Class / Patent application number | Description | Number of patent applications / Date published |
348281000 | X-Y architecture | 26 |
20090219420 | IMAGE PICKUP APPARATUS, AND IMAGE PICKUP SYSTEM USING IMAGE PICKUP APPARATUS - An image pickup apparatus which can photograph a high-definition image and a moving image of lower resolution at high quality and an image pickup system which uses the image pickup apparatus are provided. Unit pixel groups each of which comprises plural pixels including photoelectric conversion units and transfer transistors for transferring signal charges from the photoelectric conversion units, an amplification transistor common to the plural pixels, and the like are arranged in row and column directions. With respect to the plural unit pixel groups mutually adjacent in the row direction, control lines for controlling the transfer transistors respectively corresponding to the adjacent two photoelectric conversion units are alternately connected to an odd row and an even row in the row direction. | 09-03-2009 |
20090316026 | IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD AND MANUFACTURING APPARATUS - An image processing apparatus having a plurality of Bayer arrays each including 4 pixels sharing a common electrode connected to a vertical signal line wherein: each of the pixels has a pixel electrode connected to a horizontal signal line; and the location of each of the horizontal signal lines and the location of each of the pixel electrodes each connected to one of the horizontal signal lines are determined so that the locations in a neighboring Bayer array are a mirror image of counterpart locations in another Bayer array adjacent to the neighboring Bayer array. | 12-24-2009 |
20100194941 | LIGHT/ELECTRIC POWER CONVERTER AND SOLID STATE IMAGING DEVICE - A semiconductor substrate has an active pixel area comprising a stack of lower electrodes, an intermediate layer of an organic photoelectric conversion material, an upper electrode, a transparent insulating layer and first to third color layers. Disposed outside the active pixel area is a polish stop layer having a high resistance to polishing. In planarizing the first to third color layers, the polishing operation is ended upon reaching the polish stop layer. | 08-05-2010 |
20100302418 | FOUR-CHANNEL COLOR FILTER ARRAY INTERPOLATION - A method of forming a full-color output image from a color filter array image having a plurality of color pixels having at least two different color responses and panchromatic pixels, comprising capturing a color filter array image using an image sensor including panchromatic pixels and color pixels having at least two different color responses, the pixels being arranged in a repeating pattern having a square minimal repeating unit having at least three rows and three columns, the color pixels being arranged along one of the diagonals of the minimal repeating unit, and all other pixels being panchromatic pixels; computing an interpolated panchromatic image from the color filter array image; computing an interpolated color image from the color filter array image; and forming the full color output image from the interpolated panchromatic image and the interpolated color image. | 12-02-2010 |
20110234865 | SOLID-STATE IMAGING DEVICE, COLOR FILTER ARRANGEMENT METHOD THEREFOR AND IMAGE RECORDING APPARATUS - According to one embodiment, in a solid-state imaging device having color pixels in which color filters are arranged for respective pixels, two blocks of two pixels in the row direction×two pixels in the column direction of an X1 color are arranged on one diagonal line, and a block of two pixels in the row direction×two pixels in the column direction of one of an X2 color and an X3 color and a block of two pixels of the other color and two pixels of an X4 color arranged diagonally are arranged on the other diagonal line, and magnitudes of wavelengths satisfy the following relationship: X3 color09-29-2011 | |
20120038802 | SOLID STATE IMAGING DEVICE AND IMAGING APPARATUS - A plurality of kinds of color filters are disposed at each of pixels in accordance with a color array of two rows and two columns at a pixel section of a solid state imaging device. A first signal outputting circuit and a second signal outputting circuit each perform an addition read of electrical signals from the pixels of one/the other color included in a line to be read. An addition controlling circuit shifts sampling positions of the pixels which are added at a time of the addition read by a unit of the color array between the first signal outputting circuit and a second signal outputting circuit. | 02-16-2012 |
20120140100 | IMAGE SENSOR AND IMAGING DEVICE - An image capturing element comprising photoelectric converting elements that are arranged two-dimensionally and photoelectrically convert incident light into an electric signal; aperture masks that correspond one-to-one with the photoelectric converting elements; and color filters that correspond one-to-one with the photoelectric converting elements. Among n adjacent photoelectric converting elements, where n is an integer no less than three, apertures of the aperture masks corresponding to at least three of the photoelectric converting elements are included within each pattern of a color filter pattern formed from at least two types of the color filters that respectively pass different wavelength bands, and are positioned to respectively pass light from different partial regions within a cross-sectional region of the incident light, and photoelectric converting element groups that are each formed of the n photoelectric converting elements are arranged in series. | 06-07-2012 |
20130076948 | SOLID-STATE IMAGING APPARATUS, IMAGE PROCESSING APPARATUS, AND CAMERA SYSTEM - An imaging section outputs n pixel signals every pixel row of n×m pixels, and n AD conversion sections, corresponding to n pixel columns of the n×m pixels, convert the n pixel signals to n pixel values. A resolution control section controls the n AD conversion sections so that the AD conversion resolution of the n AD conversion sections become a first resolution, or a second resolution rougher than the first resolution, based on the AD conversion resolution of the n AD conversion sections and the n pixel values. | 03-28-2013 |
20130088621 | IMAGING DEVICE INCLUDING PHASE DETECTION PIXELS ARRANGED TO PERFORM CAPTURING AND TO DETECT PHASE DIFFERENCE - An imaging device including phase difference detection pixels and, more particularly, an imaging device that comprises a plurality of pixels that are two-dimensionally arranged to capture an image and to detect phase difference, a first photoelectric conversion pixel row; and a second photoelectric conversion pixel row, wherein the first photoelectric conversion pixel row and the second photoelectric conversion pixel row are each disposed such that circuits formed in every pixel for phase difference detection are arranged opposite to each other with respect to an opening of a photoelectric conversion pixel. In the imaging device, phase difference detection may be performed with respect to entire photographed screen areas. In addition, the imaging device including phase difference detection pixels may have no defect pixels and thus improved image quality is obtained. Photographing and AF of a subject may be performed in low luminance. | 04-11-2013 |
20130100321 | COLOR IMAGE SENSOR - A color image sensor having a plurality of sensor elements arranged in a two-dimensional array, wherein the sensor elements each include an optical filter whose transmission behavior is electrically adjustable, and wherein the color image sensor includes a control for controlling the optical filters. | 04-25-2013 |
20140016006 | DRIVING METHOD FOR IMAGE PICKUP APPARATUS AND DRIVING METHOD FOR IMAGE PICKUP SYSTEM - A driving method for an image pickup apparatus that includes a plurality of pixels each including a photoelectric conversion portion includes performing photoelectric conversion in each of the plurality of photoelectric conversion portions during a period between first time and second time, generating a plurality of first signals, each being a signal deriving from electric charge generated through the photoelectric conversion in the photoelectric conversion portion, which is a plurality of signals to be generated for each of the plurality of pixels, and generating a plurality of second signals by performing moving average processing on the plurality of first signals. | 01-16-2014 |
20140118587 | IMAGE PICKUP APPARATUS AND DRIVING METHOD THEREFOR - An image pickup apparatus includes an image pickup unit including a plurality of photoelectric conversion elements provided correspondingly to each of microlenses arranged two-dimensionally, reads out a first signal through addition from the photoelectric conversion elements corresponding to the microlense, reads out a second signal from one of the photoelectric conversion elements corresponding to the microlense, and sets one of a first and second read-out modes to read signals from the image pickup unit in accordance with a photographing condition, wherein the first and second read-out modes differ in read-out density of the second signal in a read-out area in accordance with one of a thinning-out rate and an addition rate of a area from which the second signal is read out being different as compared to a area from which the first signal is read out. | 05-01-2014 |
20140132810 | SYSTEMS AND METHODS FOR ARRAY CAMERA FOCAL PLANE CONTROL - Systems and methods for controlling the parameters of groups of focal planes as focal plane groups in an array camera are described. One embodiment includes a plurality of focal planes, and control circuitry configured to control the capture of image data by the pixels within the focal planes. In addition, the control circuitry includes: a plurality of parameter registers, where a given parameter register is associated with one of the focal planes and contains configuration data for the associated focal plane; and a focal plane group register that contains data identifying focal planes that belong to a focal plane group. Furthermore, the control circuitry is configured to control the imaging parameters of the focal planes in the focal plane groups by mapping instructions that address virtual register addresses to the addresses of the parameter registers associated with focal planes within specific focal plane groups. | 05-15-2014 |
20140146207 | SOLID-STATE IMAGE SENSOR, AND IMAGING SYSTEM - The present technology relates to solid-state image sensor and an imaging system which are capable of providing a solid-state image sensor and an imaging system which are capable of realizing a spectroscopic/imaging device for visible/near-infrared light having a high sensitivity and high wavelength resolution, and of achieving two-dimensional spectrum mapping with high spatial resolution. There are provided a two-dimensional pixel array, and a plurality of types of filters that are arranged facing a pixel region of the two-dimensional pixel array, the filters each including a spectrum function and a periodic fine pattern shorter than a wavelength to be detected, wherein each of the filters forms a unit which is larger than the photoelectric conversion device of each pixel on the two-dimensional pixel array, where one type of filter is arranged for a plurality of adjacent photoelectric conversion device groups, wherein the plurality of types of filters are arranged for adjacent unit groups to form a filter bank, and wherein the filter banks are arranged in a unit of N×M, where N and M are integers of one or more, facing the pixel region of the two-dimensional pixel array. | 05-29-2014 |
20140285692 | IMAGE CAPTURING APPARATUS AND METHOD OF CONTROLLING THE SAME - An image capturing apparatus comprises a lens array, an image sensor, a display unit, a recording unit configured to record the video data read out from the image sensor, a readout control unit which has a first readout mode of reading out video data of pixels in first regions coinciding with a position relative to each lens and a second readout mode of reading out video data of pixels in second regions, and a control unit configured to perform control, upon reading out video data from the image sensor in the first readout mode, to read out video data from the image sensor in the second readout mode and display a video obtained from the video data read out in the first readout mode, and to record the video data read out in the second readout mode. | 09-25-2014 |
20140307140 | COLOR IMAGING APPARATUS - A single-plate color imaging element where the color filter array includes a basic array pattern with first filters corresponding to a first color and second filters corresponding to a second color with contribution ratios for obtaining luminance signals lower than the first color, the basic array pattern is repeatedly arranged in a diagonal grid shape, one or more first filters are arranged in horizontal, vertical, upper right, and lower right directions of the color filter array, one or more second filters corresponding to each color of the second color are arranged in the upper right and lower right directions of the color filter array in the basic array pattern, and a proportion of the number of pixels of the first color corresponding to the first filters is greater than a proportion of the number of pixels of each color of the second color corresponding to the second filters. | 10-16-2014 |
20140307141 | COLOR IMAGING ELEMENT AND IMAGING APPARATUS - A color imaging element comprising: first group pixels; second group pixels at positions shifted half; and color filters which are arrayed on each of the first and second group pixels, wherein the color filter array includes a basic array pattern in which first filters corresponding to a first color and second filters corresponding to a second color whose contribution rates for acquiring a brightness signal are lower than a contribution rate of the first color are arrayed, and is formed by repeatedly arranging the basic array pattern, one or more of the first filters are arranged in horizontal, vertical, diagonal upper right and diagonal lower right directions, one or more of the second filters are arranged in the basic array pattern, and a ratio of a number of pixels of the first color is greater than a ratio of a number of pixels of each color of the second color. | 10-16-2014 |
20140333807 | MANUFACTURING METHOD OF SOLID-STATE IMAGE PICKUP DEVICE AND SOLID-STATE IMAGE PICKUP DEVICE - In a manufacturing method of a solid-state image pickup device according to an embodiment, a transfer gate electrode is formed in a predetermined position on an upper surface of a first conductive semiconductor area, through a gate insulating film. A second conductive charge storage area is formed in an area adjacent to the transfer gate electrode in the first conductive semiconductor area. A sidewall is formed on a side surface of the transfer gate electrode. An insulating film is formed to extend from a circumference surface of the sidewall on a side of the charge storage area to a position partially covering the upper part of the charge storage area. A first conductive charge storage layer is formed in the charge storage area by implanting first conductive impurities from above, into the charge storage area which is partially covered with the insulating film. | 11-13-2014 |
20140375850 | SYSTEM AND METHOD OF REDUCING NOISE - In a system and method of reducing noise, an image sensor with a color filter array (CFA) outputs raw data, and a noise reduction device corrects the raw data according to distances between an original current pixel and neighboring same-color pixels in a process mask, thereby generating a new current pixel so as to output corrected raw data. A color interpolation device couples to receive the corrected raw data to result in full-color data. | 12-25-2014 |
20150015750 | METHOD AND APPARATUS FOR IMAGE FLARE MITIGATION - An imaging system may include a camera module with an image sensor having an array of image sensor pixels and one or more lenses that focus light onto the array of image sensor pixels. The array of image sensor pixels may include a corresponding array of color filter elements. The system may include circuitry configured to detect and mitigate flare artifacts in image data captured using the image sensor. | 01-15-2015 |
20150036030 | IMAGING ELEMENT AND ELECTRONIC APPARATUS - An imaging element includes a photoelectric conversion section and a wiring layer. The photoelectric conversion section is configured to photoelectrically convert light incident from a subject. The wiring layer is provided on an opposite side of the subject with respect to the photoelectric conversion section and includes a wire connected to an element that constitutes a pixel including the photoelectric conversion section. The wire includes a plurality of wires extending long in a predetermined direction. The plurality of wires are arranged in a direction almost perpendicular to the predetermined direction in the wiring layer. The wire is provided with a protrusion protruding in a direction different from the predetermined direction. | 02-05-2015 |
20150109499 | SOLID-STATE IMAGE SENSOR AND CAMERA SYSTEM - Provided is a solid-state image sensor including a pixel array portion formed from a two-dimensional array of ordinary imaging pixels each having a photoelectric conversion unit and configured to output an electric signal obtained through photoelectric conversion as a pixel signal, and focus detection pixels for detecting focus. The focus detection pixels include at least a first focus detection pixel and a second focus detection pixel each having a photoelectric conversion unit and configured to transfer and output an electric signal obtained through photoelectric conversion to an output node. The first focus detection pixel and the second focus detection pixel share the output node. The first focus detection pixel includes a first photoelectric conversion unit, and a first transfer gate for reading out an electron generated through photoelectric conversion in the first photoelectric conversion unit to the shared output node. | 04-23-2015 |
20150116556 | SOLID-STATE PICKUP APPARATUS, ITS DRIVING METHOD AND CAMERA SYSTEM - There is used an XY address type solid-state image pickup element (for example, a MOS type image sensor) in which two rows and two columns are made a unit, and color filters having a color coding of repetition of the unit (repetition of two verticals (two horizontals) are arranged, and when a thinning-out read mode is specified, a clock frequency of a system is changed to 1/9, and on the basis of the changed clock frequency, a pixel is selected every three pixels in both a row direction and a column direction to successively read out a pixel signal. | 04-30-2015 |
20150138407 | IMAGING DEVICE, IMAGING METHOD, ELECTRONIC DEVICE, AND PROGRAM - The present technique relates to an imaging device and an imaging method, an electronic device, and a program, which are configured to improve an SN ratio by combining addition reading and thin-out reading by signal processing similar to signal processing using thin-out reading. | 05-21-2015 |
20160127663 | SOLID-STATE IMAGING DEVICE AND ELECTRONIC APPARATUS - A solid-state imaging device includes: an R pixel provided with an R filter for transmitting red-color light; a B pixel provided with a B filter for transmitting blue-color light; an S1 pixel which is provided with an S1 filter with a visible light transmittance independent of wavelengths in a visible light region and has a sensitivity higher than that of the R pixel; and an S2 pixel which is provided with an S2 filter with a visible light transmittance independent of wavelengths in the visible light region and lower than the visible light transmittance of the S1 filter and has a sensitivity lower than the sensitivity of the S1 pixel. | 05-05-2016 |
20160156860 | IMAGE CAPTURING APPARATUS, IMAGE CAPTURING SYSTEM, AND METHOD FOR DRIVING IMAGE CAPTURING APPARATUS | 06-02-2016 |