Class / Patent application number | Description | Number of patent applications / Date published |
337123000 | With longitudinally expansible solid element (e.g., rod, wire strip, etc.) | 11 |
20090002118 | MEMS DEVICE WITH BI-DIRECTIONAL ELEMENT - The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature. | 01-01-2009 |
20090146773 | LATERAL SNAP ACTING MEMS MICRO SWITCH - A MEMS micro-switch with a lateral snap action includes a laterally bowed beam and an electro thermal actuator. The electro thermal actuator can be activated in response to the application of an actuation voltage and a push rod pushes the laterally bowed beam to a transition point through a push-pull connector. The bowed beam can be snapped to an opposite position at the transition point and a moving electrode makes strong contact to fixed electrodes, which makes the switch turn on with strong contact force. The actuator can be deactivated and the push rod pulls the bowed beam back to the transition point and snapped back to an original position, which makes the switch turn off. The switch can be fabricated utilizing glass and SOI wafer bonding technique. | 06-11-2009 |
20100182120 | MEMS DEVICE WITH BI-DIRECTIONAL ELEMENT - The present invention provides a bi-directional microelectromechanical element, a microelectromechanical switch including the bi-directional element, and a method to reduce mechanical creep in the bi-directional element. In one embodiment, the bi-directional microelectromechanical element includes a cold beam having a free end and a first end connected to a cold beam anchor. The cold beam anchor is attached to a substrate. A first beam pair is coupled to the cold beam by a free end tether and is configured to elongate when heated thereby to a greater temperature than a temperature of the cold beam. A second beam pair is located on an opposing side of the cold beam from the first beam pair and is coupled to the first beam pair and the cold beam by the free end tether. The second beam pair is configured to elongate when heated thereby to the greater temperature. | 07-22-2010 |
20100328015 | APPARATUS FOR COUPLING AN ACTUATOR - In accordance with an example embodiment of the present invention, an apparatus, comprises an actuator assembly, which comprises an actuator and a coupling mechanism, the coupling mechanism having a curved surface, the actuator having a leading contact point with the curved surface, the actuator having an end coupled with a stationary point, the actuator comprising a shape memory alloy adapted to pull the coupling mechanism in a direction tangential to the leading contact point toward the stationary point when heated. | 12-30-2010 |
20140266562 | Integrated Electrical-Switching Mechanical Device Having a Blocked State - An integrated circuit, comprising an electrical-switching mechanical device in a housing having at least one first thermally deformable assembly including a beam held in at least two different locations by at least two arms secured to edges of the housing, the beam and the arms being metallic and situated within the same first metallization level and an electrically conductive body, wherein the said first thermally deformable assembly has at least one first configuration at a first temperature and a second configuration when at least one is at a second temperature different from the first temperature, wherein the beam is at a distance from the body in the first configuration and in contact with the said body and immobilized by the said body in the second configuration and establishing or prohibiting an electrical link passing through the body and through the beam. | 09-18-2014 |
20160148771 | THERMAL-MECHANICAL FLEXIBLE OVERLOAD SENSOR - An overload relay is provided for electrical equipment, such as a motor. The overload relay includes a set of electrical contacts, a trip mechanism and a single-arm, a set of monolithic compliant mechanism actuators. The trip mechanism has a normal position and a tripped position. The normal position allows electrical connection between the electrical contacts, and the tripped position interrupts electrical connection between the electrical contacts in response to detection of a high current condition. The single-arm actuator is formed of an electrically conductive material, and includes a compliant hinge and a single bar connected to the hinge. The single bar is electrically coupled to the line contact or the load contact. Under the high current condition, one of first and second ends of the single bar deflects relative to the compliant hinge to cause the trip mechanism to move into the tripped position. | 05-26-2016 |
337126000 | With manual or other mechanical contact actuating means | 2 |
20100295653 | CIRCUIT IMPLEMENT UTILIZING ACTIVE MATERIAL ACTUATION - An electronic implement adapted for use in a circuit, and including a shape memory element, such as a shape memory alloy wire, wherein the element, when activated and/or deactivated, is operable to open, close, or otherwise modify at least one characteristic of the circuit. | 11-25-2010 |
20140292473 | ACTUATOR DEVICE WITH STABLE WORKING POSITIONS - A device is described wherein an actuator ( | 10-02-2014 |
337137000 | Contact structure or composition | 1 |
20090201119 | Hysteretic mems thermal device and method of manufacture - A MEMS hysteretic thermal actuator may have a plurality of beams disposed over a heating element formed on the surface of the substrate. The plurality of beams may be coupled to a passive beam which is not disposed over the heating element. One of the plurality of beams may be formed in a first plane parallel to the substrate, whereas another of the plurality of beams may be formed in a second plane closer to the surface of the substrate. When the heating element is activated, it heats the plurality of beams such that they move the passive beam in a trajectory that is neither parallel to nor perpendicular to the surface of the substrate. When the beams are cooled, they may move in a different trajectory, approaching the substrate before moving laterally across it to their initial positions. By providing one electrical contact on the distal end of the passive beam and another stationary electrical contact on the substrate surface, the MEMS hysteretic actuator may form a reliable electrical switch that is relatively simple to manufacture and operate. | 08-13-2009 |
337139000 | With significant expansible element structure or composition of material | 2 |
20140253280 | Repeatable Fuse for Preventing Over-Current - Provided is a reusable fuse having an over-current prevention function. When an over-current that is greater than a reference level is supplied to the reusable fuse and temperature of a positive temperature coefficient thermistor is higher than a specific critical temperature, then an electric resistance of the positive temperature coefficient thermistor increases, a main spring is extended, and thus the spindle is moved toward a side of a housing due to a tensile strength of the main spring and is electrically disconnected from a first lead terminal, thereby continuously blocking flow of current between a second lead terminal and the first lead terminal. When the over-current subsides, then the positive temperature coefficient thermistor is cooled, the tensile strength of the main spring decreases, and thus the spindle is moved toward another side of the housing to be electrically connected to the first lead terminal, thereby allowing the reusable fuse to return to a normal operation state. | 09-11-2014 |
337140000 | Wire or other stranded element | 1 |
20150048921 | BISTABLE ELECTRIC SWITCH WITH SHAPE MEMORY ACTUATOR - A bistable electric switch is described. The switch has as actuators a pair of opposing SMA wires acting on a drive element integral with a snap-action spring so as to toggle the snap-action spring between two stable positions corresponding to two operating positions of the switch, the drive element being shorter than the distance existing between the two opposing SMA wires when one of the SMA wires is contracted and the other SMA wire is uncontracted. The entire force exerted by the activated SMA wire is used to overcome the resistance of the snap-action spring. | 02-19-2015 |