Class / Patent application number | Description | Number of patent applications / Date published |
343762000 | Wave guide type antenna | 7 |
20100207834 | Antenna System For Communications On-The-Move - A small antenna system for communications on-the-move (“COTM”) with a geostationary or geosynchronous satellite to and from a land mobile, maritime or airborne vehicle is disclosed. The antenna system provides a robust and simple means of establishing communications with a satellite or remote computer device. Further embodiments of systems and methods of the various aspects of the present invention mitigate RF losses customary in existing horn antennas. Embodiments also facilitate COTM by utilizing novel antenna configurations that tightly integrate RF electronics while dissipating generated heat via an antenna compartment that may be designed to function as or be used in conjunction with a heat sink. | 08-19-2010 |
20110012801 | Multi-Feed Antenna System for Satellite Communicatons - The present invention provides an improved single antenna system that allows reception of RF energy at multiple frequencies. In one embodiment, the antenna is implemented as a multi-beam, multi-feed antenna having a primary reflector fitted with a dual mode feed tube and a switchable LNB that supports both Ka band and Ku band reception. In another embodiment, the antenna is implemented as a multi-beam, multi-feed antenna having a primary reflector fitted with a feed horn and a LNB that is capable of providing movement such that the feed horn with the LNB is at a focal point with the primary reflector for both Ka and Ku band reception. In another embodiment, the antennae is implemented as a multi-beam, multi-feed antenna having a primary reflected fitted with a feed horn assembly and a switchable LNB that supports both Ka band and Ku band reception. | 01-20-2011 |
20110298680 | METHOD FOR FORMATION OF RADIOMETRIC IMAGES AND AN ANTENNA FOR IMPLEMENTATION OF THE METHOD - A method of radiometric image generation is provided using a series of isochronous revolutions of a multi-beam antenna with a dispersion characteristic. The antenna is combined with a multi-channel receiver with frequency channel separation to form an imaging unit. The method comprising cyclically executing the following phases: two separate calibration phase;using first and second standards; external radiation reception phase; data processing phase and data transformation phase. | 12-08-2011 |
20140347236 | METHOD FOR FORMATION OF RADIOMETRIC IMAGES AND AN ANTENNA FOR IMPLEMENTATION OF THE METHOD - A method of radiometric image generation is provided using a series of isochronous revolutions of a multi-beam antenna with a dispersion characteristic. The antenna is combined with a multi-channel receiver with frequency channel separation to form an imaging unit. The method comprising cyclically executing the following phases: two separate calibration phase; using first and second standards; external radiation reception phase; data processing phase and data transformation phase. | 11-27-2014 |
20150054703 | ANTENNA DEVICE - An antenna device vertically rotatable and horizontally rotatable is provided, which has a configuration in which waveguides are effectively disposed. An antenna device includes an antenna, a vertically rotating, and a rotary joint. The antenna is vertically rotatable and horizontally rotatable, and outwardly radiates a radio wave. The vertically rotating is disposed such that a longitudinal direction thereof is along an axial line of the vertical rotation and intersects perpendicularly with an axial line of the horizontal rotation. The rotary joint is coupled to the vertically rotating. Moreover, the antenna device includes a waveguide path passing through the inside of the rotary and the inside of the vertically rotating and connected with the antenna. | 02-26-2015 |
20150320322 | Method For Formation Of Radiometric Images And An Antenna For Implementation of The Method - A method of radiometric image generation is provided using a series of isochronous revolutions of a multi-beam antenna with a dispersion characteristic. The antenna is combined with a multi-channel receiver with frequency channel separation to form an imaging unit. The method comprising cyclically executing the following phases: two separate calibration phase; using first and second standards; external radiation reception phase; data processing phase and data transformation phase. | 11-12-2015 |
20160056537 | SYSTEMS AND METHODS FOR A STEERED BEAM HORN ANTENNA - Systems and methods for a steered beam horn antenna are provided. In one embodiment, a steered beam horn antenna system comprises: a steerable horn antenna comprising: an adjustable flare component; and a waveguide component having a rear port that opens to a waveguide interface and a frontal port that opens to the adjustable flare component. The adjustable flare component includes: a first outer horn plate configured to rotate about a first pivot line; and a second outer horn plate configured to rotate about a second pivot line. The system further comprises at least one actuator and a controller that operates the actuator to position the first and second outer horn plates into asymmetrical positions with respect to a boresight axis of the steerable horn antenna in response to an input command. | 02-25-2016 |