Class / Patent application number | Description | Number of patent applications / Date published |
342120000 | Altimeter | 27 |
20080278367 | INTEGRATED ATTITUDE ALTIMETER - An aircraft electronics system is provided that includes a radar system, a display, an embedded global positioning/inertial navigation system (EGI) and a processor. The radar system is configured to generate aircraft operational data. The display is configured to display the aircraft operational data. The EGI is configured to generate aircraft behavior components and the processor configured to override the aircraft operation data displayed on the display when at least one of the aircraft behavior components is beyond a defined limit, wherein potentially incorrect aircraft operational data affected by at least one of the aircraft behavior component is not displayed. | 11-13-2008 |
20090058714 | HISTORY OR IMAGE BASED METHODS FOR ALTITUDE DETERMINATION IN A RADAR ALTIMETER - Methods and apparatus for determining an altitude with an altimeter is provided. One method includes transmitting a signal having a fixed modulation period towards a ground target and then detecting reflected signals off the ground target. The method then implements a single Fast Fourier Transform (FFT) on the detected signals for each modulation period that computes all possible altitudes in real time. A short history of the real time altitude calculations is collected and then the altitude based on the short history of the real time altitude calculations is determined. | 03-05-2009 |
20090096663 | METHODS AND SYSTEMS FOR REDUCING INTERFERENCE CAUSED BY ANTENNA LEAKAGE SIGNALS - In one aspect, a method of radar altimeter operation including a time dependent gain control is described. The method comprises triggering a Sensitivity Time Control (STC) gain control signal at a pulse repetition frequency (PRF) of a transmit pulse to attenuate interference from at least one of an antenna leakage signal and a signal reflected from equipment. The method also includes shaping the STC gain control signal from no attenuation at a first time, before a transmitter sends the transmit pulse, to a stable maximum attenuation at the time the transmitter sends the transmit pulse, to no attenuation at a second time, after the transmitter sends the transmit pulse. The method also includes matching a bandwidth of an intermediate frequency (IF) amplifier to the pulse width of a transmitted pulse. | 04-16-2009 |
20090251358 | RADAR ALTIMETER WITH FORWARD LOOKING RADAR AND DATA TRANSFER CAPABILITIES - A navigation system having a radar altimeter is disclosed. The navigation system comprises a signal processing unit and one or more antennas in operative communication with the radar altimeter and the signal processing unit. The system further comprises a forward looking radar communicatively coupled to the radar altimeter. The forward looking radar and the signal processing unit are configured to provide forward looking radar measurements, radar altitude measurements from the radar altimeter, and datalink communications within a single forward looking radar scanning sequence. | 10-08-2009 |
20090251359 | ANTENNA SYSTEM FOR A MICRO AIR VEHICLE - An antenna for a micro air vehicle (MAV) takes the form of a wrap-around antenna (e.g., wrapped around a portion of the MAV) that selectively emits radio signals in different directions depending on a frequency selected by a radio altimeter in the MAV. The radar altimeter may be a pulsed or a frequency modulated continuous wave (FMCW) radar altimeter. The wrap-around antenna includes groups of radiating elements in which at least each group includes an average height that is different from an average height of an adjacent group. Further, the average height of the group determines which group will emit the signals most efficiently so that a desired sector of space may be covered by the signals emitted from the antenna. In one example, the center frequency of the radar altimeter may be controlled in a deterministic manner to cause the radiating elements to successively cover desired sectors of space. | 10-08-2009 |
20090262008 | HIGH ACCURACY RADAR ALTIMETER USING AUTOMATIC CALIBRATION - A method of compensating for component errors within a radar altimeter is described. The method includes periodically switching transmit pulses from a transmit antenna to a programmable delay device, calculating an altitude based on a transmit pulse received from the programmable delay device, comparing the calculated altitude to an expected altitude, the expected altitude based on a pre-set delay through the programmable delay device, and compensating an altitude measured by the radar altimeter, based on transmit pulses output through the transmit antenna, by an error correction amount based on a difference between the calculated altitude and expected altitudes. | 10-22-2009 |
20090303104 | PSEUDO-RANDOM PULSE INTERVAL GENERATION IN NAVIGATION-AIDING DEVICES - An electronic circuit comprises a randomizing bit generator configured to generate a randomizing bit sequence based on a sequence selection input signal. The randomizing bit generator includes a counter operable to provide an individual starting count for the randomizing bit sequence and a parity generator responsive to an output of the counter. The circuit further comprises a pseudo-random number generator responsive to the randomizing bit generator. The pseudo-random number generator is operable to provide at least one pulsed signal based at least in part on the random bit sequence. The electronic circuit is operable to substantially eliminate interference in a series of pulsed signal transmissions comprising the at least one pulsed signal from each of two or more navigation devices, where each of the pulsed signals from each of the navigation devices is separated by an automatically adjustable time interval. | 12-10-2009 |
20100007546 | METHOD AND PROCESSOR FOR REDUCED AMBIGUITY RESOLUTION MATRIX FOR INTERFEROMETRIC ANGLE DETERMINATION - A method and processor for resolving a processing radar return data to determine a mechanical angle to a target relative to a radar array having a right antenna, an ambiguous antenna, and a left antenna. An LA linear relationship determining, based upon a characteristic number of LA wraps relative to the mechanical angle. Likewise, determining a RA linear relationship determines a characteristic number of RA wraps and a RL linear relationship determines a characteristic number of RL wraps relative to the mechanical angle. All permutations of LA wraps, RA wraps, and RL wraps are listed, and for each permutation, a truth relationship is determined. A look up table is populated with permutations where the truth relationship is true. | 01-14-2010 |
20100007547 | ALTIMETRY METHOD AND SYSTEM - An altimetry method comprising: providing a signal receiver (RX) on a first platform (S | 01-14-2010 |
20100073217 | SPACE-BORNE ALTIMETRY APPARATUS, ANTENNA SUBSYSTEM FOR SUCH AN APPARATUS AND METHODS FOR CALIBRATING THE SAME - The present invention is directed to a space-borne altimetry apparatus having a first receiving antenna, pointing to outer space, for receiving at least one signal emitted by a remote satellite emitter via a direct path; a second receiving antenna, pointing to the Earth, for receiving said signal via an indirect path including a reflection from the Earth surface; and a signal processing means for computing a distance of the apparatus from a specular reflection point of the signal on the Earth surface by cross-correlating the signals received by said first and second antennas; wherein both the first and second receiving antennas are high-gain steerable antennas; and wherein the apparatus may also include antenna control means for steering at least one receiving lobe of the first antenna toward the remote satellite emitter, and at least one receiving lobe of the second antenna toward a specular reflection point on the Earth surface. | 03-25-2010 |
20100302088 | DOPPLER BEAM-SHARPENED RADAR ALTIMETER - Systems and methods for Doppler beam sharpening in a radar altimeter are provided. In one embodiment, a method comprises receiving a return signal at a radar altimeter receiver and applying a first gate to the return signal to select at least a first component of the return signal. Spectral analysis is performed on the first component of the return signal to generate a plurality of frequency bins, wherein each frequency bin is centered around a different frequency across a Doppler shift frequency spectrum for the first component of the return signal. The method further comprises tracking the first component of the return signal, selecting a first frequency bin of the plurality of frequency bins based on the Doppler shift frequency of the first component of the return signal, and outputting a portion of the first component of the return signal falling within the first frequency bin for further processing. | 12-02-2010 |
20110001659 | DEVICE AND METHOD FOR THE IMPROVED DIRECTIONAL ESTIMATION AND DECODING BY MEANS OF SECONDARY RADAR SIGNALS - 1. A device and a method for the improved directional estimation and decoding by means of secondary radar signals. 2.1 Radio-based positioning systems on the basis of secondary radar signals are known. For this purpose special receiver systems are utilized for estimating the direction, and special receiver systems are utilized for decoding secondary radar signals. In particular, a secondary radar system is absent, which, among others, takes into consideration any shortcomings of the hardware used, such as coupled antenna elements, different low-end impedances, deviating distances between the antenna elements, manufacturing and installation tolerances, and the like. 2.2 The device for directional estimation and/or decoding secondary radar signals according to the invention comprises the following: —at least one array A comprising M antenna elements AE—an amplifier LNA and bandpass filter F | 01-06-2011 |
20110199253 | Method And Device For Monitoring Radioaltimetric Heights Of An Aircraft - The device comprises means for generating an auxiliary height (HA) of an aircraft (AC) and for determining, with the aid of this auxiliary height (HA), an error in incoherent data which are received from two radioaltimeters. | 08-18-2011 |
20120075138 | SYSTEMS AND METHODS FOR PROVIDING GPS ALTERNATIVES ON 1090 MHz - Systems and methods can provide alternatives to a global positioning system (GPS). For example, certain systems can operate on 1090 MHz and provide for methods of estimating location that can be used in place of GPS. Thus, a method can include obtaining an estimate of position of an own aircraft based on time of arrival of signals from a plurality of ground stations. The calculation of the estimate can be performed in the own aircraft. The method can also include using the estimate of position instead of a position from a global positioning system. | 03-29-2012 |
20120146837 | RADAR ALTIMETER ANTENNA PERFORMANCE MONITORING VIA REFLECTED POWER MEASUREMENTS - Systems and methods for radar altimeter antenna performance monitoring via reflected power measurements are provided. In one embodiment, a single antenna radar altimeter comprises: an antenna; a circulator coupled to the antenna; a transmitter coupled to the circulator; a receiver coupled to the circulator; wherein the circulator provides coupling of the transmitter and the receiver to the antenna while providing isolation between the transmitter and the receiver; a reflected power monitor positioned between the circulator and receiver; and a processor coupled to the reflected power monitor via a first analog-to-digital converter, the processor configured to compute and track reflected power measurement statistics from data generated by the reflected power monitor and provide a performance output indicating when one or more of the reflected power measurement statistics exceed a predetermined deviation threshold. | 06-14-2012 |
20120256781 | SYSTEMS AND METHODS FOR AUTOMATICALLY DETERMINING A NOISE THRESHOLD - Systems and methods for automatically determining a noise threshold are provided. In one implementation, a system comprises: an antenna configured to gather data about a surrounding environment; a processing unit configured to remove samples representing target data from the gathered data; to estimate the noise floor from the gathered data with the removed target data; and to determine a noise threshold from the estimated noise floor; and a memory device configured to store the estimated noise floor. | 10-11-2012 |
20130169472 | HIGH-PRECISION, COMPACT ALTIMETRIC MEASUREMENT SYSTEM - An altimetry system for a satellite, including an altimeter transmitting and receiving signals on at least one first frequency band; a radiometer receiving signals on at least one second frequency band, the altimeter and the radiometer being connected to one and the same antenna; reception means common to the altimeter and to the radiometer, and capable of amplifying and filtering the signals received from the antenna on a frequency band including the first frequency band and the second frequency band; means for separating the signals on the first frequency band from the signals on the second frequency band; the signals on the first frequency band being exploited to estimate an altimetric distance of the satellite, and radiometric measurements being exploited in order to correct the estimate. | 07-04-2013 |
20130214963 | HIGH SENSITIVITY SINGLE ANTENNA FMCW RADAR - One embodiment is directed towards a FMCW radar having a single antenna. The radar includes a transmit path having a voltage controlled oscillator controlled by a phase-locked loop, and the phase-locked loop includes a fractional-n synthesizer configured to implement a FMCW ramp waveform that ramps from a starting frequency to an ending frequency and upon reaching the ending frequency returns to the starting frequency to ramp again. The radar also includes a delay path coupled between a coupler on the transmit path and a mixer in a receive path. The delay path is configured to delay a local oscillator reference signal from the transmit path such that the propagation time of the local oscillator reference signal from the coupler to the mixer through the delay path is between the propagation time of signal reflected off the antenna and the propagation time of a leakage signal through a circulator. | 08-22-2013 |
20130214964 | AIRCRAFT RADAR ALTIMETER STRUCTURE - Embodiments described herein are directed towards a radar altimeter for mounting onto an aircraft. The radar altimeter includes a base configured to mount to an external surface of an aircraft, the base having an inner portion and a flange disposed around the inner portion, wherein the inner portion has a generally rectangular geometry defining a long dimension and a short dimension. A chassis is mounted to the base and has a planar portion that is disposed perpendicular to a plane formed by the base. A plurality of circuit boards are mounted to the planar portion of the chassis and disposed parallel to the planar portion of the chassis. The base is configured to mount over a second aperture in the external surface of the aircraft such that the chassis and the plurality of circuit boards are placed through the aperture and are disposed inside of the aircraft. | 08-22-2013 |
20150378017 | SYSTEMS AND METHODS FOR CALIBRATION AND OPTIMIZATION OF FREQUENCY MODULATED CONTINUOUS WAVE RADAR ALTIMETERS USING ADJUSTABLE SELF-INTERFERENCE CANCELLATION - Systems and methods for calibrating and optimizing frequency modulated continuous wave radar altimeters using adjustable self-interference cancellation are disclosed. In at least one embodiment, a radar altimeter system comprises: a local oscillator delay line including a variable delay circuit configured to output a delayed signal, a transmitter coupled to the local oscillator delay line and configured to output a transmitter signal, a transceiver circulator coupled to an antenna and coupled to the transmitter, and a frequency mixer coupled to the delay line and coupled to the transceiver circulator. The transceiver circulator directs the transmitter signal to the antenna and the antenna is configured to transmit the transmitter signal and receive a reflected signal from a target. Further, the frequency mixer is configured to receive the delayed signal and the target reflected signal from the transceiver circulator. | 12-31-2015 |
20160097848 | ROTORCRAFT FITTED WITH A RADIOALTIMETER HAVING PLANE ANTENNAS AND A LENS FOR MODIFYING THE FIELD OF VIEW OF THE ANTENNAS - A method of measuring the height of a rotorcraft above the ground by means of a radioaltimeter having plane antennas, and it also provides to such a radioaltimeter and a rotorcraft fitted with such a radioaltimeter. The rotorcraft is provided with sling equipment for transporting a load swinging under the rotorcraft in a given field of mobility, and a lens modifies the basic field of view of the radioaltimeter as supplied by the antennas between firstly a limited field of view for the radioaltimeter excluding the field of mobility of the load transported by the sling equipment from the field of view of the radioaltimeter, and secondly an optimum field of view of the radioaltimeter of scope that is optimized in the event that no load is being transported by the sling equipment. | 04-07-2016 |
342122000 | FM type | 6 |
20090066559 | FALSE LOCK FILTER FOR PULSED RADAR ALTIMETERS - A false lock filter circuit for a pulsed altimeter is provided. The circuit includes a low pass filter having a relatively low bandwidth (LBW LPF), a low pass filter having a relatively high bandwidth (HBW LPF) and a false lock controller. The LBW LPF has an input that is coupled to receive a detector output. The HBW LPF has an input that is coupled to receive the detector output. The false lock controller is coupled to receive outputs from the LBW LPF and HBW LPF. Moreover, the false lock controller is configured to sample an output of the HBW LPF and apply a statistical analysis on the samples to determine if a valid target has been detected. | 03-12-2009 |
20090289834 | HIGH INTEGRITY RADIO ALTIMETER - A radio altimeter having a high level of integrity is presented. The radio altimeter includes a processing path configured to process a return signal received from a receive antenna using a first modulation technique and a monitoring path configured to process the return signal received from the receive antenna using a second modulation technique. | 11-26-2009 |
20140028491 | METHOD OF SYSTEM COMPENSATION TO REDUCE THE EFFECTS OF SELF INTERFERENCE IN FREQUENCY MODULATED CONTINUOUS WAVE ALTIMETER SYSTEMS - An altimeter system is provided. The altimeter system includes a receiver mixer including an antenna-input and a local-oscillator-input; a transceiver circulator communicatively coupled to an antenna via a transmission line having a selected length and communicatively coupled to the antenna-input of the receiver mixer; and a transmitter configured to output a transmitter signal to the antenna via the transceiver circulator. The transmitter signal is frequency modulated with a linear ramp. The transmitter is communicatively coupled to the receiver mixer to input a local oscillator signal at the local-oscillator-input of the receiver mixer. The receiver mixer is communicatively coupled to input a target-reflected signal from the antenna at the antenna-input of the receiver mixer. The selected length of the transmission line is set so that a composite-leakage signal at the antenna-input of the receiver mixer has a linear phase across a sweep bandwidth. | 01-30-2014 |
20150084808 | FMCW RADAR WITH REFINED MEASURMENT USING FIXED FREQUENCIES - One embodiment is directed to a method for operating a radar altimeter. The method includes transmitting a radar signal at a first frequency, ramping the frequency of the radar signal from the first frequency to a second frequency, and transmitting the radar signal at the second frequency. The reflections can be processed by determining an approximate distance to a target based reflections of the frequency ramp and the approximate distance can be refined based on a phase difference between a reflection of the radar signal transmitted at the first frequency and a reflection of the radar signal transmitted at the second frequency. | 03-26-2015 |
20150145715 | RADIO ALTIMETER - The present disclosure relates to a radio altimeter including a path extending unit positioned in a signal transmission path or a signal reception path of the radio altimeter, wherein the path extending unit delays a signal received from the outside to reduce a dynamic range of the radio altimeter. | 05-28-2015 |
20160139256 | METHOD OF SYSTEM COMPENSATION TO REDUCE THE EFFECTS OF SELF INTERFERENCE IN FREQUENCY MODULATED CONTINUOUS WAVE ALTIMETER SYSTEMS - An altimeter system is provided. The altimeter system includes a receiver mixer including an antenna-input and a local-oscillator-input; a transceiver circulator communicatively coupled to an antenna via a transmission line having a selected length and communicatively coupled to the antenna-input of the receiver mixer; and a transmitter configured to output a transmitter signal to the antenna via the transceiver circulator. The transmitter signal is frequency modulated with a linear ramp. The transmitter is communicatively coupled to the receiver mixer to input a local oscillator signal at the local-oscillator-input of the receiver mixer. The receiver mixer is communicatively coupled to input a target-reflected signal from the antenna at the antenna-input of the receiver mixer. The selected length of the transmission line is set so that a composite-leakage signal at the antenna-input of the receiver mixer has a linear phase across a sweep bandwidth. | 05-19-2016 |