Class / Patent application number | Description | Number of patent applications / Date published |
343859000 | Balanced to unbalanced circuit | 30 |
20080198090 | ANTENNA, EARPHONE ANTENNA, AND BROADCASTING RECEIVER INCLUDING EARPHONE ANTENNA - An antenna of the present invention includes a coaxial cable, antenna elements ( | 08-21-2008 |
20080316138 | BALANCE-FED HELICAL ANTENNA - An antenna having a cylindrical shaped dielectric core region that defines top, bottom, and side surfaces. Two laterally opposed conductive linking tracks are provided at the top or bottom surface and connect to respective groups of conductive antenna elements which extend across the top (or bottom surface) and at least partially down (or up) the side surface. A balun having two input terminals and two output terminals is provided at the top (or bottom) surface such that a feed line having two conductors extending from outside of the antenna connect respectively to the input terminals and the output terminals each connect respectively to a linking track. | 12-25-2008 |
20090073075 | Dual Polarized Low Profile Antenna - In one embodiment of the disclosure, a dual polarized antenna includes first and second active elements and at least one parasitic element disposed a predetermined distance from the first and second active elements. Circuitry is coupled to the first and second active elements and operable to generate electro-magnetic energy from the first and second active elements along a direction of propagation. The first active element having a direction of polarization that is different than a direction of polarization of the second active element. | 03-19-2009 |
20100001920 | Dielectrically-loaded antenna - A dielectrically loaded backfire helical antenna has a cylindrical ceramic core and a feed structure which passes axially through the core to a distal end face of the core where it is connected to helical conductors located on the outside of the core. Opening out on the proximal end face of the core is a cavity which is coaxial with the feed structure. A conductive balun layer encircling a portion of the core extends over the proximal end face of the core and the wall of the cavity to connect the helical elements to the feeder structure when it emerges into the cavity. The presence of the cavity and accommodating some of the length of the balun in the cavity allows a reduction in the size and weight of a dielectrically loaded backfire antenna. | 01-07-2010 |
20100053018 | PROGRAMMABLE ANTENNA WITH PROGRAMMABLE IMPEDANCE MATCHING AND METHODS FOR USE THEREWITH - A programmable antenna includes a fixed antenna element and a programmable antenna element that is tunable to one of a plurality of resonant frequencies in response to at least one antenna control signal. A programmable impedance matching network is tunable in response to at least one matching network control signal, to provide, for instance, a substantially constant load impedance. A control module generates the antenna control signals and the matching network control signals, in response to a frequency selection signal. | 03-04-2010 |
20100085270 | BALANCED PIFA AND METHOD FOR MANUFACTURING THE SAME - A balanced patched inverse F antenna comprises a radiation conductor and a balun circuit. The radiation conductor includes a main body, a first branch and a second branch. The balun circuit includes an unbalanced port, a balanced port, and first, second, third and fourth components, with the first, second, third and fourth components being serially connected. A feeding input of the unbalanced port is connected to the second and third components, a grounding wire of the unbalanced port is connected to the first and fourth components, an inverting terminal of the balanced port is connected to the first and second components, a non-inverting terminal of the balanced port is connected to the third and fourth components, and the inverting and non-inverting terminals are respectively connected to the first and second branches. | 04-08-2010 |
20100225555 | CIRCUIT BOARD FOLDED DIPOLE WITH INTEGRAL BALUN AND TRANSFORMER - An antenna is described having an RF connection and a second connection. The antenna includes a dielectric panel having a first longitudinal edge and second, opposing longitudinal edge and a first transverse edge and second, opposing transverse edge, a first antenna element disposed on a first predominant surface of the panel, said first antenna element extending along a periphery of the dielectric panel and only along the periphery of the first surface with a second connection located midway along the first longitudinal edge of the board and a gap in the first antenna element located midway along the opposing second longitudinal edge and a second antenna element disposed on a second predominant surface of the panel, said second antenna element extending along the periphery and only along the periphery, said second antenna element electrically connecting with the RF connection located midway along the first longitudinal edge adjacent the second connection and extending along the first longitudinal edge, across the transverse edge and along the second, opposing longitudinal edge to terminate adjacent the gap on a distal end. | 09-09-2010 |
20100231478 | Dielectrically Loaded Antenna - A dual-band dielectrically loaded multifilar antenna has a first group of helical conductive antenna elements extending from feed connection nodes to an annular linking conductor 20U, and a second group of conductive helical antenna elements extending from the feed coupling nodes in the direction of the linking conductor to substantially open-circuit ends spaced from the linking conductor. The helical elements of the first group are half-turn elements having an electrical length of approximately one half wavelength at a first operating frequency of the antenna. The helical elements of the second group are approximately quarter-turn helical elements having an electrical length in the region of one quarter wavelength and a second operating frequency of the antenna. Each group of elements is associated with a respective mode of resonance for circularly polarised radiation. | 09-16-2010 |
20100238088 | ANTENNA DEVICE - An antenna device includes: a shielded cable having a first connection portion on one end side and a second connection portion on the other end side; and an antenna element which is connected to the second connection portion of the shielded cable, wherein the shielded cable includes an inner conductor, a first insulator, a first outer conductor, a second insulator, and a second outer conductor, which are coaxially disposed in this order from an inner side, and is covered at its outer circumference by an insulation sheath, the first connection portion of the shielded cable is formed such that the inner conductor is supplied with power and the first outer conductor is connected to a ground, and in the second connection portion of the shielded cable, the first outer conductor is connected to the antenna element, and the inner conductor is connected to the second outer conductor. | 09-23-2010 |
20110001679 | METHOD FOR DIRECT CONNECTION OF MMIC AMPLIFIERS TO BALANCED ANTENNA APERTURE - A MMIC amplifier is directly connected to the balanced feed points at the aperture of an antenna to eliminate the distance between electronics coupled to the antenna and the antenna itself, such that interfaces, components and connection lines which introduce losses and parasitic effects that degrade system performance are eliminated due the direct connection. Expanding the aperture of the antenna to accommodate the direct connection of a MMIC amplifier to balanced feed points of an antenna has been found to have no deleterious effects on antenna performance. Moreover, when coupling the MMIC amplifier to an unbalanced coaxial line, any associated ripple is minimized due to the direct connection. | 01-06-2011 |
20110001680 | Multifilar Antenna - In a dielectrically-loaded multifilar helical antenna, a conductive phasing ring is arranged between and couples together feed nodes and the helical radiating elements. The phasing ring includes an annular conductive path having an electrical length equivalent to a full wavelength at the operating frequency so as to be resonant at that frequency. The helical elements are coupled to the outer periphery of the phasing ring at respective spaced apart coupling locations. The helical elements may include open-circuit or closed-circuit elongate conductive tracks, or a combination of both. In the case of the helical elements being closed-circuit tracks, these tracks are interconnected by a second resonant ring, which is resonant at the same frequency as or a different frequency from the first resonant ring. The invention is applicable to both end-fire and back-fire helical antennas. | 01-06-2011 |
20110074649 | DIFFERENTIAL FEED NOTCH RADIATOR WITH INTEGRATED BALUN - A differential feed notched radiator. A notched radiator includes a planar dielectric substrate having a first surface and an oppositely facing second surface, and a first conductive layer on the first surface and a second conductive layer on the second surface. The first and second conductive layers are patterned to provide a tapered notch in a first region of the planar dielectric substrate, the tapered notch having a first end and a second end wider than the first end, and the first and second conductive layers patterned to provide a balun in a second region of the planar dielectric substrate, the balun connected with the first end of the tapered notch. A conductive strip for transferring differential signals is embedded in the planar dielectric substrate between the first and second conductive layers, a portion of the conductive strip intersecting a portion of the tapered notch near the first end. | 03-31-2011 |
20110128205 | PROGRAMMABLE ANTENNA WITH PROGRAMMABLE IMPEDANCE MATCHING AND METHODS FOR USE THEREWITH - A programmable antenna includes a fixed antenna element and a programmable antenna element that is tunable in response to at least one antenna control signal, wherein tuning the programmable antenna element changes an impedance of the antenna. A programmable impedance matching network is tunable in response in response to at least one matching network control signal to adjust for the changes in the impedance of the antenna. | 06-02-2011 |
20110148733 | EIGHT-SHAPED RF BALUN - Symmetrical eight-shaped balun (BALanced-to-UNbalanced converter) comprising a first and second eye, each eye comprising conducting tracks forming turns. The eyes comprise an equal number of primary turns that form a first conducting path from a first terminal to a second terminal, in which in operation electrical current flows in a first direction in a first eye and in a second direction in a second eye. Moreover, the eyes further comprise an equal number of secondary turns that form a second conducting path from a third terminal to a fourth terminal, in which in operation electrical current flows in a first direction in a first eye and in a second direction in a second eye. The geometrical and electrical middle points of primary and secondary turns are all superposed and further are located in the same plane. | 06-23-2011 |
20110169711 | Antenna for cellular handset with user adjustable gain - This invention addresses a flip antenna design for mobile devices operating in ISM 900 MHz band. More specifically the present invention addresses the need to change the gain of a transceiver antenna (for mobile devices) with the flip of the antenna without changing any other characteristics of the transceiver. | 07-14-2011 |
20120026061 | EMBEDDED PRINTED EDGE-BALUN ANTENNA SYSTEM AND METHOD OF OPERATION THEREOF - An antenna module having a side-edge balance-to-unbalance (BALUN). The antenna module may include a flexible substrate with one or more layers that may be configured to receive one first and second conductive patterns, the substrate may have opposed first and second ends which may define a longitudinal length and/or opposed side edges situated between the first and second ends. The first conductive pattern may form an antenna loop situated adjacent to the first end of the flexible substrate and be suitable for transmitting or receiving signals at one or more frequencies. The second conductive pattern may form at least part of the BALUN and may include one or more of a center portion, side portions which may extend from the center portion at opposite sides of the center portion, and electrically neutral slots situated between a corresponding side portion and the center portion. | 02-02-2012 |
20120092227 | MULTI-QUADRIFILAR HELIX ANTENNA - In accordance with one or more embodiments of the present invention, a quadrifilar helix antenna can be formed to accommodate multiple frequencies using a single microstrip feed system, illustratively comprising an infinite balun in combination with interspersed antenna conductors tuned for effective resonance at the desired frequencies around the single feed system. Accordingly, as an additional aspect, the present invention also combines the multiple frequency antenna elements and the single feed system into a unitary assembly of cylindrical geometry that is generally reduced in size, with the interspersed arrangement of the multiple (e.g., resonating) antenna conductors wrapped into a short cylindrical surface. Through the use of the single hybrid feed system and resonating antenna conductors for multiple frequencies, the need for complex feed networks having multiple circuits (hybrid circuits, transformers, etc.) is alleviated, while still maintaining acceptable levels of performance. | 04-19-2012 |
20120256806 | Tracking Biological and Other Samples Using RFID Tags - A box mapper has (i) a frame configured to receive a sample box of RFID-tagged sample vials and (ii) a set of antennae configured to read the vial RFID tags of the sample vials to determine the identity and position of each sample vial in the sample box. In one embodiment, the set of antennae include two mutually orthogonal subsets of biphase digit antennae. | 10-11-2012 |
20120268341 | ANTENNA WINDOW BRACKET - Disclosed herein is a portable antenna window bracket that securely supports a satellite dish or other over the air type antenna outside a window without the need to drill into or make permanent physical attachment to the window or structure surrounding the window. The portable antenna bracket allows an antenna mounted thereon to be positioned beneath the window, thereby maintaining a clear and unobstructed view through the window. An extender is provided with an antenna receiver and a bridge on distal and proximal ends of the extender, respectively, as well as an interior support of the bridge positioned opposite the extender. An extender support is also provided with first and second edges, with the second edge adapted to abut a surface beneath the window, to support antenna weight and stabilize the antenna bracket. | 10-25-2012 |
20120293391 | ANTENNA ASSEMBLY FOR CONVERGED IN-BUILDING NETWORK - An antenna assembly is disclosed. The antenna assembly comprises an antenna that includes a radiating element formed on the first major surface of a substrate and connection mechanism for connecting the antenna to an unsevered midspan section of adhesive backed RF distribution cable. | 11-22-2012 |
20130194151 | EMBEDDED PRINTED EDGE - BALUN ANTENNA SYSTEM AND METHOD OF OPERATION THEREOF - An antenna module having a side-edge balance-to-unbalance (BALUN). The antenna module may include a flexible substrate with one or more layers that may be configured to receive one first and second conductive patterns, the substrate may have opposed first and second ends which may define a longitudinal length and/or opposed side edges situated between the first and second ends. The first conductive pattern may form an antenna loop situated adjacent to the first end of the flexible substrate and be suitable for transmitting or receiving signals at one or more frequencies. The second conductive pattern may form at least part of the BALUN and may include one or more of a center portion, side portions which may extend from the center portion at opposite sides of the center portion, and electrically neutral slots situated between a corresponding side portion and the center portion. | 08-01-2013 |
20130201073 | SUPERLUMINAL ANTENNA - A superluminal antenna element integrates a balun element to better impedance match an input cable or waveguide to a dielectric radiator element, thus preventing stray reflections and consequent undesirable radiation. For example, a dielectric housing material can be used that has a cutout area. A cable can extend into the cutout area. A triangular conductor can function as an impedance transition. An additional cylindrical element functions as a sleeve balun to better impedance match the radiator element to the cable. | 08-08-2013 |
20130214987 | FIGURE 8 BALUN - A balun includes a first conductor winding having a first figure eight shape and a second conductor winding have a second figure eight shape. The first figure eight shape includes a first loop and a second loop. The second figure eight shape includes a third loop and a fourth loop. The first loop and the second loop are not concentric. The third loop and the fourth loop are not concentric. | 08-22-2013 |
20130241794 | MICROSTRIP ANTENNA - The subject matter described herein relates a microstrip antenna. In one implementation, the microstrip antenna comprises a dielectric substrate, a first metallic layer on a first side of the dielectric substrate and a second metallic layer on a second side, opposite to the first side, of the dielectric substrate. The first metallic layer on the dielectric substrate comprises one or more end-to-end slots to divide the first metallic layer into a plurality of microstrip patches. The microstrip antenna also comprises a feed circuit which is electromagnetically coupled to the plurality of microstrip patches and the second metallic layer. | 09-19-2013 |
20140022142 | CIRCULAR POLARIZED COMPOUND LOOP ANTENNA - Embodiments provide single-sided and multi-layered circular polarized, self-contained, compound loop antennas (circular polarized CPL). Embodiments of the CPL antennas produce circular polarized signals by using two electric field radiators physically oriented orthogonal to each other, and by ensuring that the two electric field radiators are positioned such that an electrical delay between the two electric field radiators results in the two electric field radiators emitting their respective electric fields out of phase. Ensuring the proper electrical delay between the two electric field radiators also maintains high efficiency of the antenna and it improves the axial ratio of the antenna. | 01-23-2014 |
20140049441 | SIGNAL CONVERTING CIRCUIT CAPABLE OF REDUCING/AVOIDING SIGNAL LEAKAGE AND RELATED SIGNAL CONVERTING METHOD - A signal converting circuit includes: a first switching circuit; a second switching circuit; and a first balance-unbalance circuit (Balun) having a first signal terminal coupled to an antenna, a second signal terminal coupled to the first switching circuit, and a third signal terminal coupled to the second switching circuit; wherein when the first balance-unbalance circuit operates in a first signal converting mode, the first switching circuit and the second switching circuit are arranged to couple the second signal terminal and the third signal terminal, respectively, to a first signal processing circuit, and when the first balance-unbalance circuit does not operate in the first signal converting mode, the first switching circuit and the second switching circuit are arranged to couple the second signal terminal and the third signal terminal, respectively, to a reference voltage. | 02-20-2014 |
20140320373 | MONOPOLE ANTENNA WITH A TAPERED BALUN - Embodiments are directed to a balun structure comprising: a monopole antenna, and a microstrip coupled to the monopole antenna and comprising a ground plane modified to include at least two arms. Embodiments are directed to a balun structure comprising: a monopole antenna, and a microstrip coupled to the monopole antenna using a stepwise tapered microstrip feed. | 10-30-2014 |
20140320374 | MULTI BANDWIDTH BALUN AND CIRCUIT STRUCTURE THEREOF - A multi bandwidth balun is provided, including a main signal port, a main inductor electrically connected to the main signal port, a first inductor inducted mutually with the main inductor to constitute a first inductor of a first conversion circuit, a first capacitor module connected in parallel to the first conversion circuit, two first signal ports electrically connected to the first capacitor module, a first main capacitor electrically connected to the first signal port and the first capacitor module therebetween, a second inductor inducted mutually with the main inductor to constitute a second inductor of a second conversion circuit, a second capacitor module connected in parallel to the second conversion circuit, two second signal ports electrically connected to the second capacitor module, and a second main capacitor electrically connected to the second signal port and the second capacitor module therebetween. | 10-30-2014 |
20160164160 | Balun Filter and Radio-Frequency System - A balun filter utilized for a radio-frequency (RF) system includes a first terminal coupled to an antenna of the RF system for delivering an RF signal; a differential port has a second terminal and a third terminal for delivering a differential signal; a band pass filter coupled between the first terminal and the differential port has a plurality of resonators, each including a surrounding line substantially surrounding an area and forming a loophole on a side of the each resonator; and at least a line segment connected to the surrounding line and disposed separately within the area surrounded by the surrounding line. | 06-09-2016 |
20160254584 | DEVICES WITH S-SHAPED BALUN SEGMENT AND RELATED METHODS | 09-01-2016 |