Class / Patent application number | Description | Number of patent applications / Date published |
331096000 | WITH DISTRIBUTED PARAMETER RESONATOR | 17 |
20080309419 | Voltage Controlled Oscillator Capable of Tuning Negative Resistance - Provided is a voltage controlled oscillator having a new type of a resonator and a negative resistance part capable of finely tuning negative resistance. Thus, the voltage controlled oscillator has an excellent quality factor characteristic and can finely tune the negative resistance even after its fabrication is completed. The voltage controlled oscillator having an active element includes: a resonating unit for generating an oscillation frequency according to a resonance capacitance; a frequency tuning unit, connected to a source terminal of the active element, for tuning the oscillation frequency; and a negative resistance adjusting unit, connected to the frequency tuning unit, for generating a negative resistance to adjust the oscillation frequency, the negative resistance adjusting unit including a varactor diode for finely adjusting the negative resistance. | 12-18-2008 |
20090051449 | DIELECTRIC RESONATOR OSCILLATOR AND RADAR SYSTEM USING THE SAME - In the mass production of dielectric resonator oscillators (DROs), it is necessary to regulate the position where a dielectric resonator is placed with a high degree of accuracy and thus time required for the assembly work increases undesirably. Further, a terminating resistor and earthing means are formed at an end of a transmission line that is electromagnetically coupled to the dielectric resonator and constitutes the resonator on a dielectric substrate, and as a result the production cost increases. The present invention is characterized in that, in the components of a DOR, only a transmission line is formed on a dielectric substrate, and an oscillating active element and a terminating resistor and the earthing means on an MMIC chip are connected to the transmission line with metallic wires, metallic ribbons, or the like. Further, an open stub is formed in the middle of the transmission line on the side close to the oscillating active element when it is viewed from the dielectric resonator. | 02-26-2009 |
20090289729 | MODE SELECTIVE COUPLER FOR WHISPERING-GALLERY DIELECTRIC RESONATOR - A whispering gallery mode dielectric resonator includes a conductive enclosure comprising a top, a bottom and walls. The resonator also includes a dielectric element disposed in the enclosure and operative to support a desired resonant mode that is dependent on a shape and dimensions of the dielectric resonator; and a mode selective coupling structure disposed over the enclosure and configured to selectively couple electromagnetic energy of the desired mode and configured not to substantially couple electromagnetic energy of a spurious mode supported in a region between the enclosure and the dielectric element. | 11-26-2009 |
20100308925 | Method of producing micromachined air-cavity resonator, micromachinedair-cavity resonator, band-pass filter and oscillator using the method - A micromachined air-cavity resonator, a method for fabricating the micromachined air-cavity resonator, and a band-pass filter and an oscillator using the same are provided. In particular, a micromachined air-cavity resonator including a current probe fabricated together when the air-cavity resonator is fabricated, and a groove structure for rejecting detuning effect when an external circuit of a package substrate is coupled to the current probe, a millimeter-wave band-pass filter using the same, and a millimeter-wave oscillator using the same are provided. The micromachined air-cavity resonator includes a cavity structure which comprises a current probe simultaneously formed through a fabrication process, and a groove structure; and a package substrate integrated with the cavity structure. Thus, the micromachined air-cavity resonator can be easily fabricated by etching a silicon substrate and easily integrated to the package substrate using the flip-chip bonding. | 12-09-2010 |
20120025920 | Oscillator with Ohmically Adjustable Oscillation Frequency - An oscillator with adjustable oscillation frequency includes an active device showing a negative input resistance at a terminal, an oscillator circuit coupled to the terminal of the active device showing the negative input resistance, and an element with adjustable ohmic resistance by which the oscillation frequency of the oscillator is adjustable. | 02-02-2012 |
20120098607 | MODULAR MICROWAVE SOURCE - The present invention comprises a modular microwave source comprising a novel electromagnetic oscillator based on a modified Blumlein architecture with an integrated antenna. In one or more embodiments, the invention comprises a triplate Blumlein in which the plates are configured and arranged to act as a waveguide and antenna. In one or more embodiments, high-permittivity dielectric materials are disposed between the center plate and one or both of the top and bottom plates to increase the energy storage and lengthen the duration of a damped sinusoid output. In one or more embodiments, photo-conductive semiconductor switches are disposed between the center plate and one or both of the top and bottom plates to act as high-speed switches. In one or more embodiments, a plurality of the modular microwave sources of the invention are arranged in an array, creating a compact, tunable, high-power microwave source suitable for mobile applications. | 04-26-2012 |
20120112844 | OSCILLATOR HAVING NEGATIVE RESISTANCE DEVICE FOR GENERATING ELECTROMAGNETIC WAVE - An oscillator having a negative resistance device and a resonator includes: a transmission line connected to the negative resistance device, a three-terminal device including a first terminal connected to the signal line side of the transmission line at a terminal part, a second terminal connected to the grounding line side of the transmission line and a third terminal receiving a control signal applied thereto; a first regulation unit for regulating the control signal to be applied to the third terminal; and a second regulation unit for regulating the voltage to be applied to the second terminal, the first and the second regulation unit being adapted to regulate respectively the control signal and the voltage so as to make the characteristic impedance of the transmission line and the impedance between the first and the second terminal show an impedance matching. The power consumption rate of the stabilizing circuit can be reduced. | 05-10-2012 |
20120169427 | Force-mode distributed wave oscillator and amplifier systems - A Force-Mode Distributed Wave Oscillator (FMDWO) that provides accurate multiple phases of an oscillation, a Force Mode Distributed Wave Antenna as a radiating element, a Force-Mode Distributed Oscillator Amplifier (FMDOA) and an array of amplifiers capable of operating as a beam forming phased-array antenna driver. Two distinct force mode mechanisms, one delay-based and the other geometry-based, utilizing inverter amplifiers, inject an oscillation on independent conductor loops or rings via transmission lines forming a differential transmission medium for the oscillation wave. Once the oscillation wave is initiated through the forcing mechanisms, the oscillations continue uninterrupted independent of any external triggering. | 07-05-2012 |
20130069731 | METHOD OF MULTI-STAGE SUBSTRATE ETCHING AND TERAHERTZ OSCILLATOR MANUFACTURED USING THE SAME METHOD - A method of multi-stage substrate etching, includes forming a first mask pattern on one surface of a first substrate; forming a hole by etching the first substrate using the first mask pattern as an etching mask; forming a second mask pattern on one surface of a second substrate; forming a hole by etching the second substrate to a predetermined depth using the second mask pattern as an etching mask; bonding the first and second substrates together such that an etched surface of the first substrate faces an etched surface of the second substrate; forming a third mask pattern on the second substrate; and forming a hole passing through the second substrate by etching the second substrate using the third mask pattern as an etching mask, whereby it is prevented the occurrence of a radius of curvature in the bottom surface and the overhang structure occurring on a step surface. | 03-21-2013 |
20130141175 | PUSH-PUSH OSCILLATOR CIRCUIT - A push-push oscillator circuit with a first oscillation branch with a first active device and a first tank adapted to provide a signal having a fundamental frequency f | 06-06-2013 |
20130187721 | OSCILLATION ELEMENT, OSCILLATOR, AND IMAGING APPARATUS USING THE SAME - An oscillation element includes an antenna for oscillation configured to oscillate electromagnetic waves, and multiple negative resistance elements electrically connected to the antenna in parallel, and the multiple negative resistance elements are disposed in only a place where the phases of electromagnetic waves oscillated therefrom are the common phase or opposite phase. | 07-25-2013 |
20140077889 | Wideband Small-Scale Cavity Oscillator - A wideband small-scale cavity oscillator includes a single resonating chamber, a negative resistance diode, at least one capacitive waveguide obstacle, and a tap. The single resonating chamber includes a length, width, and height. The length is greater than the width and height. The negative resistance diode is centrally disposed in the single resonating chamber, and the at least one capacitive waveguide obstacle is disposed in the single resonating chamber. The tap is disposed along the length of the single resonating chamber. A method of manufacturing a wideband small-scale cavity oscillator is provided, which includes providing a single resonating chamber including a length, width, and height, disposing a negative resistance diode centrally in the single resonating chamber, disposing at least one capacitive waveguide obstacle in the single resonating chamber, and disposing a tap along the length of the single resonating chamber. | 03-20-2014 |
20140266477 | OSCILLATION DEVICE - An oscillation device comprises a substrate and a plurality of resonance structures arranged on the substrate to resonate electromagnetic waves. Each of the plurality of resonance structures has a negative differential resistance device for generating electromagnetic waves, a first conductor arranged electrically in contact with the negative differential resistance device and a second conductor arranged electrically in contact with the negative differential resistance device and disposed on the opposite side to the first conductor with respect to the negative differential resistance device. Adjacently located resonance structures of the plurality of resonance structures are interconnected by means of a metal part adapted for capacitive coupling with the first conductors thereof. The plurality of resonance structures are arranged so as to be separated from each other at least by a distance not greater than a wavelength of electromagnetic waves to be oscillated by them. | 09-18-2014 |
20150048893 | RESONATOR ARRANGEMENT AND METHOD FOR EXCITING A RESONATOR - A method for exciting a resonator having a resonance frequency, the resonator is excited in a first period with a first frequency that differs from the resonance frequency by a first frequency difference is provided. During a second period, the resonator is excited with a second frequency that differs from the resonance frequency by a second frequency difference. The first frequency difference and the second frequency difference have different signs. Additionally, the amounts of the first frequency difference and of the second frequency difference differ from one another by less than 10% of the greater amount. | 02-19-2015 |
331099000 | Parallel wire type | 1 |
20090072916 | Integrated Circuit Distributed Oscillator - An integrated circuit distributed radio frequency oscillator comprises a semiconductor chip which includes a differential input transmission line, a differential output transmission line and, coupled in parallel between these transmission lines at spaced apart portions, a number of differential amplifier cells with adjustable delay. The output end of the output transmission line is coupled back to the input end of the input transmission line by a feedback link with a pair of on-chip capacitors. The delay introduced by the amplifier cells is variable in response to a tuning voltage applied to a differential tuning input, making the oscillator suitable for use as a distributed VCO in, e.g. a phase-locked loop circuit. The layout of the oscillator on a semiconductor chip includes the series-connected arrangement of the differential transmission lines in a rectilinear spiral path. | 03-19-2009 |
331101000 | Coaxial or shielded line type | 2 |
20090051451 | GYROMAGNETIC PRECESSION OSCILLATOR - The present invention is, in one aspect, a radio frequency source, comprising a gyromagnetic precession oscillator. In a second aspect, the gyromagnetic precession oscillator comprises a closed, non-magnetic, cylindrical outer conductor defining a cavity therein; an axial field solenoid wound about the outer conductor; a non-magnetic, cylindrical inner conductor disposed within the cavity and coaxially aligned with the outer conductor; a plurality of cylindrical ferrite precessors, each defining a respective bore through which the inner conductor runs; a plurality of dividers disposed within and defining a resonant chamber in the cavity; and a dielectric material filling the cavity. In a third aspect, the radio frequency source is actively tunable. In a fourth aspect, the radio frequency source that is tunable pulse-to-pulse. | 02-26-2009 |
20160204739 | NON-LINEAR TRANSMISSION LINE DEVICE | 07-14-2016 |