Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Plural

Subclass of:

343 - Communications: radio wave antennas

343700000 - ANTENNAS

343772000 - Wave guide type (e.g., horn)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
343776000 Plural 74
20080238796VERY HIGH FREQUENCY DIELECTRIC SUBSTRATE WAVE GUIDE - A radio transceiver device includes circuitry for radiating electromagnetic signals at a very high radio frequency both through space, as well as through wave guides that are formed within a substrate material. In one embodiment, the substrate comprises a dielectric substrate formed within a board, for example, a printed circuit board. In another embodiment of the invention, the wave guide is formed within a die of an integrated circuit radio transceiver. A plurality of transceivers with different functionality is defined. Substrate transceivers are operable to transmit through the wave guides, while local transceivers are operable to produce very short range wireless transmissions through space. A third and final transceiver is a typical wireless transceiver for communication with remote (non-local to the device) transceivers.10-02-2008
20080238797HORN ANTENNA ARRAY SYSTEMS WITH LOG DIPOLE FEED SYSTEMS AND METHODS FOR USE THEREOF - An antenna array comprises a plurality of elements, at least one of the elements including a log dipole isolated from others of the elements by a horn structure.10-02-2008
20090021441PRIMARY RADIATOR, LOW NOISE BLOCKDOWNCONVERTER AND SATELLITE BROADCASTING RECEIVING ANTENNA - A primary radiator includes two horns each having an opening on a larger-diameter side and an opening on a tapered smaller-diameter side opposite to the larger-diameter side, and two corrugated portions provided around the opening on the larger-diameter side of the horn. The outermost corrugated portion is formed to surround all of the horns, and the outermost corrugated portion is formed of one sheet metal member. With this structure, sheet-metal processing can be used to form horns of adaptable shapes and a plurality of horns can be formed at a time.01-22-2009
20090091506ADVANCED ANTENNA INTEGRATED PRINTED WIRING BOARD WITH METALLIC WAVEGUIDE PLATE - A system and method of constructing a phased array antenna system that incorporates a printed wiring board assembly with a metallic waveguide plate is provided. The system uses a metallic waveguide plate to dissipate heat toward and through the waveguide portion of the system.04-09-2009
20090115675PLANAR ANTENNA - The present invention relates to antenna systems. Technical result of the invention is providing operation of two-polarization antenna manufactured on the basis of planar metal-dielectric waveguide in wide range of frequencies. The technical result is achieved by the fact that the antenna comprises a planar metal-plated, at least on one side, dielectric waveguide to the side walls of which two metal waveguides joined with the planar waveguide via periodical array of slots are connected, wherein the array comprises two slots other, and wherein radiating elements having two symmetry planes are placed in nodes of a rhombic mesh on a surface05-07-2009
20090153426PHASED ARRAY ANTENNA WITH LATTICE TRANSFORMATION - Structure and method for an aperture plate for use in a phased array antenna is disclosed. The aperture plate includes a plurality of waveguide transitions, each with a radiating end, a coupling end and a body portion extending from the radiating end to the coupling end. The waveguide transitions are spaced apart from each other wherein at least a pair of waveguide transitions are spaced apart closer to each other at the radiating end than at the coupling end. The method of manufacturing an aperture plate for a phased array antenna includes sizing a plurality of waveguide transitions based upon certain operating requirements, determining a radiating lattice spacing and configuration based upon the operating requirements, determining a coupling lattice spacing and configuration based upon antenna electronics packaging, optimizing an aperture plate thickness to achieve the radiating lattice and the coupling lattice spacing and configuration, and forming the aperture plate.06-18-2009
20090267852Small Aperture Interrogator Antenna System Employing Sum Difference Azimuth Discrimination Techniques - An antenna system comprising a first antenna corresponding to a horn antenna, a second antenna corresponding to a horn antenna disposed such that the E-plane of the second antenna is co-planar with the E-plane of the first antenna an such that an aperture of the first antenna and an aperture of the second antenna are substantially in a common plane; and a third antenna corresponding to a horn antenna disposed such that the E-plane of the third antenna is substantially co-planar with the E-plane of the first antenna and such that an aperture of said third antenna is substantially in the same plane as the aperture of the first and second antennas and wherein the second and third antennas are canted toward each other.10-29-2009
20090303147SECTORIZED, MILLIMETER-WAVE ANTENNA ARRAYS WITH OPTIMIZABLE BEAM COVERAGE FOR WIRELESS NETWORK APPLICATIONS - Planar, sectorized, millimeter-wave antenna arrays may include one or more of housings of dielectric material, such as split-blocks of a plastic material, having metallized plastic horns and waveguides formed, etched, and/or cut therein, waveguide-to-planar-transmission-line transition devices and planar structures embedded therein, and one or more integrated circuits coupled thereto.12-10-2009
20100060536MULTIBAND SATELLITE ANTENNA - A multiband satellite antenna is provided. The multiband satellite antenna includes a plurality of first band wave receivers and a second band wave receiver. The first band wave receiver includes a first band wave guide, and the second band wave receiver has a first receiving unit and a second receiving unit. The first receiving unit and the second receiving unit are disposed on opposite sides of an alignment line of the first band wave receivers. Each of the first receiving unit and the second receiving unit has a second band wave guide. Output ends of the first receiving unit and the second receiving unit are coupled together to combine signals received from both units into a single signal, and then the single signal is outputted as a second frequency signal. Through this design, in a high satellite density environment, dual-frequency signals from several satellites at similar elevation angles can be received by the antenna of the invention.03-11-2010
20100060537ANTENNA ARRAY - An antenna array provided with two frames which form waveguides. Each frame includes a plate portion and frame portion. The plate portion includes grooves laid out next to one another. Each groove has an open end and a closed end. The frame portion is arranged adjacent to the plate portion. The frame portion has an opening that opens in a direction perpendicular to a direction in which the grooves extend and a direction in which the grooves are laid out. A dielectric substrate is held between the two frames. The dielectric substrate includes an array of feeders and electronic circuits, each circuit having a discrete active element. The circuits are exposed from the opening of either one of the frames. The frames are superimposed with the dielectric substrate so that the grooves form the waveguides. Each circuit is electromagnetically connected to a corresponding one of the waveguides.03-11-2010
20100214185PLASTIC WAVEGUIDE-FED HORN ANTENNA - A plastic, waveguide-fed, horn antenna is manufactured using a three-dimensional (3D), polymeric micro hot embossing process. Two cavity resonators may be designed to reduce the impedance mismatch between the pyramidal horn antenna and the feeding waveguide. The waveguide-fed antenna may be fabricated using a self-aligned 3D plastic hot embossing process followed by a selective electroplating and sealing process to coat an approximately 8 μm-thick gold layer around the internal surfaces of the system. As such, this plastic, low-cost manufacturing process may be used to replace the expensive metallic components for millimeter-wave systems and provides a scalable and integrated process for manufacturing an array of antenna.08-26-2010
20100231475Circular waveguide antenna and circular waveguide array antenna - A low-cost, compact circular waveguide array antenna which improves an antenna reflection loss characteristic and enables an improvement in radiation characteristics, particularly radiation gain. The circular waveguide array antenna includes feeding portions which feed electromagnetic waves to one ends of circular waveguides and radiation apertures which radiate the electromagnetic waves at the opposite ends. Each circular waveguide includes a conical horn, with a diameter of a feeding side aperture at the feeding portion end being a, a diameter of the radiation aperture being d, which is larger than the diameter a of the feeding side aperture, and an opening angle being 2α. If a wavelength of a central frequency of an employed frequency band is λ, then a value of α, which is half of the opening angle 2α, is set between 0.8×Arcsin(0.1349114/(d/λ)) and 1.2×Arcsin(0.1349114/(d/λ)).09-16-2010
20100309077METHOD AND SYSTEM FOR WIRELESS COMMUNICATION UTILIZING LEAKY WAVE ANTENNAS ON A PRINTED CIRCUIT BOARD - Methods and systems for wireless communication utilizing leaky wave antennas (LWAs) on a printed circuit board are disclosed and may include communicating RF signals via LWAs in an integrated circuit (chip) and/or package in a wireless device to LWAs in a printed circuit board in the wireless device. RF signals may then be communicated via the LWAs in the printed circuit board to external devices, and may communicated vertically or at a desired angle from the surface. The RF signals may be communicated between regions within the printed circuit board. The LWAs may include microstrip or coplanar waveguides where a cavity height of the LWAs may be configured by controlling spacing between conductive lines in the waveguides. The chip may be flip-chip-bonded to an package which may be affixed to a printed circuit board. A pair of the plurality of LWAs may be stacked to communicate signals in opposite directions.12-09-2010
20100309078METHOD AND SYSTEM FOR CONVERTING RF POWER TO DC POWER UTILIZING A LEAKY WAVE ANTENNA - Methods and systems for converting RF power to DC power utilizing a leaky wave antenna (LWA) are disclosed and may include receiving RF wireless signals utilizing one or more LWAs in a wireless device, and generating one or more DC voltages from the received RF signals utilizing cascaded rectifier cells. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. The LWAs may be configured to receive the RF signals from a desired direction. The LWAs may comprise microstrip or coplanar waveguides, wherein a cavity height of the LWAs is dependent on a spacing between conductive lines in the waveguides. The LWAs may be integrated in one or more integrated circuits, integrated circuit packages, and/or printed circuit boards. The packages may be affixed to one or more printed circuit boards and the integrated circuits may be flip-chip-bonded to the packages.12-09-2010
20110043423HIGH FREQUENCY WAVEGUIDE, ANTENNA DEVICE, AND ELECTRONIC APPARATUS WITH ANTENNA DEVICE - In a waveguide structure (02-24-2011
20110115684Metamaterial Band Stop Filter for Waveguides - A method and apparatus comprising a dielectric structure and a plurality of conductive segments. The dielectric structure is configured for placement in a waveguide. The plurality of conductive segments is located within the dielectric structure. Each of the plurality of conductive segments is configured to reduce a passing of a number of frequencies of electromagnetic signals traveling through the dielectric structure.05-19-2011
20110260941WIDEBAND RADIATING ELEMENTS - Wideband radiating elements, methods of transmitting and receiving signals using a wideband radiating element, standalone antennas, and array antennas are disclosed. The wideband radiating element (antenna) has wide bandwidth for a relatively constant beamwidth and comprises a section of waveguide, a patch radiator, and one or more tuned loops. The wideband radiating element may comprise: a section of waveguide, at least one dipole antenna element, and at least one tuned circuit. Each dipole antenna element is disposed within the waveguide section as a feed for the waveguide section.10-27-2011
20110267250BROADBAND ANTENNA SYSTEM FOR SATELLITE COMMUNICATION - An antenna for broadband satellite communication including an array of primary horn antenna elements which are connected to one another by a waveguide feed network.11-03-2011
20120188138LAMINATED ANTENNA STRUCTURES FOR PACKAGE APPLICATIONS - Apparatus and methods for packaging IC chips and laminated antenna structures with laminated waveguide structures that are integrally constructed as part of an antenna package to form compact integrated radio/wireless communications systems for millimeter wave applications.07-26-2012
20120194400High power broadband antenna - The invention relates to an antenna comprising a transmission surface, an array of elementary antennas each extending from the transmission surface, first and second superimposed electromagnetic waveguides. The first waveguide is adapted to power the second waveguide from a collection inlet, and the second waveguide is adapted to power the elementary antennas. The antenna comprises means for coupling the electromagnetic energy associated with the electromagnetic wave between the first and second waveguides. The coupling means separate the transmission surface into two concentric regions made up of a peripheral region and an internal region situated at the collection inlet, each comprising at least one elementary antenna.08-02-2012
20120218160APERTURE MODE FILTER - A mode filter for an antenna having at least one element aperture is provided. The mode filter includes at least one waveguide extension to extend the at least one element aperture, and at least one two-by-two (2×2) array of quad-ridged waveguide sections connected to a respective at least one waveguide extension. When the at least one waveguide extension is positioned between the at least one element aperture and the at least one two-by-two (2×2) array of quad-ridged waveguide sections, undesired electromagnetic modes of the antenna are suppressed.08-30-2012
20120306710HARDENED WAVE-GUIDE ANTENNA - An antenna element and a phased array antenna including a plurality of such antenna elements are described. The antenna element includes a waveguide configured for operating in a below-cutoff mode and having a cavity, an exciter configured for exciting the waveguide, and a shield. The shield includes a holder arranged within the cavity, and a front plate mounted on the holder and disposed over at least a part of the exciter.12-06-2012
20120306711Antenna Arrangement - An antenna (12-06-2012
20130033404ANTENNA DEVICE - An antenna device includes antennas, each of which includes antenna elements arranged in a longitudinal direction, arranged side by side in a transverse direction intersecting the longitudinal direction, wherein an interval between the antennas arranged side by side in the transverse direction is approximately 2λ. where λ is a free space wavelength corresponding to an operating frequency, and each of the antenna elements includes a horn formed therein.02-07-2013
20130076583MULTIPLE FEED ANTENNA OPERATING AT SIGNIFICANTLY DIFFERING FREQUENCIES - A multiple feed antenna includes a first waveguide having a first upper aperture with a first wall surrounding the first upper aperture; a second waveguide disposed in parallel to the first waveguide, in which the second waveguide has a second upper aperture; a second wall surrounding the first wall, with a first groove between the second wall and the first wall; a third wall surrounding the second wall and the second upper aperture, with a second groove between the third wall and the second wall; a fourth wall surrounding the third wall, with a third groove between the fourth wall and the third wall; and a plurality of ribs connecting the first wall and the second wall.03-28-2013
20130120205FLAT PANEL ARRAY ANTENNA - A panel array antenna has a waveguide network coupling an input feed to a plurality of primary coupling cavities. Each of the primary coupling cavities is provided with four output ports, each of the output ports coupled to a horn radiator. The waveguide network is provided on a second side of an input layer and a first side of a first intermediate layer. The primary coupling cavities are provided on a second side of the first intermediate layer and the output ports provided on a first side of an output layer, each of the output ports in communication with one of the horn radiators. The horn radiators are provided as an array of horn radiators on a second side of the output layer. Additional layers, such as a second intermediate layer and/or slot layer, may also be applied, for example to further simplify the waveguide network and/or rotate the polarization.05-16-2013
20130120206Modular Feed Network - A modular feed network is provided with a segment base provided with a feed aperture, a corner cavity at each corner and a tap cavity at a mid-section of each of two opposite sides. A segment top is provided with a plurality of output ports. The segment top is dimensioned to seat upon the segment base to form a segment pair. the segment base provided with a plurality of waveguides between cavities of the segment base. The modular feed network is configurable via a range of feed, bypass and/or power divider taps seated in the apertures and/or cavities to form a waveguide network of varied numbers of output ports by routing across one or more of the segment tops. For example, the modular feed network may comprise 1, 4 or 16 of the segment bases retained side to side.05-16-2013
20130127680ANTENNA APPARATUS - Provided is an antenna apparatus which employs a small number of antenna devices and is intended to obtain a desired pattern without adjusting amplitude level and phase of each antenna device. The antenna apparatus includes a first ridge horn antenna, and a second ridge horn antenna spaced apart from the first ridge horn antenna by a determined distance. Here, a multi-beam pattern is generated using a third-order mode beam pattern of a synthetic beam obtained by synthesizing beams respectively radiated from the first and second ridge horn antennas. Accordingly, the antenna apparatus can be simplified, and a desired multi-beam pattern can be obtained without adjusting signal level and phase of each antenna device. Also, by employing the ridge horn antennas as array devices, the antenna apparatus can be used in a wide frequency band.05-23-2013
20130169499DIELECTRIC ANTENNA AND ANTENNA MODULE - A dielectric antenna includes at least one dielectric unit. Each dielectric unit is separated into a first region and a second region, and the second region could have a bending portion. A conductor covers a surface of the second region of the dielectric unit to form a waveguide structure. The waveguide structure has a first endpoint connected to the first region and a second endpoint serving as a signal feeding terminal for feeding or receiving signals.07-04-2013
20130201069ANTENNA SYSTEM AND METHOD - A device comprising a metallic conical portion, said conical portion substantially hollow having a vertex end and a base end, a first cylindrical portion disposed annularly about the base end of the conical portion, a metallic second cylindrical portion coupled to the vertex of the conical portion, said cylindrical portion having a threaded aperture, and an antenna feed coupled to the threaded aperture. The device may have a patch disposed on an insulator portion connected to the second cylindrical portion, said patch and insulator portion each having an aperture, and a metallic ground portion connected to the insulator portion, said ground portion having an ground aperture, and a threaded screw disposed through the ground aperture, the patch, the insulator aperture and into the threaded aperture. An RF feed may be created by coupling the threaded aperture to a conductive material disposed on the insulator portion.08-08-2013
20130234904MICROWAVE ANTENNA AND ANTENNA ELEMENT - A microwave antenna comprises an antenna array comprising a plurality of antenna elements. An antenna element comprises a cover, a hollow waveguide formed within the cover for guiding microwave radiation at an operating frequency between a first open end portion and a second end portion arranged opposite the first end portion, a septum arranged centrally and along the longitudinal direction within the waveguide and separating said waveguide into two waveguide portions, a substrate arrangement arranged at the second end portion within the cover, said substrate arrangement comprising a ground plane and line structures arranged on both sides of and at a distance from said ground plane and a substrate integrated waveguide, a waveguide transition arranged between said hollow waveguide and said substrate integrated waveguide, an integrated circuit arranged within said cover and electrically contacted to said ground plane and said line structures, and terminals electrically contacted to said integrated circuit.09-12-2013
20130271334Miniature Horn Interrogator Antenna with Internal Sum/Difference Combiner - A miniature interrogator antenna assembly including: a housing; a first miniature horn antenna in the housing having a first aperture; a second miniature horn antenna in the housing having a second aperture. The first and second miniature horn antennas are arranged in a canted configuration and are joint at a front of the assembly to form combined apertures at the front of the assembly. The antenna assembly further includes: a splitter/combiner having a matching portion, where the matching portion is positioned in the housing in such a way that an apex of the matching portion points to the front of the assembly; a plurality of annular grooves formed around the combined apertures at the front of the assembly; a sum input port coupled to a first waveguide with an H-plane bend feeding the splitter/combiner; and a difference input port coupled to a second waveguide feeding the splitter/combiner directly.10-17-2013
20130278476Wideband High Gain Antenna - An antenna array formed of individual electrically connected pluralities of wideband antenna elements. The array features a centrally located rectangular ground plane having a top surface defined by four edges. Each of said pluralities of elements is engaged to a separate substrate which is engaged along one of the four edges. The substrates may be angled to adjust the footprint of the antenna.10-24-2013
20140152520ANTENNA AND PRINTED-CIRCUIT BOARD USING WAVEGUIDE STRUCTURE - An antenna includes a first conductive plane, a second conductive plane disposed in parallel with the first conductive plane, a power-supply unit applying a high frequency signal between the first conductive plane and the second conductive plane, and at least one shunt which is aligned in the second conductive plane and includes a transmission line including an open end aligned in a plane above or below the second conductive plane and a conductive via electrically connecting another end of the transmission line to the first conductive plane. A distance between a bottom surface of the transmission line and the second conductive plane is less than a distance between the bottom surface of the transmission line and the first conductive plane. The transmission line is formed on a plane positioned to face the second conductive plane outside a region circumscribed between the first conductive plane and the second conductive plane.06-05-2014
20140198005LOW PROFILE ANTENNA - There is provided a low profile antenna comprising a line source, a corporate feed network, and a plurality of radiating elements. The radiating elements are arranged in a linear array so as to be discrete in a first direction and each continuous in a second direction substantially perpendicular to the first direction. The corporate feed network is integrated with the linear array of radiating elements to provide for a compact design.07-17-2014
20140340271Antenna Array with Reduced Mutual Coupling Between Array Elements - An array of antenna feed elements includes a plurality of horns, each horn having an aperture and configured for transmission of electromagnetic energy therethrough. At least a first horn is configured with an electrically conductive external surface proximate to the aperture, the external surface contoured so as to reduce mutual coupling between the first horn and an adjacent horn. Where the electromagnetic energy is within a radio frequency (RF) band, the external surface is contoured so as to provide an abrupt change in a gap dimension between the first horn and an adjacent horn, the change occurring at a distance behind the aperture of equal to a multiple of one half the characteristic wavelength of the RF band.11-20-2014
20140375517RADOME FOR FEED HORN AND ASSEMBLY OF FEED HORN AND RADOME - A radome for a feed horn includes a cover and at least a protrusion having an elliptic protruding portion shaped as a part of a hollow ellipsoid and provided with a convex surface and a concave surface opposite to the convex surface. The radome is defined with a plurality of first and second cross-sections. Curves of the convex and the concave surfaces in the first cross-sections are different from those in the second cross-sections. The convex and concave surfaces are substantially perpendicular to an advancing direction of a co-polarization wave and unperpendicular to an advancing direction of a cross polarization wave. As a result, the radome can be so thick as to be easily manufactured and not easily damaged and enhance the performance of the feed horn covered by the radome in sending and receiving signals.12-25-2014
20150009083FEED HORN HAVING DIELECTRIC LAYERS AND ASSEMBLY OF FEED HORN AND RADOME - A feed horn includes at least a wave guiding unit which has a pipe and two dielectric layers. The pipe has an opening and at least an inner surface extending from the opening to an inside of the pipe. The dielectric layers have a larger dielectric constant than air and are fastened to the inner surface of the pipe in a way that the dielectric layers face each other. As a result, the dielectric layers can improve isolation and directivity of cross polarization waves and co-polarization waves received by the feed horn.01-08-2015
20150048984WAVEGUIDE HORN ARRAYS, METHODS FOR FORMING THE SAME AND ANTENNA SYSTEMS - There is provided a waveguide horn array, a method for forming the waveguide horn array, and an antenna system. The array includes a rectangular metal plate which is processed to have a cross section comprised of a plurality of rectangular holes arranged in the length direction of the rectangular metal plate, the lower part of each hole being formed as a rectangular waveguide, and the upper part of each hole being formed as a horn; and a groove extending in the direction along which the plurality of holes are arranged and having a predetermined depth, which is formed at two sides of the holes on the top surface of the rectangular metal plate. According to the embodiments, it is possible to maintain the good properties of the antenna in terms of bandwidth and directivity, while enhancing the isolation between the transmitting antenna and the receiving antenna in the system.02-19-2015
20150123862WAVEGUIDE TO PARALLEL-PLATE TRANSITION AND DEVICE INCLUDING THE SAME - A waveguide to parallel-plate transition is provided which includes a waveguide, an E-plane waveguide bend, an H-plane waveguide bend and a parallel-plate transmission line arranged in sequence. The E-plane waveguide bend is configured to bend a direction of a radio frequency (RF) field between the waveguide and the H-plane waveguide bend by approximately 90 degrees in an E-plane. The H-plane waveguide bend is configured to bend a direction the RF field between the E-plane waveguide bend and the parallel-plate transmission line by approximately 90 degrees in an H-plane, and the parallel-plate transmission line includes a slot through which the RF field can flow between the H-plane waveguide bend and the parallel-plate transmission line.05-07-2015
20150123863COMPACT BIPOLARIZATION POWER SPLITTER, ARRAY OF A PLURALITY OF SPLITTERS, COMPACT RADIATING ELEMENT AND PLANAR ANTENNA COMPRISING SUCH A SPLITTER - A compact dual-polarization planar power splitter comprises at least four asymmetric orthomode transducers (OMTs) connected in an array suitable for being coupled in-phase to a dual orthogonal polarization feed source via two power distributors mounted perpendicularly in relation to one another, each power distributor comprising at least two lateral metal waveguides disposed parallel to one another, and a transverse metal waveguide coupled perpendicularly to the two lateral metal waveguides and four ends of the lateral waveguides coupled respectively to the four asymmetric OMTs.05-07-2015
20150318621QUASI TEM DIELECTRIC TRAVELLING WAVE SCANNING ARRAY - A dielectric travelling wave antenna (DTWA) using a TEM mode transmission line and variable dielectric substrate.11-05-2015
20150380814Apparatus and Method of a Dual Polarized Broadband Agile Cylindrical Antenna Array with Reconfigurable Radial Waveguides - Embodiments are provided for an agile antenna that beamsteers radio frequency (RF) signals by selectively activating/de-activating tunable elements on radial-waveguides using direct current (DC) switches. The antenna comprises two parallel radial waveguide structures, each comprising a first radial plate, a second radial plate in parallel with the first radial plate, and conductive elements positioned vertically and distributed radially between the two plates. The radial waveguide structure further includes a plurality of quarter RF chokes which are connected to the conductive elements via respective micro-strips and tunable elements. The two parallel radial plates are separated by a height determined according to a desired transmission frequency range for RF signals, a length of the micro-strips, a diameter of the conductive elements, and a clearance space around each one of the conductive elements.12-31-2015
20160020525DUAL-CIRCULAR POLARIZED ANTENNA SYSTEM - In an example embodiment, an azimuth combiner comprises: a septum layer comprising a plurality of septum dividers; first and second housing layers attached to first and second sides of the septum layer; a linear array of ports on a first end of the combiner; wherein the first and second housing layers each comprise waveguide H-plane T-junctions; wherein the waveguide T-junctions can be configured to perform power dividing/combining; and wherein the septum layer evenly bisects each port of the linear array of ports. A stack of such azimuth combiners can form a two dimensional planar array of ports to which can be added a horn aperture layer, and a grid layer, to form a dual-polarized, dual-BFN, dual-band antenna array.01-21-2016
20160056543PROVIDING WIRELESS SERVICE AT A VENUE USING HORN ANTENNAS - A system may include horn antennas arranged at a venue. The horn antennas may be connected to an operator network that provides a wireless service. The horn antennas may provide the wireless service to at least one mobile device at the venue. The horn antennas may be arranged at the venue based on a configuration of the venue.02-25-2016
20160072190RIDGED HORN ANTENNA HAVING ADDITIONAL CORRUGATION - A radiating element may comprise an antenna element, a radiating element edge, and a corrugation. The antenna element may have an aperture that extends into the antenna element, and an aperture side defining an aperture area of the antenna element. The radiating element edge may surround the antenna element on the aperture side. The corrugation may be configured to separate, at least on the aperture side, the antenna element and the surrounding radiating element edge. The radiating element edge may be connected to the antenna element at a distance greater than zero from the aperture side of the antenna element.03-10-2016
20160099503LOW NOISE BLOCK CONVERTER AND OUTDOOR UNIT - An outdoor unit includes a dish antenna and a low noise block converter positioned at a focus point of the dish antenna. The low noise block converter comprises a housing, a feed cap disposed on top of the housing, and an air permeable membrane disposed on a bottom portion of the housing. The housing includes a base portion, at least one feed horn protruding from the base portion, and a bottom cover attached to a bottom of the base portion so as to form a housing cavity, wherein the bottom cover has a vent hole forming a flow path between the housing cavity and an external environment. The feed cap is disposed on a feed portion of the at least one feed horn and the air permeable membrane is disposed over the vent hole and coupled to the bottom cover via an adhesive, wherein the membrane is configured to permit egress of a gas from the housing cavity therethrough.04-07-2016
20170237176DIFFERENTIAL PLANAR APERTURE ANTENNA08-17-2017
343777000 With control of individual antenna (e.g., lobe switching or steering) 9
20100309079METHOD AND SYSTEM FOR A SMART ANTENNA UTILIZING LEAKY WAVE ANTENNAS - Methods and systems for a smart antenna utilizing leaky wave antennas (LWAs) are disclosed and may include a programmable polarization antenna including one or more pairs of LWAs configured along different axes. One or more pairs of leaky wave antennas may be configured to adjust polarization and/or polarity of one or more RF signals communicated by the programmable polarization antenna. RF signals may be communicated via the configured programmable polarization antenna utilizing the configured one or more pairs of the leaky wave antennas. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. The polarization and/or polarity may be configured utilizing switched phase modules. The LWAs may include microstrip or coplanar waveguides, wherein a cavity height of the LWAs is dependent on spacing between conductive lines in the waveguides. The LWAs may be integrated in one or more integrated circuits, packages, and/or printed circuit boards.12-09-2010
20100321266Antenna Having a Reflector with Coverage and Frequency Flexibility and Satellite Comprising Such an Antenna - An antenna including a reflector with coverage and frequency flexibility is provided. The antenna comprises a reversible reflector having two separate reflecting surfaces shaped geometrically so as to cover respectively a first and a second geographical zone which are different and have predetermined shapes, in which the two reflecting surfaces are fastened back to back on a common support, and at least two independent sources arranged in a fixed configuration and connected to separate radiofrequency supply chains defining different and predefined operating frequency planes, the reflector having a first deployment position, in which the focal point of the first reflecting surface is located at the phase centre of the first source, and a second deployment position, in which the focal point of the second reflecting surface is located at the phase centre of the second source. Application notably to the field of satellite telecommunication antennae.12-23-2010
20110148727LEAKY-WAVE ANTENNA CAPABLE OF MULTI-PLANE SCANNING - A leaky-wave antenna capable of multi-plane scanning is provided. The leaky-wave antenna includes a substrate, a first antenna series, a second antenna series and a plurality of control units. The first antenna series intersects with the second antenna series to share a predetermined antenna unit among many antenna units. A part of the antenna units is connected in series to extend from a first and a second transmission lines of the predetermined antenna unit to compose the first antenna series, and the other antenna units are connected in series to extend from a third and a fourth transmission lines of the predetermined antenna unit to compose the second antenna series. The control units control the transmission paths between the first to the fourth transmission lines and the antenna units, and switch a leaky beam to different scanning planes, wherein the leaky beam scans with frequency variation through the antenna units.06-23-2011
20110163930Steerable Electronic Microwave Antenna - A steerable microwave antenna includes a resonant cavity comprising a partially reflecting surface (PRS) formed of an array of transmitting-receiving cells (CF07-07-2011
20130328739RF Power Conversion to DC Power with a Leaky Wave Antenna - Methods and systems for converting RF power to DC power utilizing a leaky wave antenna (LWA) are disclosed and may include receiving RF wireless signals utilizing one or more LWAs in a wireless device, and generating one or more DC voltages from the received RF signals utilizing cascaded rectifier cells. A resonant frequency of the LWAs may be configured utilizing micro-electro-mechanical systems (MEMS) deflection. The LWAs may be configured to receive the RF signals from a desired direction. The LWAs may comprise microstrip or coplanar waveguides, wherein a cavity height of the LWAs is dependent on a spacing between conductive lines in the waveguides. The LWAs may be integrated in one or more integrated circuits, integrated circuit packages, and/or printed circuit boards. The packages may be affixed to one or more printed circuit boards and the integrated circuits may be flip-chip-bonded to the packages.12-12-2013
20150070231SUBSTRATE EMBEDDED HORN ANTENNA HAVING SELECTION CAPABILITY OF VERTICAL AND HORIZONTAL RADIATION PATTERN - Substrate embedded horn antenna includes a dielectric, metal patterns, metal vias and a ground plate. The metal patterns are embedded by being stacked in dielectric. Metal patterns are hollow rectangle types or hollow circle types. Metal vias connect layers of metal patterns by being embedded between layers of metal patterns. Ground plate is formed in an upper side of dielectric. Metal patterns form waveguide structure by being stacked in radial shape. Waveguide structure propagates electromagnetic wave by focusing electromagnetic wave. Embedded horn antenna capable of selectively using vertical radiation and horizontal radiation may be implemented using the via and metal pattern in dielectric substrate. Embedded horn antenna may be implemented in small size with high gain. Vertical embedded horn antenna and horizontal embedded horn antenna may be implemented in a substrate. Method of manufacturing embedded horn antenna capable of selectively using vertical radiation and horizontal radiation may be provided.03-12-2015
20150372387ANTENNA ARRANGEMENT OF A WIRELESS NODE - A wireless node (12-24-2015
20150380815Apparatus and Assembling Method of a Dual Polarized Agile Cylindrical Antenna Array with Reconfigurable Radial Waveguides - Embodiments are provided for an agile antenna that beamsteers radio frequency (RF) signals by selectively activating/de-activating tunable elements on radial-waveguides using direct current (DC) switches. The agile antenna device comprises a first radial waveguide structure encased in a first frame, a first line feed connected to the first waveguide structure, a second encased radial waveguide structure similar and coupled to the first waveguide structure. The two waveguide structures include the tunable elements controlled by the DC switches. A second line feed is connected to the second waveguide structure. The two line feeds provide the RF signal to the antenna. The antenna device also includes a plurality of radiating elements positioned between the first radial waveguide structure and the second radial waveguide structure, and distributed radially around a circumference of the first radial waveguide structure and a circumference of the second radial waveguide structure.12-31-2015
20180026362Reduced Gain of an Antenna Beam Pattern01-25-2018
343778000 With phasing 4
20100171674LOW COST ELECTRONICALLY SCANNED ARRAY ANTENNA - An electronically scanned array (ESA) antenna includes a main line along which an electromagnetic traveling wave may propagate and a plurality of array elements distributed along the main line. Each of the plurality of array elements includes a branch line; an antenna radiator at one end of the branch line; an electronically controllable reflection phase shifter at the opposite end of the branch line; a directional coupler which couples energy between the main line and the branch line.07-08-2010
20100328175LEAKY CAVITY RESONATOR FOR WAVEGUIDE BAND-PASS FILTER APPLICATIONS - A leaky cavity resonator that includes a waveguide, the waveguide being filled with a dielectric material, and at least two complementary split ring resonators (CSRRs), the CSRRs residing inside the waveguide parallel to each other placed symmetrically both radially and in height, a leaky resonant cavity being formed between the at least two CSRRs and a wall of the waveguide. A frequency band of the leaky cavity resonator is adjustable by varying a distance w between at least one outside perimeter of at least one CSRR and an interior wall of the waveguide. A frequency band of the leaky cavity resonator is also adjustable by varying a size of the leaky resonant cavity. The at least two CSRRs each have at least one stub connecting to a wall of the waveguide. A frequency band of the leaky cavity resonator is also adjustable by varying a size of the stubs.12-30-2010
20140354499TWO-DIMENSIONAL MULTI-BEAM FORMER, ANTENNA COMPRISING SUCH A MULTI-BEAM FORMER AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH AN ANTENNA - A multi-beam former comprises: two stages connected together and intended to synthesize beams focused along two directions in space; each stage comprises at least two multi-layer plane structures, superposed one above the other; each multi-layer structure comprises an internal reflector, at least two first internal sources disposed in front of the internal reflector and linked to two input/output ports aligned along an axis, at least two second internal sources disposed in a focal plane of the internal reflector and linked to two second input/output ports aligned along an axis perpendicular to the axis; the two second internal sources of the same multi-layer structure of the first stage are respectively linked to two first internal sources of two different multi-layer structures of the second stage.12-04-2014
20150372390DUAL-POLARIZATION, CIRCULARLY-POLARIZED, SURFACE-WAVE-WAVEGUIDE, ARTIFICIAL-IMPEDANCE-SURFACE ANNTENNA - A dual-polarization, circularly-polarized artificial-impedance-surface antenna has two adjacent tensor surface-wave waveguides (SWGs), a waveguide feed coupled to each of the two SWGs and a hybrid coupler having output ports, each output port of the hybrid coupler being connected to the waveguide feeds coupled to the two SWGs, the hybrid coupler, in use, combining the signals from input ports of the 90° hybrid coupler with phase shifts at its output ports.12-24-2015
343779000 With reflector 13
20080278397MULTI-BEAM AND MULTI-BAND ANTENNA SYSTEM FOR COMMUNICATION SATELLITES - An antenna system includes a reflector having a modified-paraboloid shape; and a multi-beam, multi-band feed array located at a focal point of the reflector so that the antenna system forms a multiple congruent beams that are contiguous. The system has a single reflector with non-frequency selective surface. The reflector is sized to produce a required beam size at K-band frequencies and is oversized at EHF-band frequencies. The synthesized reflector surface is moderately shaped and disproportionately broadens EHF-band and Ka-band beams compared to K-band beams. The synthesized reflector surface forms multiple beams each having a 0.5-degree diameter at K-band, Ka-band, and EHF band. The multi-beam, multi-band feed array includes a number of high-efficiency, multi-mode circular horns that operate in focused mode at K-band and defocused mode at Ka-band and EHF-band by employing “frequency-dependent” design for the horns.11-13-2008
20090109110Apparatus and Method for Providing Multiple High Gain Beams - A reflective antenna is provided according to one or more embodiments of the invention. In one embodiment, the reflective antenna may include a feedhorn arrangement configured for an operation frequency. According to another embodiment, the reflective antenna may include a curved reflective surface having a plurality of electromagnetically loading structures. The curved reflective surface may be configured to reflect incident electromagnetic energy to corresponding to the operation frequency relative to at least one focal point. In another embodiment, the reflective antenna may include a support structure configured to arrange the feedhorn arrangement and the curved reflective surface such that the antenna assembly may be configured to provide multiple electromagnetic beams exhibiting high gain relative to the at least one focal point.04-30-2009
20090262037SPACE SEGMENT PAYLOAD ARCHITECTURE FOR MOBILE SATELLITE SERVICES (MSS) SYSTEMS - A antenna system for generating and distributing power among a plurality of non-focused beams is provided The system comprises a reflector having a focal plane and a non-parabolic curvature configured to form the defocused beams. The curvature is configured to create a symmetrical quadratic phase-front in an aperture plane of the reflector. The system further comprises a plurality of feed antennas disposed in the focal plane of the reflector and configured to illuminate the reflector. Each feed antenna is configured to contribute power toward each of the defocused beams. The system further comprises a plurality of fixed-amplitude amplifiers, at least one of which corresponds to each feed antenna.10-22-2009
20090309801ANTENNA SYSTEMS FOR MULTIPLE FREQUENCY BANDS - An antenna system for transmitting and/or receiving radio frequency (RF) signals in multiple frequency bands includes a horn antenna and a feed network. The horn antenna may transmit and/or receive RF signals in multiple frequency bands that are spread over more than an octave bandwidth with at least a 2.44-to-1 bandwidth ratio. The horn antenna includes a throat, an aperture, and an interior surface. The feed network includes a first waveguide section, a first junction, one or more first filters, and a first step-down waveguide section. The first waveguide section can provide a matching network and transmit and/or receive the RF signals in the multiple frequency bands. The first junction can transmit and/or receive the RF signals in first selected band(s) of the multiple frequency bands. The first step-down waveguide section may transmit and/or receive the RF signals in second selected band(s) of the multiple frequency bands.12-17-2009
20100013727LNB Alignment Device for Positioning Satellite Dish Feed Horns and Method Therefor - There is disclosed an LNB alignment device having a main body that removably attaches to a support arm of a satellite dish and has a plurality of mounting holes or rectangular sleeves configured to receive a plurality of low-noise block converters with feed horns (LNBs). The proximal and distal ends of the bar curve inwardly toward the satellite dish and curve slightly upward in a manner that the feed horns of LNBs outside of the focal axis are disposed higher and closer to the center of the reflector to improve signal quality.01-21-2010
20100149061INTEGRATED WAVEGUIDE CAVITY ANTENNA AND REFLECTOR DISH - A feed assembly for a parabolic dish reflector is described. The feed assembly includes a waveguide cavity locatable at the focal point, or any other desired off-boresight location corresponding point, of the parabolic dish, at least one first radiating element optimized for operation at a first frequency band and provided on a top surface of the waveguide cavity, and a plurality of second radiating elements each optimized for operation at a second band of frequencies and provided on the top surface of the waveguide cavity.06-17-2010
20110267251WIDE ANGLE MULTIBEAMS - A method and system are disclosed for wide angle multibeam antennas. The method and system involve a multibeam antenna system for generating high performance multiple spot beams. In one or more embodiments, the multibeam antenna system includes an oversized antenna reflector and a plurality of antenna feeds. The oversized antenna reflector has its surface shape optimized from a normal parabolic shape in order to broaden and shape the reflected spot beams to improve antenna performance. In addition, the diameter of the oversized antenna reflector is greater than ((100*λ)/δ), where λ is the wavelength in inches and δ is the beam to beam spacing in degrees. In some embodiments, the ratio of the focal length of the oversized antenna reflector to the diameter of the oversized antenna reflector (F/D) is greater than 0.7. In at least one embodiment, the system further includes an antenna sub-reflector.11-03-2011
20110291903MULTI BAND TELEMETRY ANTENNA FEED - A multi band antenna feed, for supporting multiple frequency bands, is coupled to a reflector and includes a cylindrical core waveguide and at least three coaxial cylinders, encircling said cylindrical core waveguide and forming at least three coaxial waveguides, bounded between pairs of consecutive coaxial cylinders. The cylindrical core waveguide and the at least three coaxial waveguides provide a pair of sum and difference radiation patterns, for each frequency band: a C-band, an S-band and an L-band.12-01-2011
20120013516COMPACT MULTIBEAM REFLECTOR ANTENNA - The inventive device enables to ensure its compactness, that is, a minimum thickness at a high antenna efficiency of an antenna in the frequency range 10.7-12.75 GHz. This technical effect can be achieved because the antenna comprises a main reflector (01-19-2012
20120182195MULTI-FEED ANTENNA SYSTEM FOR SATELLITE COMMUNICATIONS - The present invention provides an improved single antenna system that allows reception of RF energy at multiple frequencies. In one embodiment, the antenna is implemented as a multi-beam, multi-feed antenna having a primary reflector fitted with a dual mode feed tube and a switchable LNB that supports both Ka band and Ku band reception. In another embodiment, the antenna is implemented as a multi-beam, multi-feed antenna having a primary reflector fitted with a feed horn and a LNB that is capable of providing movement such that the feed horn with the LNB is at a focal point with the primary reflector for both Ka and Ku band reception. In another embodiment, the antennae is implemented as a multi-beam, multi-feed antenna having a primary reflected fitted with a feed horn assembly and a switchable LNB that supports both Ka band and Ku band reception.07-19-2012
20140071010RADIO FREQUENCY FEED BLOCK FOR MULTI-BEAM ARCHITECTURE - In the field of satellite communications and more particularly to a multi-beam antenna system for the coverage of a given geographical region broken down into several spots on the ground, a radio frequency feed block comprises several radio frequency chains intended to transmit or to receive an electromagnetic wave in the direction of a reflector and waveguides connected to outputs of the chains, characterized in that it comprises a plate inside which the waveguides are made, and to which the radio frequency chains are fastened. A satellite comprising a feed block is also provided.03-13-2014
20150084820COMPACT ASYMMETRICAL DOUBLE-REFLECTOR ANTENNA - The antenna comprises main and sub reflectors, each of which being made with nonaxisymmetric curvilinear surfaces and having two planes of symmetry at the intersection. A feed is arranged between the main and sub reflectors and capable of illuminating, first, the sub-reflector and, through it, the main reflector to form plane wave front. The common focuses of the nonaxisymmetric curvilinear surfaces of the reflectors in all sections passing through the longitudinal axis Z of the antenna, is located at the portion Z03-26-2015
20180026368CUPPED ANTENNA01-25-2018

Patent applications in class Plural

Patent applications in all subclasses Plural

Website © 2025 Advameg, Inc.