terminals of the specific TFT substrate are formed in another TFT substrate just below the specific TFT substrate. The area in which the test lines are formed is a space in which a sealing material is formed, between the display area and an end of the lower TFT substrate. Thus, the size of the TFT substrates is not actually increased. A test line area is not separately formed and not discarded, so that the number of TFT substrates to be obtained from one mother TFT substrate is not reduced. | 12-09-2010 |
20100321624 | DISPLAY DEVICE - First terminals and second terminals, which are terminals of adjacent terminal wires, are staggered in the direction in which wires run, and transparent conductive films provided to the first terminals and second terminals extend so as to overlap the terminal wires outside the regions in which contact holes are created and are formed so as to have a width narrower than the width of the terminal wires in the regions where contact holes are created. | 12-23-2010 |
20110051068 | CONNECTING STRUCTURE OF ELECTRONIC APPARATUS AND DISPLAY DEVICE USING THE SAME - A connecting structure of the present invention includes a first substrate, a second substrate on which the first substrate is laminated, and a sheet like connection body having one end connected to one principal surface of the first substrate and another end connected to one principal surface of the second substrate, wherein a lengthwise direction of the sheet like connection body is parallel to a perimeter part of the first substrate, and the sheet like connection body has a slit part extending from one of end portions thereof to a part thereof along the lengthwise direction, and has a first end and a second end divided by the slit part at one of end portions, the first end is connected to a principal surface of the first substrate in vicinity of a peripheral part of the first substrate, and the second end is connected to a principal surface of the second substrate in vicinity of a peripheral part of the first substrate. | 03-03-2011 |
20110075089 | FAN-OUT CIRCUIT AND DISPLAY PANEL - A fan-out circuit including a plurality of fan-out wires is provided, where the fan-out wires are not electrically connected to each other. Each of the fan-out wires includes a first detouring portion, an extending portion, and a second detouring portion. The first detouring portion has a chip bonding terminal and a first connecting terminal. A pitch of any two adjacent chip bonding terminals is P | 03-31-2011 |
20110279766 | CONNECTING TERMINAL AND DISPLAY APPARATUS INCLUDING SAME - A connecting terminal has a configuration in which a plurality of parts of a first line ( | 11-17-2011 |
20120249944 | ELECTROOPTIC DEVICE SUBSTRATE, ELECTROOPTIC DEVICE, METHOD OF MANUFACTURING ELECTROOPTIC DEVICE, AND ELECTRONIC APPARATUS - In at least one embodiment of the disclosure, an electrooptic device substrate includes a plurality of electrooptic devices. A first electrooptic device includes a first wiring which electrically connects a first terminal and a first circuit. A second wiring electrically connects a second terminal and a second circuit. A first static electricity protection circuit is electrically connected to the first wiring. A second static electricity protection circuit is electrically connected to the second wiring. A short-circuit wiring is electrically connected to the first terminal and the second terminal. The short-circuit wiring is arranged so as to extend from the first electrooptic device and over a second electrooptic device from the plurality of electrooptic devices which is adjacent to the first electrooptic device. | 10-04-2012 |
20130271716 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - In one embodiment, an array substrate includes a first array area and a second array area adjoining the first array area. The first array area includes a first electric power supply line arranged along a periphery of the first array area. The second array area includes a pixel electrode, a second electric power supply line arranged along a periphery of the second array area, and an electric power supply pad electrically connected with the second electric power supply line. The electric power supply pad is arranged facing the first electric power supply line so as to sandwich a boundary between the first array area and the second array area. Corner potions of the electric power supply pad facing the first electric power supply line are formed in an arc shape. | 10-17-2013 |
20140036216 | LIQUID CRYSTAL DISPLAY DEVICE - A display device includes a TFT substrate with gate signal lines, drain signal lines, thin-film transistors connected thereto, a gate driver connected to the gate signal lines, a drain driver having output terminals connected to drain signal lines, and a film substrate having first wirings. The first wirings are disposed between the drain driver and the film substrate. The drain driver is mounted on the film substrate, and the output terminals are connected to the first wirings between the film substrate and the drain driver. The output terminal includes first group terminals formed in parallel with a longer edge of the drain driver, and second group terminals formed in parallel with the longer edge and disposed between the loner edge and the first group terminals. | 02-06-2014 |
20140267999 | LIQUID CRYSTAL DISPLAY AND MANUFACTURING METHOD THEREOF - A liquid crystal display includes a first substrate, gate lines and data lines disposed on a display area of the first substrate, a common voltage line disposed on a peripheral area of the first substrate, a common voltage transmission unit extending from the common voltage line, an organic layer disposed on the common voltage transmission unit and the common voltage line, a connecting member disposed on the organic layer disposed on the peripheral area, a first insulating layer disposed on the pixel electrode and the connecting member, a common electrode disposed on the first insulating layer, and a short point connecting the connecting member and the common electrode to each other. The common electrode and the first insulating layer include a plurality of cutouts in the peripheral region and display region of the first substrate which have substantially a same plane shape as each other. | 09-18-2014 |
20140293210 | LIQUID CRYSTAL DISPLAY (LCD) - A liquid crystal display (LCD) is provided that comprises a rearward LCD substrate sheet that has an array of vias formed, where the vias provide electrical conduction between both sides of the rearward LCD substrate sheet. The number of vias in the array is substantially equal to or at least equivalent to a combination of a number of column drive lines and a number of row drive lines. The respective drive lines are connected to a corresponding via, such as on one side of the rearward LCD substrate sheet, and respective patterned conductors are connected to a corresponding via, such as on the other side of the rearward LCD substrate sheet. The patterned conductors provide a connection between respective drive lines and one or more corresponding drivers. In one example, this allows a “full bleed” display to be generated. | 10-02-2014 |
20140307216 | LIQUID CRYSTAL DISPLAY DEVICE - Conductive rubbing sludge generated by rubbing attaches to side portions of chip-on-glass (COG) terminals and terminal wiring lines and possibly causes short-circuiting (leakage) between adjacent terminal wiring lines via particles included in an anisotropic conductive film (ACF) which connects bumps of a semiconductor chip such as a driver IC to COG terminals. In the liquid crystal display device, each terminal wiring line connected to a COG terminal has a projecting part designed to generate an area not subjected to rubbing. | 10-16-2014 |
20150015841 | LIQUID CRYSTAL DISPLAY DEVICE - According to one embodiment, a liquid crystal display device includes a first substrate including an insulative substrate, a first electrically conductive layer, a second electrically conductive layer, a third electrically conductive layer, a fourth electrically conductive layer. The first electrically conductive layer includes a gate line located on the insulative substrate, a common potential line and a first pad portion. The second electrically conductive layer includes a common electrode which is located on the insulative substrate and is put in contact with the common potential line, and a second pad portion stacked on the first pad portion. The fourth electrically conductive layer includes a pixel electrode in which a slit facing the common electrode is formed, and a third pad portion which is put in contact with the second pad portion. | 01-15-2015 |
20150103301 | LIQUID CRYSTAL DISPLAY PANEL AND METHOD FOR MANUFACTURING THE SAME HAVING A FIRST CONDUCTIVE UNIT COMPRISING AT LEAST TWO CONDUCTIVE PORTIONS HAVING A RESISTIVITY THAT EXCEEDS THAT OF AT LEAST TWO SECOND CONNECTING PORTIONS OF THE FIRST CONDUCTIVE UNIT - An exemplary liquid crystal display panel includes a substrate and first conductive units. The first conductive units are arranged at a surface of the substrate. Each of the first conductive units includes a plurality of first connecting portions, a plurality of second connecting portions and a conductive portion with a plurality of conductive particles. The conductive portion is located between the first connecting portions and the second connecting portions, thus electrically connecting the first connecting portions to the second connecting portions. A method for manufacturing the liquid crystal display panel is also provided. | 04-16-2015 |
20160124257 | LIQUID CRYSTAL DISPLAY DEVICE - In one embodiment, an array substrate includes an active area in the shape of a rectangle, and first, second third and fourth end portions, surrounding the active area. A source control circuit is electrically connected with one end of the source lines drawn to the third end portion from the active area. First and second common terminals of a common potential are formed in the first end portion. A power supply line is electrically connected with the first common terminal and extends along the second, third and fourth end portions in this order, and connected with the second common terminal. A branch wiring is electrically connected with an intermediate portion of the electric power supply line and the source control circuit, and extending in the first direction. | 05-05-2016 |