Class / Patent application number | Description | Number of patent applications / Date published |
331048000 | Adjustable frequency | 20 |
20080224784 | METHOD FOR REDUCING INTER MODULATION DISTORTION PRODUCTS OF A COMBINED CARRIER WAVE USING PHASE ALIGNMENT OF THE CARRIER COMPONENTS - A method is provided for reducing inter modulation distortion products using multi-carrier phase alignment of the type where a combined carrier signal is generated from the combined output carried waves of a plurality of numerically controlled oscillators in which the frequency of the carrier wave can be altered by changing an input value into the oscillator. In particular the initial phase of the output carrier waves is adjusted so that the peak amplitude of the combined carrier signal is minimized so that compression of the higher amplitude portions of the combined signal is reduced. | 09-18-2008 |
20090058539 | PERIOD SIGNAL GENERATOR OF SEMICONDUCTOR INTEGREATED CIRCUIT - A period signal generator comprises a first period signal generating unit for generating a first period signal of which period changes according to a temperature, a second period signal generating unit for generating a second period signal which has a constant period regardless of a temperature, and a period signal output control unit for comparing the first period signal with the second period signal and selecting and outputting the first period signal in case that the period of the first period signal is shorter than that of the second period signal. | 03-05-2009 |
20090134944 | CAPACITIVE-DEGENERATION DOUBLE CROSS-COUPLED VOLTAGE-CONTROLLED OSCILLATOR - A capacitive-degeneration double cross-coupled voltage-controlled oscillator is provided. The capacitive-degeneration double cross-coupled voltage-controlled oscillator includes a main cross-coupled oscillating unit including an oscillation transistor pair cross-coupled to first and second output nodes of a resonating unit to perform an oscillation operation; and an auxiliary cross-coupled oscillating unit including a positive-feedback transistor pair cross-coupled to the first and second output nodes and the transistor pair of the main cross-coupled oscillating unit and a degeneration capacitance connected between emitters of the positive-feedback transistor pair so as to increase a negative resistance of the main cross-coupled oscillating unit. Accordingly, it is possible to increase a maximum attainable oscillation frequency and to decrease an input capacitance. | 05-28-2009 |
20090302952 | Systems And Methods For Distributing A Clock Signal - Systems and methods for distributing a clock signal are disclosed. In some embodiments, systems for distributing a clock signal include a plurality of resonant oscillators, each comprising an inductor; and a differential clock grid that distributes the clock signal. The differential clock grid is coupled to the plurality of resonant oscillators and the clock signal, and the inductances of the inductors are configured such that a resonant frequency of the plurality of resonant oscillators is substantially equal to the frequency of the clock signal. | 12-10-2009 |
20100308924 | APPARATUS AND METHOD FOR FREQUENCY GENERATION - A wideband frequency generator has two or more oscillators for different frequency bands, disposed on the same die within a flip chip package. Coupling between inductors of the two oscillators is reduced by placing one inductor on the die and the other inductor on the package, separating the inductors by a solder bump diameter. The loosely coupled inductors allow manipulation of the LC tank circuit of one of the oscillators to increase the bandwidth of the other oscillator, and vice versa. Preventing undesirable mode of oscillation in one of the oscillators may be achieved by loading the LC tank circuit of the other oscillator with a large capacitance, such as the entire capacitance of the coarse tuning bank of the other oscillator. Preventing the undesirable mode may also be achieved by decreasing the quality factor of the other oscillator's LC tank and thereby increasing the losses in the tank circuit. | 12-09-2010 |
20110187463 | OSCILLATOR CIRCUIT FOR RADIO FREQUENCY TRANSCEIVERS - Oscillator circuit for radio frequency transceivers. An oscillator circuit includes a first oscillator that generates a signal having a first frequency and a second oscillator that generates a signal having a second frequency. The oscillator circuit includes a mixer that is responsive to the signal having the first frequency and the signal having the second frequency to provide a signal having a third frequency and one or more frequency components. The oscillator circuit includes a filter that is responsive to the signal from the mixer to attenuate the one or more frequency components and provide a signal having a desired frequency. The oscillator circuit includes a correction circuit to correct a drift in at least one of the first frequency and the second frequency by controlling the second frequency, thereby correcting the drift in the third frequency and the desired frequency. | 08-04-2011 |
20110210797 | Highly accurate temperature stable clock based on differential frequency discrimination of oscillators - An apparatus and a method for compensating for a mismatch in temperature coefficients of two oscillator frequencies to match a desired frequency ratio between the two oscillator frequencies over a temperature range. In one embodiment of a temperature sensor, first and second oscillators of different temperature characteristics are coupled to a differential frequency discriminator (DFD) circuit. The DFD circuit compensates for the different characteristics in order to match a frequency difference between the first and second frequencies over a temperature range. | 09-01-2011 |
20110215876 | METHOD AND ARRANGEMENT FOR VOLTAGE CONTROLLED OSCILLATOR DEVICE - Embodiments of the present invention relate to a self injection locked voltage controlled oscillator arrangement, a pair of coupled first and second voltage controlled oscillator devices are arranged on a chip, an amplifier device is arranged on the same of the refection type chip, and an off-chip delay line is arranged with one terminal connected to an output terminal of the coupled first and second voltage controlled oscillator devices, and on terminal adapted to reflect a signal from the output terminal, the amplifier device being arranged to amplify an injection signal from said output terminal and to supply the amplified injection signal to one of said first and second voltage controlled oscillation devices to provide a VCO arrangement that exhibits low phase noise and a small size. | 09-08-2011 |
20120032745 | Frequency-Coupled LCVCO - In one embodiment, a method includes generating, by a LCVCO, a first signal having a first phase based on a resonant frequency of a first LC tank; generating, by a second LCVCO, a second periodic signal having a second phase based on a resonant frequency of a second LC tank; determining a phase offset between the first LC tank and the second LC tank based on the first and second signals; generating a first output signal and a second output signal based on the determined phase offset; and adjusting the phase offset such that the phase offset is substantially equal to a predetermined phase offset. In one embodiment, the adjusting comprises modulating a first impedance of the first LC tank based on the first output signal, and/or modulating a second impedance of the second LC tank based on the second output signal. | 02-09-2012 |
20120182078 | QUADRATURE VOLTAGE-CONTROLLED OSCILLATOR AND METHOD OF PROVIDING FOUR-PHASE OUTPUT SIGNALS - A quadrature VCO includes a first oscillator unit and a second oscillator unit. Each of the first and second oscillator unit is composed of a DC bias source, a complementary cross-coupled pair, an LC resonator unit, a frequency-doubling sub-harmonic coupler unit, and a ground terminal. When the LC resonator units of the first and second oscillator units are operated, four signals of different phases can be outputted via the output terminals. In this way, the output phase difference of the two oscillator units can keep 180 degrees and allow the two oscillator units to mutually inject signals to generate quadrature output signals. | 07-19-2012 |
20120194280 | OSCILLATION DEVICE - An oscillation device capable of highly accurate temperature compensation of an output frequency is provided. The oscillation device includes: first and second oscillator circuits oscillating first and second quartz-crystal resonators with overtones respectively; a frequency difference detecting part finding a value corresponding to a difference value between values corresponding to differences between f | 08-02-2012 |
20130021106 | CLOCK FREQUENCY ADJUSTING METHOD AND CIRCUIT - A method for adjusting an oscillator clock frequency, comprising: providing a first oscillator, applying a first setpoint value to the first oscillator, determining a first oscillator frequency value within a first time frame, providing a second oscillator, applying a second setpoint value to the second oscillator, determining a second oscillator frequency value within a second time frame, determining a new frequency setpoint value from the first and second frequency values, the first and second setpoint values, and a desired frequency value, and applying the new frequency setpoint value to one of the first and second oscillators. | 01-24-2013 |
20130082785 | Tunable signal source - The present disclosure provides a tunable signal source having a plurality of oscillator cores having a coupling input, a coupling output, and a power output that is common to each of the plurality of oscillator cores. Also included is a plurality of tunable phase shifters wherein corresponding ones of the plurality of tunable phase shifters are communicatively coupled between the coupling input and the coupling output of corresponding ones of the plurality of oscillator cores, thereby forming a loop of alternating ones of the plurality of oscillator cores and alternating ones of the plurality of tunable phase shifters. | 04-04-2013 |
20130241661 | VOLTAGE-CONTROLLED OSCILLATOR MODULE AND METHOD FOR GENERATING OSCILLATOR SIGNALS - A voltage-controlled oscillator (VCO) module including a first VCO unit, a second VCO unit, and a matching circuit is provided. The first VCO unit includes a first terminal and a second terminal and generates a first oscillator signal. The second VCO unit is coupled to the first VCO unit and generates a second oscillator signal. The matching circuit is coupled between the first VCO unit and second VCO unit. The matching circuit includes a plurality of inductor modules respectively coupled between the first terminal of the first VCO unit and the second VCO unit, between the first terminal and the second terminal of the first VCO unit, and between the second terminal of the first VCO unit and the second VCO unit. Furthermore, a method for generating oscillator signals is also provided. | 09-19-2013 |
20140139293 | INTEGRATED REFERENCE FREQUENCY GENERATOR - An integrated circuit device for generating an output frequency includes a master oscillator and a slave oscillator formed on an integrated circuit substrate. The master oscillator utilizes a bulk acoustic wave resonator that provides a reference frequency source to the device. The frequency of the slave oscillator is periodically adjusted with respect to the reference frequency source and provided as an output. The master oscillator is periodically enabled to adjust the slave oscillator. Additional automatic temperature compensation is enabled as necessary. | 05-22-2014 |
20150295583 | LOCKING MULTIPLE VOLTAGE-CONTROLLED OSCILLATORS WITH A SINGLE PHASE-LOCKED LOOP - Locking multiple VCOs to generate a plurality of LO frequencies, including: receiving a plurality of divided VCO feedback signals from a plurality of VCOs; receiving a reference signal multiplied by a predetermined number of the plurality of VCOs; generating and processing the predetermined number of phase differences between the multiplied reference signal and the plurality of divided VCO feedback signals in a single PLL circuit including a digital loop filter to receive and process the phase differences and generate (produce) a filter output, wherein the digital loop filter includes a plurality of delay cells equal to the predetermined number; and generating and outputting (delayed) control voltages for the plurality of VCOs based on the filter output. | 10-15-2015 |
20150333694 | CRYSTAL OSCILLATOR STARTUP TIME REDUCTION - A circuit includes a crystal oscillator to generate an output frequency for a circuit. A driving oscillator generates a startup signal having a driving frequency that is provided to activate the crystal oscillator. The driving frequency of the startup signal is varied over a range of frequencies that encompass the operating frequency of the crystal oscillator to facilitate startup of the crystal oscillator. | 11-19-2015 |
20150333761 | VCO-COUPLING MITIGATION IN A MULTIPLE-CARRIER, CARRIER AGGREGATION RECEIVER - Aspects of a wireless apparatus for configuring a plurality of VCOs are provided. The apparatus may be a UE. The UE receives a configuration for a plurality of carriers. Each carrier corresponds to a different LO frequency. In addition, the UE determines a VCO frequency for generating each LO frequency. Further, the UE assigns each determined VCO frequency to each of a plurality of VCO modules based on a distance between the VCO modules and each of the determined VCO frequencies. The plurality of VCO modules are of a set of VCO modules including at least three VCO modules. | 11-19-2015 |
20160072436 | Method and Apparatus of Synchronizing Oscillators - A circuit includes a first oscillator and a second oscillator. The first oscillator includes an inductive device, a capacitive device, and an active feedback device configured to output a first output signal having a predetermined frequency according to electrical characteristics of the inductive device of the first oscillator and electrical characteristics of the capacitive device of the first oscillator. The second oscillator includes an inductive device, a capacitive device, and an active feedback device configured to output a second output signal having the predetermined frequency according to electrical characteristics of the inductive device of the second oscillator and electrical characteristics of the capacitive device of the second oscillator. The inductive device of the first oscillator and the inductive device of the second oscillator are magnetically coupled. | 03-10-2016 |
20160087584 | OSCILLATOR, ELECTRONIC APPARATUS, AND MOVING OBJECT - An oscillator includes a first VCXO and a second VCXO which are capable of changing an output frequency by application of a control voltage, and a control voltage terminal to which the control voltage is applied, the first VCXO includes a variable-capacitance diode (first variable-capacitance diode) and a resistor (first resistor), the second VCXO includes a variable-capacitance diode (second variable-capacitance diode) and a resistor (second resistor), the cutoff frequency of the first variable-capacitance diode, the second variable-capacitance diode, the first resistor, and the second resistor is equal to the cutoff frequency of the first variable-capacitance diode and the first resistor, and the cutoff frequency of the second variable-capacitance diode and the second resistor. | 03-24-2016 |