Class / Patent application number | Description | Number of patent applications / Date published |
348317000 | Field or frame transfer type | 10 |
20110075006 | METHODS FOR CAPTURING AND READING OUT IMAGES FROM AN IMAGE SENSOR - Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur. | 03-31-2011 |
20110075007 | METHODS FOR CAPTURING AND READING OUT IMAGES FROM AN IMAGE SENSOR - Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur. | 03-31-2011 |
20110075008 | METHODS FOR CAPTURING AND READING OUT IMAGES FROM AN IMAGE SENSOR - Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur. | 03-31-2011 |
20110075009 | METHODS FOR CAPTURING AND READING OUT IMAGES FROM AN IMAGE SENSOR - Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur. | 03-31-2011 |
20110075010 | METHODS FOR CAPTURING AND READING OUT IMAGES FROM AN IMAGE SENSOR - Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur. | 03-31-2011 |
348319000 | Charges alternately switched from vertical registers into separate storage registers; or having vertical transfer gates | 1 |
20080309810 | IMAGES WITH HIGH SPEED DIGITAL FRAME TRANSFER AND FRAME PROCESSING - A digital frame transfer imager having an image sensor and frame memory in the same chip. The image sensor has an integrated memory controller for controlling transfers of data between the sensor and the memory array. The imager utilizes a rolling shutter and multiple groups of analog-to-digital processing circuitry to readout data from the sensor and to output digital images substantially free from image smear, kT/C noise and other unwanted image artifacts. | 12-18-2008 |
348320000 | Interline readout | 4 |
20160105623 | IMAGE SENSOR AND IMAGE CAPTURING APPARATUS - An image capturing apparatus includes: a pixel region in which unit pixels corresponding to colors of color filters having a predetermined color arrangement are arranged in a matrix, each unit pixel having a plurality of photoelectric conversion portions; a first readout unit that performs a first readout operation of reading out a signal of at least one of the plurality of photoelectric conversion portions in each unit pixel, and that includes a merging unit for merging signals of a plurality of pixels corresponding to different colors in the predetermined color arrangement in the first readout operation; and a second readout unit that performs a second readout operation of reading out signals of all of the plurality of photoelectric conversion portions in each unit pixel. | 04-14-2016 |
20160134823 | SOLID-STATE IMAGING DEVICE, METHOD OF DRIVING SAME, AND CAMERA APPARATUS - A solid-state imaging device of a three-transistor pixel configuration having no selection transistor has a problem of a non-selection hot carrier white point, which is specific to this apparatus. A bias current during a non-reading period of pixels is made to flow to a pixel associated with an immediately previous selection pixel, for example, the immediately previous selection pixel itself. As a result, dark current only for one line occurs in each pixel, and the dark current for one line itself can be reduced markedly. Consequently, defective pixels due to non-selection hot carrier white points can be virtually eliminated. | 05-12-2016 |
20160191828 | SOLID-STATE IMAGE SENDOR AND DRIVING METHOD - There is provided a solid-state image sensor including a pixel circuit including a plurality of pixels and imaging a subject, a peripheral circuit provided in a vicinity of the pixel circuit and performing operation in regard to imaging, and a connection element electrically connecting, in initialization of the pixels, elements in the pixels to which a predetermined voltage is applied for initializing the pixels to the peripheral circuit with the predetermined voltage. | 06-30-2016 |
348321000 | Using multiple output registers | 1 |
20090096907 | Image-taking apparatus including a vertical transfer control device - An image-taking apparatus according to the present invention is constituted to have a wiring structure of transfer electrodes matching with a color filter arrangement and exert vertical transfer control over signal charges so as to transfer the signal charges read from pixels in the same color to the same horizontal transfer route. According to another embodiment of the present invention, the pixel of an image-taking device includes an odd-numbered electrode readout gate and an even-numbered electrode readout gate so that it allows control to read the charges to either of vertical transfer routes adjacent to the right and left of the pixel. It can be constituted so that one of the right and left vertical transfer routes transfers the charges to the first horizontal transfer route and the other transfers them to the second horizontal transfer route. | 04-16-2009 |