Class / Patent application number | Description | Number of patent applications / Date published |
348322000 | Interline readout | 27 |
20150097999 | IMAGE CAPTURING APPARATUS AND CONTROL METHOD THEREOF - An image capturing apparatus comprises an image sensor including a first semiconductor substrate on which a photodiode is arranged, a second semiconductor substrate on which a storage element is arranged, and a connection unit configured to electrically connect the photodiode and the storage element, a first transfer unit configured to transfer pixel signals of a first pixel group to the storage element, a first readout unit configured to read out the pixel signals of the first pixel group, a second transfer unit configured to transfer pixel signals of a second pixel group to the storage element, and a second readout unit configured to read out some of the pixel signals of the second pixel group, wherein an image of one frame is generated by composing the pixel signals of the second pixel group and the first pixel group. | 04-09-2015 |
20150296160 | LINEAR IMAGE SENSOR AND DRIVING METHOD THEREFOR - A logical gate circuit ( | 10-15-2015 |
20150319393 | IMAGING ELEMENT, CONTROL METHOD, AND IMAGING APPARATUS - The present disclosure relates to an imaging element, a control method, and an imaging apparatus that enable an image of a higher image quality to be obtained. | 11-05-2015 |
20150334322 | SOLID-STATE IMAGE SENSOR, SOLID-STATE IMAGING DEVICE, AND CAMERA DEVICE - The present technology relates to a solid-state image sensor, a solid-state imaging device, and a camera device capable of making white flaws unnoticeable even with a reduced cell size. | 11-19-2015 |
20150338606 | IMAGE PICKUP DEVICE - An image pickup device includes a photographing optical system having a central optical system disposed at a central region and a circular optical system disposed at an outer portion of the central optical system which are arranged along the same optical axis, a directional sensor having plural pixels including two-dimensionally arranged photoelectric conversion elements, the directional sensor including plural pixels for selectively receiving light beams of light fluxes which are incident via the central optical system and the circular optical system by applying pupil division, an image readout device that acquires from the directional sensor each of an image signal representing a first image received via the central optical system and an image signal representing a second image received via the circular optical system. | 11-26-2015 |
20150340391 | ENHANCED BACK SIDE ILLUMINATED NEAR INFRARED IMAGE SENSOR - An image sensor includes a photodiode disposed in semiconductor material to accumulate image charge in response to light directed through a back side of the semiconductor material. A scattering structure is disposed proximate to the front side of the semiconductor material such that the light that is directed into the semiconductor material through the back side is scattered back through the photodiode. A deep trench isolation structure is disposed in the semiconductor material that isolates the photodiode and defines an optical path such that the light that is scattered back through the photodiode in the optical path is totally internally reflected by the DTI. An antireflective coating is disposed on the back side of the semiconductor material and totally internally reflects the light scattered by the scattering structure to confine the light to remain in the optical path until it is absorbed. | 11-26-2015 |
20150358566 | IMAGE CAPTURING APPARATUS AND METHOD FOR CONTROLLING THE SAME - An image capturing apparatus including a plurality of photoelectric conversion portions for each of a plurality of microlenses, the image capturing apparatus comprising: a readout unit configured to be driven using a first driving method in which a signal is read out from part of the plurality of photoelectric conversion portions, and a second driving method in which a signal is read out from a greater number of the photoelectric conversion portions than in the first driving method; and a supply unit configured to, in a case where a signal is read out using the first driving method, supply an amperage that is smaller than that in a case where a signal is read out using the second driving method, to the readout unit. | 12-10-2015 |
20150365586 | IMAGE SENSOR WITH FAST INTRA-FRAME FOCUS - A method of focusing an image sensor includes scanning a first portion of an image frame from an image sensor a first time at a first rate to produce first focus data. A second portion of the image frame from the image sensor is scanned at a second rate to read image data from the second portion. The first rate is greater than the second rate. The first portion of the image frame is scanned a second time at the first rate to produce second focus data. The first focus data and the second focus data are compared, and the focus of a lens is adjusted in response to the comparison of the first focus data and the second focus data. | 12-17-2015 |
20160005783 | SOLID-STATE IMAGING DEVICE AND CAMERA - A solid-state imaging device including is provided. The solid-state imaging device includes: pixels arrayed; a photoelectric conversion element in each of the pixels; a read transistor for reading electric charges photoelectrically-converted in the photoelectric conversion elements to a floating diffusion portion; a shallow trench element isolation region bordering the floating diffusion portion; and an impurity diffusion isolation region for other element isolation regions than the shallow trench element isolation region. | 01-07-2016 |
20160033766 | DIRECTIONAL OPTICAL RECEIVER - An optical phased array (OPA) receiver selectively detects, measures and differentiates between the amplitudes and directions of signals received from different directions. Because the OPA changes the direction that it looks toward electronically and without the use of any mechanical movements, the OPA is fast, has an enhanced sensitivity, and can be used in a wide variety applications, such as lens-free imaging systems. The OPA is adapted to dynamically control the array of optical elements and focus on the area of interest. The OPA achieves a higher numerical aperture compared to imaging systems that use conventional lens, thereby effectively maintaining a relatively large field of view and collection area concurrently. The OPA may be readily scaled by increasing its array size. Furthermore, because the OPA is relatively flat, it is ideally suited for small form factor applications such as cell phones and tablets. | 02-04-2016 |
20160035794 | PHOTOCHARGE STORAGE ELEMENT AND DEVICES INCLUDING THE SAME - A photocharge storage element includes a gate insulator formed on a gate electrode, a channel formed on the gate insulator between a source electrode and a drain electrode, and an organic photoelectric conversion element formed on the channel. The organic photoelectric conversion element generates photocharges in response to light. The channel accumulates the photocharges generated by the organic photoelectric conversion element. The photocharges accumulated in the channel are read out from the channel in response to a voltage between the source electrode and the drain electrode. | 02-04-2016 |
20160037070 | MULTI-MODE POWER-EFFICIENT LIGHT AND GESTURE SENSING IN IMAGE SENSORS - Various embodiments comprise apparatuses and methods including an image sensor. In one example, the image sensor includes a read-out integrated circuit, a plurality of pixel electrodes, an optically sensitive layer, and a top electrical contact. In a first low-power mode, electrical current passing through the top electrical contact is configured to be sensed, and independent currents passing through the plurality of pixel electrodes are configured not to be sensed independently. In a second high-resolution mode, independent currents passing through the plurality of pixel electrodes are configured to be sensed independently. Additional methods and apparatuses are described. | 02-04-2016 |
20160044288 | PHOTOELECTRIC CONVERSION APPARATUS - A photoelectric conversion apparatus of the present invention includes: a plurality of pixel arrays having different colors and arrayed in the subsidiary scanning direction when the photoelectric conversion apparatus scans a document relatively in the subsidiary scanning direction, each of the plurality of pixel arrays including a plurality of pixels that perform photoelectric conversion; and a pulse controlling unit which controls pulse positions of control pulses that control operations of the pixels, wherein the pulse controlling unit controls the pulse positions of the control pulses for the pixel arrays of each color, according to color offset quantities in the subsidiary scanning direction of the pixel arrays of each color. | 02-11-2016 |
20160057369 | ADAPTIVE ADJUSTMENT OF THE OPERATING BIAS OF AN IMAGING SYSTEM - An imaging system includes a shutter, an array of photodetectors, and electronic circuitry associated with the photodetectors to read intensity values from the photodetectors, the electronic circuitry including elements configured to provide an operating bias point of the photodetectors. The imaging system includes components, such as a controller, configured to adaptively adjust the operating bias for the photodetectors wherein the adjustment is based at least in part on intermittent measurement of a flat field image. During use, the imaging system can be configured to perform intermittent adjustments of the operating bias based on changes in photodetector values for intermittently acquired flat field images. Adjustment of the operating bias may provide compensation for drift over time of the photodetectors and/or electronics due to effects including but not limited to temperature changes. | 02-25-2016 |
20160065873 | IMAGE CAPTURING APPARATUS, CONTROL METHOD OF THE SAME AND IMAGE SENSOR - An image capturing apparatus, comprises: an image capturing unit configured to generate image data of an object; an adding unit configured to add additional information, including first region information for specifying a first pixel region of the image data, and second region information for specifying a second pixel region included in the first pixel region, to the image data; a transmission unit configured to transmit the image data to which the additional information is added; and an image processing unit configured to extract from the image data, which is received via the transmission unit, the first pixel region and the second pixel region specified by the additional information obtained by receiving the image data, and to perform predetermined image processing on the extracted first pixel region and second pixel region. | 03-03-2016 |
20160105622 | IMAGING DEVICE - An imaging device according to one aspect of the present disclosure includes: a first image pickup cell comprising a first photoelectric converter that converts incident light into a first charge, a first charge detection circuit that is electrically connected to the first photoelectric converter and detects the first charge, and a first capacitive element one end of which is electrically connected to the first photoelectric converter, the first capacitive element storing at least a part of the first charge; and a second image pickup cell comprising a second photoelectric converter that converts incident light into a second charge, and a second charge detection circuit that is electrically connected to the second photoelectric converter and detects the second charge. | 04-14-2016 |
20160150172 | IMAGE SENSOR AND CONTROL METHOD FOR IMAGE SENSOR - The present technology relates to an image sensor and a control method for an image sensor which are capable of measuring illuminance of each color in an image sensor. Each of a plurality of pixel units includes a pixel and a reset transistor, and the pixel includes a photoelectric converting unit that performs photoelectric conversion on light of a certain color incident through a color filter and a transfer transistor that transfers charges obtained by the photoelectric conversion of the photoelectric converting unit and is controllable for each color. According to control of the transfer transistor, the charges are read from the photoelectric converting unit through the transfer transistor and the reset transistor, and a voltage corresponding to the charges is supplied to an AD converting unit connected to the reset transistor. The present technology can be applied to, for example, an image sensor that photographs an image. | 05-26-2016 |
20160156868 | SOLID-STATE IMAGING APPARATUS AND IMAGING SYSTEM | 06-02-2016 |
20160165162 | SOLID-STATE IMAGING DEVICE AND DRIVE CONTROL METHOD FOR THE SAME - A CMOS sensor has unit pixels each structured by a light receiving element and three transistors, to prevent against the phenomenon of saturation shading and the reduction of dynamic range. The transition time (fall time), in switching off the voltage on a drain line shared in all pixels, is given longer than the transition time in turning of any of the reset line and the transfer line. For this reason, the transistor constituting a DRN drive buffer is made proper in its W/L ratio. Meanwhile, a control resistance or current source is inserted on a line to the GND, to make proper the operation current during driving. This reduces saturation shading amount. By making a reset transistor in a depression type, the leak current to a floating diffusion is suppressed to broaden the dynamic range. | 06-09-2016 |
20160165163 | IMAGING DEVICE - An object of the present invention is to reduce capacitance of a charge accumulation part (floating diffusion) of each pixel unit. In an imaging device, in addition to a plurality of first switching transistors for coupling a plurality of coupling wires extending in the column direction, a second switching transistor is provided between each of the coupling wires and a floating diffusion in each pixel unit. Preferably, the gate of the first switching transistor and the gate of the second switching transistor are electrically coupled to each other. | 06-09-2016 |
20160173799 | DRIVING METHOD FOR IMAGE PICKUP APPARATUS, AND IMAGE PICKUP APPARATUS | 06-16-2016 |
20160173801 | IMAGE READER COMPRISING CMOS BASED IMAGE SENSOR ARRAY | 06-16-2016 |
20160173802 | SOLID-STATE IMAGING DEVICE, IMAGING APPARATUS, AND METHOD FOR DRIVING THE SAME | 06-16-2016 |
20160182781 | CONVERSION APPARATUS, IMAGING APPARATUS, ELECTRONIC APPARATUS, AND CONVERSION METHOD | 06-23-2016 |
20160205336 | IMAGING APPARATUS, IMAGING SYSTEM, RECONSTRUCTION APPARATUS, IMAGING METHOD, AND RECORDING MEDIUM | 07-14-2016 |
20160381314 | IMAGE SENSOR WITH HIGH DYNAMIC RANGE AND METHOD - In one form, a pixel for use in image sensing comprises a photodetector, a sink device, and a readout circuit. The photodetector is formed in a semiconductor substrate and has a charge collection region for receiving photocharge representative of incident light. The sink device is formed in the semiconductor substrate and adjacent to the charge collection region and has a gate overlying and insulated from the semiconductor substrate and receiving a responsivity control signal. The readout circuit transfers the photocharge collected by the charge collection region of the photodetector to an output in response to a select signal. In another form, the pixel may be used in an image sensor having a pixel array of such pixels. | 12-29-2016 |
348323000 | Using multiple output registers | 1 |
20080266437 | INTERLINE CCD IMPLEMENTATION OF HYBRID TWO COLOR PER PIXEL ARCHITECTURE - An image sensor includes at least first and second photo-sensitive regions; a color filter array having at least two different colors that selectively absorb specific bands of wavelengths, and the two colors respectively span portions of predetermined photo-sensitive regions; and wherein the two photo sensitive regions are doped so that electrons that are released at two different depths in the substrate are collected in two separate regions of the photo sensitive regions so that, when wavelengths of light pass through the color filter array, light is absorbed by the photo sensitive regions which photo sensitive regions consequently releases electrons at two different depths of the photo sensitive regions and are stored in first and second separate regions; at least two charge-coupled devices adjacent the first photo sensitive regions; and a first transfer gate associated with the first photo sensitive region that selectively passes charge at first and second levels which, when at the first level, causes the charge stored in the first region to be passed to one of its associated charge-coupled devices, and when the transfer gate is at the second level, charge stored in the second region is passed to one of the associated charge-coupled devices. | 10-30-2008 |