Class / Patent application number | Description | Number of patent applications / Date published |
335295000 | With magnetic-hold control means (e.g., means to control the hold strength) | 27 |
20080272872 | Detachable Magnet Holder - The invention relates to a universally applicable detachable magnet holder with a fixed magnet and an opposite-lying magnet which can rotate about a point of rotation and which is provided with magnet pole surfaces, wherein each magnet pole surface comprises at least two poles which, when closed, attract each other and which, when open, repel each other once the rotatable magnet has been rotated by means of an actuation device. According to the invention, a distance element ( | 11-06-2008 |
20080290973 | Magnetic holding apparatus for holding workpieces - An electro permanent magnetic apparatus with monolithic working face for holding workpieces magnetically or mechanically comprises a base plate and a ferrous monolithic working face. The base plate has a pocket or recess which houses reversible magnets and electrical windings; the working face has magnetic poles which are demarked by slots. On the opposite side of the working face recesses are provided beneath the slots for housing non-reversible permanent magnets. | 11-27-2008 |
20100117773 | MAGNETIC HOLDING APPARATUS FOR HOLDING WORKPIECES - An electro permanent magnetic apparatus with monolithic working face for holding workpieces magnetically or mechanically comprises a base plate and a ferrous monolithic working face. The base plate has a pocket or recess which houses reversible magnets and electrical windings; the working face has magnetic poles which are demarked by slots. On the opposite side of the working face recesses are provided beneath the slots for housing non-reversible permanent magnets. | 05-13-2010 |
20100171578 | DETACHABLE MAGNET HOLDER - The invention relates to a universally applicable detachable magnet holder with a fixed magnet and an opposite-lying magnet which can rotate about a point of rotation and which is provided with magnet pole surfaces, wherein each magnet pole surface comprises at least two poles which, when closed, attract each other and which, when open, repel each other once the rotatable magnet has been rotated by means of an actuation device. According to the invention, a distance element ( | 07-08-2010 |
20100237969 | MAGNETIC DEVICE - A magnetic device having a housing with a front wall. A first magnet assembly includes a north and south pole and a second magnet assembly also includes a north and south pole. The magnet assemblies are pivotally mounted in the housing and pivotal between a first position in which the north pole of the first magnet assembly and the south pole of the second magnet assembly face each other and are positioned adjacent the front wall of the housing, and a second position in which the north pole of the first magnet assembly and the south pole of the second magnet assembly face each other and are retracted from the front wall. An actuator pivots the magnet assemblies between their first and second positions while a spring urges the magnet assemblies toward the second position. | 09-23-2010 |
20100237970 | MAGNETIC LOCKING SYSTEM - Preferred embodiments of the present magnetic locking system can be used for releasably locking a first component to a second component. In one embodiment, the locking system includes a ferro-magnetic member associated with the first component, where the ferro-magnetic member is made of a ferro-magnetic material, and a housing attached to the second component and positioned adjacent to the ferro-magnetic member. Preferably, the housing includes first and second blocks that sandwich an intermediate block. Further, the first and second blocks are each preferably made of a ferro-magnetic material and the intermediate block is made of a non-ferro-magnetic material. Additionally, there is also an aperture formed within the housing, with a permanent magnet rotatably seated within the aperture. The magnetic locking system preferably includes a switch mechanism that is operatively connected to one of the permanent magnet and the housing, wherein the switch mechanism is configured and arranged to rotate the housing and the permanent magnet relative to each other between an “on” position and an “off” position. | 09-23-2010 |
20110018659 | Appliance safety apparatus, systems, and methods - An apparatus, system, and method for locking objects together comprises at least one pair of correlated magnets. First and second correlated magnetic field structures comprising the pair of correlated magnets are capable of being aligned such that an attractive force secures or locks two objects together. The apparatus, system, and method can be used to lock appliance and cabinet doors, drawers, covers for electrical outlets and light switches, and the like. | 01-27-2011 |
20110018660 | Toilet Safety Apparatus, Systems, and Methods - An embodiment of the present invention provides a correlated magnet toilet seat cover lock which may include a first correlated magnetic field structure securely attachable to a toilet bowl, a second correlated magnetic field structure that is complementary to the first correlated magnetic field structure and securely attachable to a toilet seat cover, and wherein the first correlated magnetic field structure associated with the toilet bowl is capable of being aligned with the second correlated magnetic field structure attachable to the toilet seat cover such that the toilet bowl and the toilet seat cover produce an attractive force that secures the toilet seat cover to the toilet seat bowl. | 01-27-2011 |
20110018661 | Child Safety Gate Apparatus, Systems, and Methods - A child safety gate apparatus, system, and method comprises a barrier that is securable in a passageway and comprises at least one pair of correlated magnets capable of being aligned such that an attractive force secures or locks the gate. | 01-27-2011 |
20110156849 | METHOD FOR INFLUENCING THE MAGNETIC COUPLING BETWEEN TWO BODIES AT A DISTANCE FROM EACH OTHER AND DEVICE FOR PERFORMING THE METHOD - Method for influencing the magnetic coupling between two bodies ( | 06-30-2011 |
20110234344 | Magnetic Attachment System with Low Cross Correlation - A magnetic attachment system for attaching a first object to a second object. A first magnet structure is attached to the first object and a second magnet structure is attached to the second object by the magnetic attraction between the first magnet structure and second magnet structure. The magnet structures comprise magnetic elements arranged in accordance with patterns based on various codes. In various embodiments, the code has certain autocorrelation properties, the code may be from a set of codes with low cross correlation; an attachment and a release configuration may be achieved by a simple movement of the magnet structures; the magnetic pattern may be configured to allow installation of a selected panel of a set of panels in a given location or orientation while rejecting the remaining panels of the set; or the magnetic pattern is configured using codes with low cross correlation. | 09-29-2011 |
20110248806 | SWITCHABLE CORE ELEMENT-BASED PERMANENT MAGNET APPARATUS - A method and device for a switchable core element-based permanent magnet apparatus, for holding and lifting a target, comprised of two or more carrier platters containing core elements. The core elements are magnetically matched soft steel pole conduits attached to the north and south magnetic poles of one or more permanent magnets, inset into carrier platters. The pole conduits contain and redirect the permanent magnets' magnetic field to the upper and lower faces of the carrier platters. By containing and redirecting the magnetic field within the pole conduits, like poles have a simultaneous level of attraction and repulsion. Aligning upper core elements “in-phase,” that is, north-north/south-south with the lower core elements, activates the apparatus by redirecting the combined magnetic fields of the pole conduits into the target. Anti-aligning upper core elements “out-of-phase,” that is, north-south/south-north with the lower core elements, deactivates the apparatus and results in pole conduits containing opposing fields. | 10-13-2011 |
20120013426 | FAST ANCHORING MAGNETIC HOLDER INCLUDING MULTIPLE ATTRACTIVE SURFACES - A fast anchoring magnetic holder including multiple attractive surfaces comprises a first magnet, a second magnet, a first insertion rod and a second insertion rod. The first magnet has a magnetic workstation surface. The second magnet has a magnetic anchor surface. The first and second magnets are stacked together. The first insertion rod and second insertion rod are respectively inserted into the first magnet and second magnet, and are turned to change distribution of the magnetic field of the first magnet and second magnet to alter the magnetic workstation surface and magnetic anchor surface from a non-magnetic state to a magnetic state to attract a working piece to a workstation. | 01-19-2012 |
20120092103 | SYSTEM AND METHOD FOR PRODUCING STACKED FIELD EMISSION STRUCTURES - A stacked field emission system having an outer surface includes at least three field emission structure layers having a stacked relationship that defines a field characteristic of the outer surface. The mechanisms holds the at least three field emission structure layers such that a plurality of interface surfaces of the at least three field emission structure layers correspond to a plurality of interface boundaries between adjacent field emission structure layers. Each of the at least three field emission structure layers includes a plurality of field emission sources having positions, polarities, and field strengths in accordance with a spatial force function that corresponds to a relative alignment of the at least three field emission structures layers in the stacked relationship. A movement of at least one of the at least three field emission structures varies the field characteristics of the outer surface. | 04-19-2012 |
20120092104 | MAGNET ARRAYS - Method and device for self-regulated flux transfer from a source of magnetic energy into one or more ferromagnetic work pieces is provided. A plurality of magnets are disposed in a medium wherein gaps of predetermined distance are maintained between neighboring magnets. And the magnets we arranged such that magnetic flux exchange may take place between the magnets across the gaps and a ferromagnetic body in close vicinity or contact with the magnets. | 04-19-2012 |
20120326819 | SHIELDED MAGNETIC ATTACHMENT APPARATUS - A shielded magnetic attachment apparatus is provided, having engaged and disengaged configurations, and comprising: at least one magnet; a first casing comprising ferromagnetic material attached to one side of the at least one magnet; a second casing comprising ferromagnetic material operably magnetically attachable to the at least one magnet; and a release mechanism attached to either the first or second casing for transitioning the shielded magnetic attachment apparatus from the engaged to the disengaged configuration; wherein the shielded magnetic attachment apparatus is in the engaged configuration when the at least one magnet provides a magnetic force which acts to keep the shielded magnetic attachment apparatus in the engaged configuration, and the shielded magnetic attachment apparatus is in the disengaged configuration when not in the engaged position. | 12-27-2012 |
20130222091 | SYSTEM FOR DETACHING A MAGNETIC STRUCTURE FROM A FERROMAGNETIC MATERIAL - A detachment system includes a first piece of ferromagnetic material, a shunt plate, and at least one simple machine. The first piece of ferromagnetic material has a first side and a second side opposite the first side and has magnetically printed field sources that extend from the first side to the second side. The magnetically printed field sources have a first multi-polarity pattern. The first side of the first piece of ferromagnetic material is magnetically attached to a second piece of ferromagnetic material. The shunt plate is disposed on the second side of the first piece of ferromagnetic material. The shunt plate routes magnetic flux through the first piece of ferromagnetic material from the second side to the first side of the first ferromagnetic material. The at least one simple machine is configured to amplify an applied force into a detachment force to create an angled spacing between the first piece of ferromagnetic material and the second piece of ferromagnetic material. | 08-29-2013 |
20130234817 | MAGNET ARRAYS - Method and device for self-regulated flux transfer from a source of magnetic energy into one or more ferromagnetic work pieces is provided. A plurality of magnets are disposed in a medium wherein gaps of predetermined distance are maintained between neighboring magnets. And the magnets we arranged such that magnetic flux exchange may take place between the magnets across the gaps and a ferromagnetic body in close vicinity or contact with the magnets. | 09-12-2013 |
20130285775 | MULTI-LEVEL MAGNETIC SYSTEM - A multilevel magnetic system described herein includes first and second magnetic structures that produce a net force that transitions from an attract force to a repel force as a separation distance between the first and second magnetic structures increases. The multi-level magnetic system is configured to maintain a minimum separation distance between a transition distance where the net force is zero and a separation distance at which a peak repel force is produced. | 10-31-2013 |
20140077910 | MAGNETIC FIXINGS AND CONNECTORS - A mechanism for fixing together first and second parts and comprising first and second guides provided respectively in or attached to the first and second parts. The mechanism further comprises first and second magnetic components coupled respectively to the first and second guides such that the first magnetic component is rotatable with the first guide and the first part, and the second magnetic component cannot rotate relative to the second guide, the magnetic components being moveable axially and rotationally with respect to each other and having magnetic poles oriented such that rotation of said first magnetic component causes relative axial movement of the magnetic components between a locking position in which one of the magnetic components straddles the two guides and an unlocking position in which it does not straddle the two guides. | 03-20-2014 |
20140104022 | INTELLIGENT MAGNETIC SYSTEM - An intelligent magnetic system includes a first piece of ferromagnetic material having magnetically printed field sources having a multi-polarity pattern that extend from a first side to a second side that is magnetically attached to a second piece of ferromagnetic material, where a shunt plate disposed on the first side that routes magnetic flux through the first piece of ferromagnetic material from said first side to said second side. The system also includes at least one simple machine for amplifying an applied force into a detachment force that creates an angled spacing between the first piece of ferromagnetic material and the second piece of ferromagnetic material, at least one sensor for producing sensor data; and a control system for monitoring the sensor data and managing the use of the first piece of ferromagnetic material. | 04-17-2014 |
20140240069 | METHOD FOR CONTROLLING THE MAGNETIC CLAMPING OF A PART AND MAGNETIC CLAMPING DEVICE USING SUCH A METHOD - In this method, magnetic studs housed in a plate are connected to magnetic flux measuring circuits, which define measuring zones, and to power circuits that make it possible to magnetise or demagnetise the studs. The method comprises prior steps that consist in determining ( | 08-28-2014 |
20140361860 | MAGNETIC SUBSTANCE HOLDING DEVICE USING PERMANENT MAGNET ENERGY CONTROL - There is provided a magnetic substance holding device that controls permanent magnet energy with which it is possible to obtain a strong holding force with a simple structure. | 12-11-2014 |
20150028975 | MAGNETIC SPRING DEVICE - A magnetic spring device includes a permanent magnet, a first yoke and a second yoke, disposed to oppose each other with the permanent magnet interposed therebetween, a movable element, made from a magnetizable body, provided to enable linear movement in an axial direction thereof, in a state wherein a location of an axis is constrained, between the first and second yokes, away from the permanent magnet, where a magnetic path of a magnetic flux that exits from an N-pole of the permanent magnet and returns to a S-pole is formed together with the first and second yokes, and a magnetic flux distribution controlling portion that changes a distribution of an amount of magnetic flux that is provided from the permanent magnet through the first and second yokes to the movable element, and an amount of magnetic flux from the permanent magnet that is not provided to the movable element. | 01-29-2015 |
20150070119 | Switchable Magnetic Lock - This document describes techniques using, and apparatuses including, switchable magnetic locks. These techniques and apparatuses can enable low or no power consumption and a seamless design for locking and unlocking of devices one to the other, such as computing devices and peripherals. | 03-12-2015 |
20150348690 | SYSTEM FOR CONCENTRATING AND CONTROLLING MAGNETIC FLUX OF A MULTI-POLE MAGNETIC STRUCTURE - An improved system for concentrating magnetic flux of a multi-pole magnetic structure at the surface of a ferromagnetic target uses first pole pieces having a magnet-to-pole piece interface with a first area and a pole piece-to-target interface with a second area substantially smaller than the first area for concentrating flux of the multi-pole magnetic structure at each pole piece-to-target interface, where the target can be a ferromagnetic material, complementary pole pieces, or a gap. The improved system may also include a magnetic circuit having second pole pieces located between the first pole pieces and the target that controls the flux directed from the first pole pieces to the target. | 12-03-2015 |
20160125989 | PERMANENT MAGNETIC CHUCKING DEVICE WITH LARGE FORCE DIFFERENTIAL - An apparatus usable as a chucking device to temporarily couple two mechanical objects together. In one embodiment, the apparatus includes an arbor configured to receive an at least partially ferromagnetic object; and a magnet assembly. The magnet assembly includes multiple permanent magnets mounted in a soft ferromagnetic enclosure. The magnet assembly is rotatably coupled to the arbor such that the magnet assembly and the arbor are positionable relative to one another in locking and unlocking positions upon relative rotation therebetween. The magnet assembly is configured to exert a pulling force on the object in the locking position and a lesser force in the unlocking position. | 05-05-2016 |