Class / Patent application number | Description | Number of patent applications / Date published |
342357030 | Using differential correction | 42 |
20080297407 | GNSS RECEIVER AND ANTENNA SYSTEM INCLUDING A DIGITAL COMMUNICATION SUBSYSTEM - A GNSS receiver and antenna system transmits signals from an antenna structure to a remote GNSS receiver and includes a digital communications subsystem that utilizes a high speed digital communications conductor. The transmissions are digital signals that preserve GNSS satellite signal frequency and/or carrier and code phase information. The system may transmit digital signals corresponding to GNSS signals such as GPS, GLONAS, Galileo and Compass satellite signals. In addition, the system may transmit, over the same digital communications conductor in appropriately formatted digital signals, ranging signals from ground-based transmitters or other satellites, differential GNSS correction signals from beacons or base GPS receivers, and/or signals from transmitting or co-located sensors, such as inertial sensors, temperature sensors and so forth. The digital signals include in headers or payload relative timing and carrier and code phase information and, as appropriate, information that identifies the signals by source or type, such as information that identifies the frequencies or the antennas or antenna elements providing the respective signals. | 12-04-2008 |
20080316092 | METHODS FOR PROCESSING EXTERNAL CORRECTION MESSAGES, CORRECTING POSITION MEASUREMENTS OF GNSS RECEIVER, AND RELATED APPARATUSES - Methods and apparatuses for processing external correction messages in a GNSS receiver are provided. One of the proposed methods includes providing a first storage unit; receiving a plurality of external correction messages from different data sources, wherein a plurality of GNSS differential correction data are carried by the plurality of external correction messages; and storing a portion of the GNSS differential correction data in the first storage unit without storing remaining GNSS differential correction data in the GNSS receiver. | 12-25-2008 |
20080316093 | GPS global coverage augmentation system - A method and apparatus for efficiently obtaining improved coverage in augmenting GPS position location with differential GPS integrity and correction messages using existing satellite systems, planned satellite systems, or a combination of both to broadcast these integrity and correction messages without requiring dedicated satellite resources. At least one existing satellite system offers full global coverage whereas the conventional approach of disseminating these integrity and correction messages using geostationary satellites necessarily omits Polar Regions. This existing satellite system also provides redundant coverage globally whereas the conventional approach using geostationary satellites must increase the number of geostationary satellites in direct proportion to the level of redundancy desired. At least one other existing satellite-based system offers higher availability (i.e., more geographically complete) coverage with these integrity and correction message by also employing ground-based transmitters to gain three way redundant coverage. Using existing or planned satellite systems to broadcast differential GPS integrity and correction messages also eliminates the expense and delays associated with building and launching either dedicated geostationary satellites or dedicated satellite payloads on host satellites. Using available satellite resources also enables cost efficient customization of disseminated integrity and correction messages. The apparatus comprises a set of ground reference stations with individual assigned geographic spaces, a master station that gathers integrity and correction messages from these ground reference stations and transmits them to a satellite-based system or systems that broadcast integrity and correction messages, possibly customized, and users with equipment capable of receiving signals from the satellite system. | 12-25-2008 |
20090027261 | METHOD FOR THE CORRECTION, UPON RECEPTION IN A MOVING OBJECT, OF FAULTS AFFECTING THE TRANSMISSION OF BINARY OFFSET CARRIER RADIONAVIGATION SIGNALS - A subject of the present invention is a method for the correction, upon reception in a moving object, of faults affecting the transmission of binary offset carrier radionavigation signals, enabling this correction to be carried out in a simple and reliable manner. The method of the invention is characterized in that each component of the signal received by a conventional BPSK demodulation method is demodulated, in that the phase differential of the two signals is compensated for, source by source, and in that a coherent tracking is carried out by summing the complex outputs of the demodulation processing. | 01-29-2009 |
20090066565 | GNSS TERMINALS AUTOMATICALLY RETRIEVING AIDING DATA AND AIDING DATA SYSTEMS - The invention provides an aiding data collecting method for a Global Navigation Satellite System (GNSS) terminal connected to an aiding data server through a wireless connection. Availability of an aiding data is first queried about. Whether the aiding data is in the GNSS terminal is then checked according to the response of the query. An aiding data request is then sent to the aiding data server. An aiding data sent by the aiding data server is then parsed in response to the aiding data request. Finally, the collected aiding data is sent to the GNSS terminal for acquiring and/or tracking satellite signal from at least one GNSS satellite. | 03-12-2009 |
20090079623 | METHOD AND APPARATUS FOR GEOLOCATION DETERMINATION - The disclosure relates to method and apparatus for geolocation determination. In one embodiment, the disclosure relates to a method for detecting an erroneous satellite measurement by a receiver, including the steps of (a) determining an approximate location of the receiver; (b) for each of a plurality of satellites from which the receiver receives a signal: (i) determining a range difference between an expected range between the receiver and the satellite and a measured range between the receiver and the satellite; (ii) determining a median value of the range differences; (iii) determining an offset value between the range difference and the median value; (iv) comparing the offset value with a predetermined threshold to thereby detect an erroneous satellite measurement. | 03-26-2009 |
20090085802 | METHOD AND APPARATUS FOR GEOLOCATION DETERMINATION - The disclosure relates to method and apparatus for geolocation determination. In one embodiment, the disclosure relates to a method for detecting an erroneous satellite measurement by a receiver, including the steps of (a) determining an approximate location of the receiver; (b) for each of a plurality of satellites from which the receiver receives a signal: (i) determining a range difference between an expected range between the receiver and the satellite and a measured range between the receiver and the satellite; (ii) determining a median value of the range differences; (iii) determining an offset value between the range difference and the median value; (iv) comparing the offset value with a predetermined threshold to thereby detect an erroneous satellite measurement. | 04-02-2009 |
20090102708 | Navigation Receiver and Method for Combined Use of a Standard RTK System and a Global Carrier-Phase Differential Positioning System - A mobile satellite navigation receiver for calculating an offset between a local positioning system and a wide-area satellite positioning system is presented. The mobile satellite navigation receiver determines a first solution of a position of the mobile satellite navigation receiver relative to a first local positioning system, wherein the first local positioning system includes one or more reference receivers at known locations. The mobile satellite navigation receiver determines a second solution of the position of the satellite navigation receiver relative to a wide-area differential satellite positioning system. The mobile satellite navigation receiver then calculates an offset between the first solution and the second solution. | 04-23-2009 |
20090115656 | Systems and Methods for Global Differential Positioning - Systems and methods for global differential positioning are provided. In this regard, a representative system, among others, may include a first receiver being configured to receive global correction data from a single source; and a computing device being configured to adjust positional estimates based on the received global correction data. A representative method, among others, for global differential positioning may include receiving satellite measurement information; receiving global correction data from a single source; generating location information based on the received satellite information; adjusting the location information based on the global correction data to produce adjusted location information; and delivering the adjusted location information. | 05-07-2009 |
20090121927 | Systems and Methods of Assisted GPS - Embodiments of an improved assisted global positioning system (GPS) method and system are described. Wireless access points send assistance data to GPS receivers that are integrated into cellular chipsets and other chipsets. The access points may also act as fixed location references for differential GPS (DGPS) mobile stations. Errors caused by multipath travel of the GPS signals are reduced by using fixed location reference receivers. | 05-14-2009 |
20090135056 | Distance dependant error mitigation in real-time kinematic (RTK) positioning - A method for mitigating atmospheric errors in code and carrier phase measurements based on signals received from a plurality of satellites in a global navigation satellite system is disclosed. A residual tropospheric delay and a plurality of residual ionospheric delays are modeled as states in a Kalman filter. The state update functions of the Kalman filter include at least one baseline distance dependant factor, wherein the baseline distance is the distance between a reference receiver and a mobile receiver. A plurality of ambiguity values are modeled as states in the Kalman filter. The state update function of the Kalman filter for the ambiguity states includes a dynamic noise factor. An estimated position of mobile receiver is updated in accordance with the residual tropospheric delay, the plurality of residual ionospheric delays and/or the plurality of ambiguity values. | 05-28-2009 |
20090135057 | Real-time fast decimeter-level GNSS positioning - Methods and apparatus for processing of data from GNSS receivers are presented. A real-time GNSS rover-engine, a long distance multi baseline averaging (MBA) method, and a stochastic post-processed accuracy predictor are described. | 05-28-2009 |
20090174598 | METHOD AND APPARATUS FOR VALIDATING A POSITION IN A SATELLITE POSITIONING SYSTEM USING RANGE-RATE MEASUREMENTS - Method and apparatus for validating an initial position in a satellite positioning system using range-rate measurements is described. In one example, range-rate measurements are obtained at the remote receiver with respect to a plurality of satellites. Expected range-rates are computed with respect to the plurality of satellites using the initial position. Single differences are computed using the range-rate measurements. Expected single differences are computed using the expected range-rates. Single difference residuals are computed between the single differences and the expected single differences. The single difference residuals are compared to a threshold. The initial position may be deemed valid if the absolute value of each of the single difference residuals is less than or equal to the threshold. A valid initial position may be used to fix the pseudorange integers. | 07-09-2009 |
20090184867 | METHOD AND APPARATUS FOR CORRECTING LOCATION INFORMATION OF MOBILE COMMUNICATION TERMINAL - A method and apparatus for correcting location information of mobile communication terminals is disclosed. The apparatus for correcting location information of mobile communication terminals, includes: a handler to collect location measurement information of the mobile communication terminals, and environment information containing locations of base stations and arrangements of roads or buildings from a network; a database to store the location measurement information and the environment information; an analysis unit to analyze the location measurement information and the environment information to generate correction maps; a correction map database to store the correction maps; and a service unit to refer to the correction maps and to provide a corrected location estimate service, a corrected location measurement service, or a correction-value broadcast service to mobile communication terminals which request location services. | 07-23-2009 |
20090184868 | Fast decimeter-level GNSS positioning - Methods and apparatus for processing of data from GNSS receivers are presented. A post-processing engine and a post-processed accuracy predictor are described. The post-processing engine provides high accuracy GNSS (GPS) position determination with short occupation time for GIS applications. The post-processed accuracy predictor calculates during data collection an estimate of the accuracy likely to be achieved after post-processing. This helps to optimize productivity when collecting GNSS data for which post-processed accuracy is important. The predictor examines the quality of carrier measurements and estimates how well the post-processed float solution will converge in the time since carrier lock was obtained. | 07-23-2009 |
20090189805 | Low Cost Instant RTK Positioning System and Method - A low cost instant Real-Time Kinematic (RTK) positioning system and method are disclosed. The system comprises at least the following elements: a base station and a rover unit, each equipped with a Satellite Positioning System (SATPS) receiver and a generally license-free radio link transceiver. Such system has the distinctive feature of having no carrier integer cycle ambiguity to solve, thus allowing low cost single frequency SATPS receivers to be used for instant centimetre level relative positioning. | 07-30-2009 |
20090195449 | REAL-TIME MULTIPATH DETECTION AND MITIGATION - A multipath error detection system includes a first antenna configured to receive a right hand circular polarized signal from a satellite and a second antenna configured to receive a left hand circular polarized signal from the satellite. At least one processor is in signal communication with the first and second antennas, and is programmed to determine, from the right hand circular polarized signal and left hand circular polarized signal, respective first and second values of a first parameter and respective third and fourth values of a second parameter. The at least one processor is further configured to determine, based on the values, the presence of a multipath error associated with at least one of the polarized signals. | 08-06-2009 |
20090213000 | Method and Apparatus for Determining the Location of a Stationary Satellite Receiver - The invention refers to a location method and location apparatus for determining the location of a stationary satellite receiver having a stationary satellite antenna by means of ranging packets within satellite payload signals. Said satellite payload signals are transmitted from one or more earth stations at defined earth station positions and are relayed from one or more satellites at different geostationary orbital positions to be received by the same stationary satellite antenna, wherein each ranging packet within the corresponding satellite payload signal is related to a time stamp information with regard to the point of time when the ranging packet was transmitted from the corresponding earth station, and wherein a plurality of the ranging packets is detected by the stationary satellite receiver in the received satellite payload signals, wherein the relative time differences between the points of time of detection of the corresponding ranging packets are measured and wherein the measured relative time differences are collected and are related to the defined earth station positions, the time stamp information and the satellite position information for estimating the location of the stationary satellite receiver by means of a secondary condition for resolving the redundancy of the measured relative time differences. | 08-27-2009 |
20090237298 | GNSS signal processing with clock difference modeling - Three new methods are presented to improve floating solutions and ambiguity resolution for multiple global satellite navigation systems (GNSS), one of which may be an FDMA-based GNSS such as GLONASS: (1) modeling of the hardware-related differential clock error between two (or more) different GNSS, (2) modeling the frequency-dependent biases present in frequency-division multiple access (FDMA) GNSS, and (3) an ambiguity resolution method called Scoreboard Partial Fixing (SPF). The methods presented are independent of the number of carrier frequencies tracked for each satellite navigation system. Their application results in quicker and more reliable ambiguity resolution. The benefits of combining observations of multiple GNSS are exploited in a very efficient way, in contrast to known algorithms which often result in degraded performance with multiple GNSS. The frequency-dependent bias method has been found effective with GNSS observations from a combination of substantially dissimilar hardware, e.g., for processing signals from GNSS receivers of different manufacturers. | 09-24-2009 |
20090251365 | SBAS NAVIGATION DATA UPDATE NOTIFYING SYSTEM AND METHOD USED IN GBAS - To maintain the safety by avoiding deterioration in the positioning accuracy through making SBAS satellite navigation data used in a ground system and in an airborne system consistent by employing GBAS. The system includes: a ground system which estimates errors contained in ranging signals received from the navigation satellites, and formats and transmits correction information for correcting the estimated errors; and an airborne system which calculates differential GPS positioning based on the ranging signals received from the navigation satellites and the formatted correction information, and displays a displacement from a regulated route. The ground system notifies update, when SBAS satellite navigation data used for generating the correction information is updated, by adding information regarding update of navigation data to the correction information. The airborne system detects the transmitted update notification of the SBAS satellite navigation data, and calculates the differential GPS positioning by switching to the updated navigation data. | 10-08-2009 |
20090322598 | INTEGRITY OF DIFFERENTIAL GPS CORRECTIONS IN NAVIGATION DEVICES USING MILITARY TYPE GPS RECEIVERS - A method and apparatus for calculating corrections to a navigation solution based on differential GPS data includes receiving GPS ephemeris from at least three GPS satellites. A PVT solution is resolved from the GPS ephemeris. The PVT solution includes a Circular Error Probable (CEP). Differential GPS data for calculating the corrections to the PVT solution is received. A corrected PVT solution is then based upon the differential GPS data. The corrected PVT solution is compared to an area defined by the CEP. Where the corrected PVT solution is not within the area, the corrected PVT solution is rejected in favor of the PVT solution for determining an accurate navigational solution. | 12-31-2009 |
20100013703 | GPS GYRO CALIBRATION - GPS gyro calibration methods and systems are described. In an embodiment, a ground station can receive antenna position data for a spot beam antenna from a global positioning system (GPS) platform where the antenna position data indicates a boresight direction of the spot beam antenna. GPS-enabled receiver(s) can receive scan signals transmitted via the spot beam antenna of the GPS platform, and the GPS-enabled receivers can determine signal power measurements for each of the scan signals. The ground station can receive the signal power measurements from the GPS-enabled receiver(s) and estimate a pointing error of the spot beam antenna based on the signal power measurements and the antenna position data received from the GPS platform. The ground station can then determine gyro calibration parameters from the estimated pointing error and communicate the gyro calibration parameters to the GPS platform to calibrate for gyro drift errors. | 01-21-2010 |
20100019961 | Method and Apparatus for Operating a Navigation Satellite System - Operation of a satellite navigation system utilizes a method of generating a sufficiently smooth and very flexible parameterization of satellite orbits and/or satellite clock corrections of a satellite. For description of the satellite orbit(s) and/or of the satellite clock corrections, a first system of advancing differentiable functions (first function system) is provided which has a high approximation quality and a long range of influence. The satellite orbits and/or satellite clock corrections parameterized from the first function system are transmitted from a central ground processing unit to one or more satellites and then to a user device. (Alternatively, the transmission may take place without utilizing the space segment, via only a ground infrastructure.) In addition, a second advancing system (second function system) of at least continuous functions of a moderate approximation quality and a very short range of influence may be provided, which, particularly by means of the user terminal, permits a conversion to the first function system. As a result, the time required to determine the first navigation information (the time to the first fix) can be significantly shortened. | 01-28-2010 |
20100019962 | POSITION DETECTOR, POSITION DETECTING METHOD, DATA DETERMINATION APPARATUS, DATA DETERMINATION METHOD, COMPUTER PROGRAM, AND STORAGE MEDIUM - A controller of a cell phone serving as the position detector reads time-sequentially anteroposterior positional information P | 01-28-2010 |
20100033369 | Method and Apparatus for Determining an Integrity Risk in a Satellite Reference System - Methods and apparatus of determining an integrity risk of a satellite reference system are provided. Galileo parameters according to the Galileo integrity concept are detected. The Galileo parameters are imaged onto satellite based augmentation system (SBAS) parameters used in the SBAS. The integrity risk of the satellite reference system is determined according to the SBAS integrity concept using the SBAS parameters. | 02-11-2010 |
20100033370 | GNSS NAVIGATION SOLUTION INTEGRITY IN NON-CONTROLLED ENVIRONMENTS - Disclosed is a method for providing a Global Navigation Satellite System (GNSS) navigation position solution with guaranteed integrity in non-controlled environments, the method including processing a (GNSS) signal including multiple satellites generating at least one signal to obtain carrier phase and pseudorange measurements; pre-processing the measurements to detect and characterize local errors in the measurements, wherein the local errors cannot be ascertained a priori, the characterization including providing error bounds estimated by measuring the carrier phase and pseudoranges measurements, thereby providing a set of measurements rejections when the characterization is not possible; and using the estimated error bounds, together with error bounds provided by the GNSS signal concerning satellite and ionospheric errors, to build in each measurement an estimated noise level in the measurements as input to a weighted Receiver Autonomous Integrity Monitoring (RAIM) algorithm in order to compute position coordinates and associated protection levels in the non-controlled environments. | 02-11-2010 |
20100045516 | POSITIONING METHOD, POSITIONING DEVICE, AND ELECTRONIC INSTRUMENT - A positioning method that performs current position calculations and outputs a positioning result position includes searching for satellite signals transmitted from positioning satellites to acquire satellites, combining satellites among the acquired satellites to extract satellite sets used for positioning, performing first positioning calculations on each calculation-target satellite set among the extracted satellite sets using the satellite signals transmitted from the acquired satellites included in the calculation-target satellite set, performing second positioning calculations on each calculation-target satellite set among the extracted satellite sets using the satellite signals transmitted from the acquired satellites that are included in the calculation-target satellite set, but do not include a low-elevation-angle satellite, and determining whether or not a positioning result obtained using the calculation-target satellite set is appropriate based on the difference between a position calculated by the first positioning calculations and a position calculated by the second positioning calculations, the elevation angle of the low-elevation-angle satellite satisfying a given low elevation angle condition, and determining the positioning result position from the positions calculated by the first positioning calculations on the satellite sets for which the positioning result has been determined to be appropriate. | 02-25-2010 |
20100052980 | DATA COMPRESSING METHOD, DATA PROVIDING METHOD, AND DATA COMPRESSING DEVICE - A data compressing method includes: calculating prediction orbit data of a plurality of positioning satellites moving along predetermined orbits around the earth by using prediction positions of the plural positioning satellites; calculating differences between standard orbit data as standard for the predetermined orbits around the earth and the prediction orbit data of the plural positioning satellites; and storing the differences. | 03-04-2010 |
20100066604 | UNMANNED AERIAL SYSTEM POSITION REPORTING SYSTEM - An unmanned aerial system (UAS) position reporting system. Implementations may include an air traffic control reporting system (ATC-RS) coupled with a ground control station (GCS) of an unmanned aerial system where the ATC-RS includes an automatic dependent surveillance broadcast (ADS-B) and a traffic information services broadcast (TIS-B) transceiver and one or more telecommunications modems. The ATC-RS may be adapted to receive position data of the UAS in an airspace from the GCS and communicate the position of the UAS in the airspace to a civilian air traffic control center (ATC) or to a military command and control (C2) communication center through an ADS-B signal or through a TIS-B signal through the ADS-B and TIS-B transceiver. The ATC-RS may also be adapted to display the position of the UAS in the airspace on one or more display screens coupled with the ATC-RS. | 03-18-2010 |
20100085248 | Method of Compactly Communicating Ionospheric and Tropospheric Corrections in a Network of Global Navigation System Satellite Receivers - A method of communicating corrections for information related to satellite signals among global navigation satellite system (GNSS) receivers is described. An ionosphere correction for ionosphere signal path delay is determined for a first satellite. This ionosphere correction is then compared to an ionosphere correction for ionosphere signal path delay for a satellite assumed to be directly over the receiver. The receiver then sends a message which includes only the difference between the ionosphere correction for the actual observation and the ionosphere correction for a satellite assumed to be at the zenith. | 04-08-2010 |
20100090889 | PRECISE ORBIT DETERMINATION SYSTEM AND METHOD USING GPS DATA AND GALILEO DATA - Provided are a method and system for determining a precise orbit of a LEO satellite. The method includes: estimating a precise ephemeris of a global positioning system (GPS) satellite by fitting an orbit perturbation-based GPS dynamics model to observation data of the GPS satellite received from a GPS observatory and estimating a precise ephemeris of a Galileo satellite by fitting an orbit perturbation-based Galileo dynamics model to observation data of the Galileo satellite received from a Galileo observatory; determining an initial orbit value of a LEO satellite by fitting an orbit perturbation-based LEO satellite's basic dynamics model to navigation data received from the LEO satellite; and determining the precise orbit of the LEO satellite by calculating a difference between observation values, which are calculated based on a GPS and Galileo data received from the LEO satellite, the GPS observatory and the Galileo observatory, and calculated values, which are calculated based on an orbit perturbation-based LEO satellite's dynamics model that was calculated using the initial orbit value of the LEO satellite and the precise ephemeris of the GPS and Galileo satellites. Since both the GPS and Galileo data are received and used to determine the precise orbit of a LEO satellite, more precise orbit determination can be achieved. | 04-15-2010 |
20100103032 | Base Data Extrapolator to Operate with a Navigation Receiver in Real-Time Kinematic (RTK) and Differential Global Positioning System ( DGPS) Modes - Base data received at a rover receiver is extrapolated to a rover measurement time referenced to a clock in the rover receiver. The base data comprises a plurality of base parameters, such as pseudo-ranges and full phases, calculated at base epochs from data received from navigation satellites. Base data is decomposed into a computed component, a common component, and an information component. Only the information component is extrapolated, thereby increasing the extrapolation time interval (during which base data are missing) over which an acceptable accuracy in determination of rover coordinates may be provided. The extrapolated base data is calculated by adding the computed component updated to the rover measurement time, the information component extrapolated to the rover measurement time, and the common component. A second-order recursive digital filter is used to generate the extrapolation function. | 04-29-2010 |
20100109944 | GNSS-BASED TRACKING OF FIXED OR SLOW-MOVING STRUCTURES - A multi-antenna GNSS system and method provide earth-referenced GNSS heading and position solutions. The system and method compensate for partial blocking of the antennas by using a known attitude or orientation of the structure, which can be determined by an orientation device or with GNSS measurements. Multiple receiver units can optionally be provided and can share a common clock signal for processing multiple GNSS signals in unison. The system can optionally be installed on fixed or slow-moving structures, such as dams and marine vessels, and on mobile structures such as terrestrial vehicles and aircraft. | 05-06-2010 |
20100134349 | SYSTEM AND METHOD FOR ENHANCED DATA DECODE IN A GPS RECEIVER - Systems and methods are disclosed herein for improving the sensitivity of satellite data decode in a satellite navigation receiver. The low signal ephemeris data decoding system of the present disclosure achieves a 5 db improvement in decoding sensitivity over conventional system by operating down to a CN0 of 21 dB-Hz. The improved sensitivity is achieved through a combination of reducing the number of data bits to be decoded, overcoming the inherent differential decoding problem of an all data bit polarity inversion, improving the probability of seeing single bit decoding error in an ephemeris word, running the parity correction algorithm, and reducing the undetected word error rate. The improved sensitivity makes it possible to predict the orbit of the satellite and to determine the receiver's location with higher accuracy even when operating in challenging signal conditions. | 06-03-2010 |
20100141510 | METHODS AND SYSTEMS TO INCREASE ACCURACY IN THE NAVIGATION OF SINGLE FREQUENCY RECEIVERS - In a method of mitigating errors in satellite navigation measurements at a satellite navigation receiver, respective single-frequency signals are received from respective satellites in a plurality of satellites in a satellite navigation system. Pseudorange and carrier-phase measurements corresponding to respective received single-frequency signals are calculated. These calculations include filtering the pseudorange and carrier-phase measurements in a Kalman filter having a state vector comprising a plurality of states, including a position state, a receiver clock state, and a plurality of bias states. Each bias state corresponds to a respective satellite in the plurality of satellites. The filtering includes updating the state vector. An estimated position of the satellite navigation receiver is updated in accordance with an update to the state vector. | 06-10-2010 |
20100141511 | Method for Increasing the Availability of a Global Navigation System - A process for increasing the availability of a global navigation system that includes a plurality of spacecraft, each of which transmits information for determining the position of a terminal. From the plurality of spacecraft, a first subset, with at least one spacecraft, and a second subset are determined. the second subset being constituted by those spacecraft that are not included in the first subset. The integrity risk is determined for the information transmitted only by the second spacecraft. The first and the second subsets of spacecraft are determined such that the integrity risk, for information transmitted by the second subset spacecraft minimized relative to the integrity risk for information of all spacecraft included in the plurality of spacecraft. | 06-10-2010 |
20100141512 | Method and Apparatus for Integrity Communication in a Navigation Satellite System - For integrity communication, a navigation satellite system has a space segment with satellites that emit navigation signals for reception and analysis by user systems, and a ground segment with observation stations that monitor the satellites. The ground segment controls cause distribution of integrity information concerning the satellites to user systems with the navigation signals. The integrity information has a first SISMA value and a second broadcast SISMA value for the accuracy of the satellite monitored by the ground segment. The second broadcast SISMA value takes into account a failure of an observation station of the ground segment, and a threshold value for the second broadcast SISMA value is provided. The threshold value with the integrity information for a satellite is transmitted instead of the second broadcast SISMA value when the latter exceeds the threshold value and the first SISMA value is lower than the threshold value for the satellite. The integrity information to be transmitted when the second broadcast SISMA value and the first SISMA value for the satellite each exceed the threshold value. | 06-10-2010 |
20100149026 | DGNSS CORRECTION FOR POSITIONING - Techniques for supporting positioning with differential corrections are described. In an aspect, differential correction for a satellite may include (i) a user differential range error (UDRE) indicating an uncertainty in a pseudo-range correction for the satellite, (ii) a UDRE growth rate, which may be a scaling factor for the UDRE, and (iii) a time of validity for UDRE growth rate, which may be a time unit used to apply the scaling factor. In one design, a terminal may send a request message to ask for differential correction information and may receive a response message. The terminal may obtain differential correction (e.g., a UDRE, a UDRE growth rate, and a time of validity for UDRE growth rate) for each of at least one satellite from the response message. The terminal may derive a location estimate for itself based on the differential correction for each satellite. | 06-17-2010 |
20100156708 | Auxiliary Positioning Method and Auxiliary Positioning Device Using the Method - An auxiliary positioning method, applied to a portable electronic device operative in a wireless communication network system and a satellite positioning system, for determining current position information of the potable electronic device, includes steps of receiving a plurality of current signals from at least one base station in the wireless communication network system to generate current signal information; accessing at least one track record related to the current signal information from a track record database, wherein the track record database includes a plurality of track records which record respective position information and signal information of base stations corresponding to the position information; and calculating the current position information according to the at least one track record. | 06-24-2010 |
20100182195 | Resolving Transmit Time Uncertainty in Carrier Phase Relative Positioning - Methods and apparatus are provided for use in electronic devices to perform carrier phase relative positioning processing. | 07-22-2010 |
20100207811 | GPS antenna array and system for adaptively suppressing multiple interfering signals in azimuth and elevation - An antenna system has N antenna units stacked on a mast. Each unit has elements for responding to, e.g., GPS signals, and a phasing network that produces mutually orthogonal primary and auxiliary pattern modes at corresponding mode ports of the unit. A number of power dividers are each associated with a different mode, and each divider has N input ports coupled to the associated mode port of a corresponding antenna unit. The power divider associated with the primary pattern mode produces a reference beam and an auxiliary beam, and remaining power dividers produce different auxiliary beams. All beams have approximately both a common phase center and a common group delay center. An adaptive processor combines the reference and selected auxiliary beams to obtain a composite antenna reception pattern in which nulls are inserted at certain angles to suppress interfering signals, without degrading authentic signals arriving at other angles. | 08-19-2010 |
20100214161 | GNSS moving base positioning - Methods and apparatus are presented for determining a position of an antenna of a GNSS rover from observations of GNSS signals collected at the antenna over multiple epochs and from correction data for at least one of the epochs. A first-epoch rover position relative to a moving base location is determined, a second-epoch update of the first-epoch rover position relative to the moving base location for a second epoch is determined using a single-differenced delta phase process, and the first-epoch position and the second-epoch update are combined to obtain a second-epoch rover position relative to a moving base location of the second epoch. | 08-26-2010 |